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Abstract

In this paper, we tackle the important yet under-investigated problem of making
long-horizon prediction of event sequences. Existing state-of-the-art models do
not perform well at this task due to their autoregressive structure. We propose
HYPRO, a hybridly normalized probabilistic model that naturally fits this task:
its first part is an autoregressive base model that learns to propose predictions;
its second part is an energy function that learns to reweight the proposals such
that more realistic predictions end up with higher probabilities. We also propose
efficient training and inference algorithms for this model. Experiments on multiple
real-world datasets demonstrate that our proposed HYPRO model can significantly
outperform previous models at making long-horizon predictions of future events.
We also conduct a range of ablation studies to investigate the effectiveness of each
component of our proposed methods.

1 Introduction

Long-horizon prediction of event sequences is essential in various real-world applied domains:

• Healthcare. Given a patient’s symptoms and treatments so far, we would be interested in predicting
their future health conditions over the next several months, including their prognosis and treatment.

• Commercial. Given an online consumer’s previous purchases and reviews, we may be interested in
predicting what they would buy over the next several weeks and plan our advertisement accordingly.

• Urban planning. Having monitored the traffic flow of a town for the past few days, we’d like to
predict its future traffic over the next few hours, which would be useful for congestion management.

• Similar scenarios arise in computer systems, finance, dialogue, music, etc.

Though being important, this task has been under-investigated: the previous work in this research
area has been mostly focused on the prediction of the next single event (e.g., its time and type).

In this paper, we show that previous state-of-the-art models suffer at making long-horizon predictions,
i.e., predicting the series of future events over a given time interval. That is because those models
are all autoregressive: predicting each future event is conditioned on all the previously predicted
events; an error can not be corrected after it is made and any error will be cascaded through all the
subsequent predictions. Problems of the same kind also exist in natural language processing tasks
such as generation and machine translation (Ranzato et al., 2016; Goyal, 2021).

In this paper, we propose a novel modeling framework that learns to make long-horizon prediction of
event sequences. Our main technical contributions include:

• A new model. The key component of our framework is HYPRO, a hybridly normalized neural
probabilistic model that combines an autoregressive base model with an energy function: the
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base model learns to propose plausible predictions; the energy function learns to reweight the
proposals. Although the proposals are generated autoregressively, the energy function reads each
entire completed sequence (i.e., true past events together with predicted future events) and learns to
assign higher weights to those which appear more realistic as a whole.
Hybrid models have already demonstrated effective at natural language processing such as detecting
machine-generated text (Bakhtin et al., 2019) and improving coherency in text generation (Deng
et al., 2020). We are the first to develop a model of this kind for time-stamped event sequences. Our
model can use any autoregressive event model as its base model, and we choose the state-of-the-art
continuous-time Transformer architecture (Yang et al., 2022) as its energy function.

• A family of new training objectives. Our second contribution is a family of training objectives that
can estimate the parameters of our proposed model with low computational cost. Our training
methods are based on the principle of noise-contrastive estimation since the log-likelihood of our
HYPRO model involves an intractable normalizing constant (due to using energy functions).

• A new efficient inference method. Another contribution is a normalized importance sampling
algorithm, which can efficiently draw the predictions of future events over a given time interval
from a trained HYPRO model.

2 Technical Background

2.1 Formulation: Generative Modeling of Event Sequences

We are given a fixed time interval [0, T ] over which an event sequence is observed. Suppose there
are I events in the sequence at times 0 < t1 < . . . < tI ≤ T . We denote the sequence as
x[0,T ] = (t1, k1), . . . , (tI , kI) where each ki ∈ {1, . . . ,K} is a discrete event type.

Generative models of event sequences are temporal point processes. They are autoregressive:
events are generated from left to right; the probability of (ti, ki) depends on the history of events
x[0,ti) = (t1, k1), . . . , (ti−1, ki−1) that were drawn at times < ti. They are locally normalized: if
we use pk(t | x[0,t)) to denote the probability that an event of type k occurs over the infinitesimal
interval [t, t+dt), then the probability that nothing occurs will be 1−

∑K
k=1 pk(t | x[0,t)). Specifically,

temporal point processes define functions λk that determine a finite intensity λk(t | x[0,t)) ≥ 0
for each event type k at each time t > 0 such that pk(t | x[0,t)) = λk(t | x[0,t))dt. Then the
log-likelihood of a temporal point process given the entire event sequence x[0,T ] is

I∑
i=1

log λki(ti | x[0,ti))−
∫ T

t=0

K∑
k=1

λk(t | x[0,t))dt (1)

Popular examples of temporal point processes include Poisson processes (Daley & Vere-Jones, 2007)
as well as Hawkes processes (Hawkes, 1971) and their modern neural versions (Du et al., 2016; Mei
& Eisner, 2017; Zuo et al., 2020; Zhang et al., 2020; Yang et al., 2022).

2.2 Task and Challenge: Long-Horizon Prediction and Cascading Errors

We are interested in predicting the future events over an extended time interval (T, T ′]. We call this
task long-horizon prediction as the boundary T ′ is so large that (with a high probability) many
events will happen over (T, T ′]. A principled way to solve this task works as follows: we draw many
possible future event sequences over the interval (T, T ′], and then use this empirical distribution to
answer questions such as “how many events of type k = 3 will happen over that interval”.

A serious technical issue arises when we draw each possible future sequence. To draw an event
sequence from an autoregressive model, we have to repeatedly draw the next event, append it to the
history, and then continue to draw the next event conditioned on the new history. This process is
prone to cascading errors: any error in a drawn event is likely to cause all the subsequent draws to
differ from what they should be, and such errors will accumulate.

2.3 Globally Normalized Models: Hope and Difficulties

An ideal fix of this issue is to develop a globally normalized model for event sequences. For any
time interval [0, T ], such a model will give a probability distribution that is normalized over all
the possible full sequences on [0, T ] rather than over all the possible instantaneous subsequences
within each (t, t+ dt). Technically, a globally normalized model assigns to each sequence x[0,T ] a
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score exp
(
−E(x[0,T ])

)
where E is called energy function; the normalized probability of x[0,T ] is

proportional to its score: i.e., p(x[0,T ]) ∝ exp
(
−E(x[0,T ])

)
.

Had we trained a globally normalized model, we wish to enumerate all the possible x[T,T ′] for a
given x[0,T ] and select those which give the highest model probabilities p(x[0,T ′]). Prediction made
this way would not suffer cascading errors: the entire x[0,T ′] was jointly selected and thus the overall
compatibility between the events had been considered.

However, training such a globally normalized probabilistic model involves computing the normalizing
constant

∑
exp

(
−E(x[0,T ])

)
where the summation

∑
is taken over all the possible sequences; it is

intractable since there are infinitely many sequences. What’s worse, it is also intractable to exactly
sample from such a model; approximate sampling is tractable but expensive.

3 HYPRO: A Hybridly Normalized Neural Probabilistic Model

We propose HYPRO, a hybridly normalized neural probabilistic model that combines a temporal
point process and an energy function: it enjoys both the efficiency of autoregressive models and the
capacity of globally normalized models. Our model normalizes over (sub)sequences: for any given
interval [0, T ] and its extension (T, T ′] of interest, the model probability of the sequence x(T,T ′] is

pHYPRO
(
x(T,T ′] | x[0,T ]

)
= pauto

(
x(T,T ′] | x[0,T ]

) exp(−Eθ(x[0,T ′]))
Zθ(x[0,T ])

(2)

where pauto is the probability under the chosen temporal point process and Eθ is an energy function
with parameters θ. The normalizing constant sums over all the possible continuations x(T,T ′] for a

given prefix x[0,T ]: Zθ
(
x[0,T ]

) def
=
∑
x(T,T ′]

pauto
(
x(T,T ′] | x[0,T ]

)
exp

(
−Eθ(x[0,T ′])

)
.

The key advantage of our model over autoregressive models is that: the energy function Eθ is able
to pick up the global features that may have been missed by the autoregressive base model pauto;
intuitively, the energy function fits the residuals that are not captured by the autoregressive model.

Our model is general: in principle, pauto can be any autoregressive model including those mentioned
in section 2.1 and Eθ can be any function that is able to encode an event sequence to a real number.
In section 5, we will introduce a couple of specific pauto and Eθ and experiment with them.

In this section, we focus on the training method and inference algorithm.

3.1 Training Objectives

Training our full model pHYPRO is to learn the parameters of the autoregressive model pauto as well as
those of the energy function Eθ. Maximum likelihood estimation (MLE) is undesirable: the objective
would be log pHYPRO

(
x(T,T ′] | x[0,T ]

)
= log pauto

(
x(T,T ′] | x[0,T ]

)
− Eθ(x[0,T ′])− logZθ

(
x[0,T ]

)
where the normalizing constant Zθ

(
x[0,T ]

)
is known to be uncomputable and inapproximable for a

large variety of reasonably expressive functions Eθ (Lin & McCarthy, 2022).

We propose a training method that works around this normalizing constant. We first train pauto just
like how previous work trained temporal point processes.1 Then we use the trained pauto as a noise
distribution and learn the parameters θ of Eθ by noise-contrastive estimation (NCE). Precisely, we
sample N noise sequences x(1)[T,T ′], . . . , x

(N)
[T,T ′], compute the “energy” Eθ(x

(n)
[0,T ′]) for each completed

sequence x(n)[0,T ′], and then plug those energies into one of the following training objectives.

Note that all the completed sequences x(n)[0,T ′] share the same observed prefix x[0,T ].

Binary-NCE Objective. We train a binary classifier based on the energy function Eθ to discriminate
the true event sequence—denoted as x(0)[0,T ′]—against the noise sequences by maximizing

Jbinary = log σ
(
−Eθ(x(0)[0,T ′])

)
+

N∑
n=1

log σ
(
Eθ(x

(n)
[0,T ′]))

)
(3)

1It can be done by either maximum likelihood estimation or noise-contrastive estimation: for the former,
read Daley & Vere-Jones (2007); for the latter, read Mei et al. (2020b) which also has an in-depth discussion
about the theoretical connections between these two parameter estimation principles.
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where σ(u) = 1
1+exp(−u) is the sigmoid function. By maximizing this objective, we are essentially

pushing our energy function Eθ such that the observed sequences have low energy but the noise
sequences have high energy. As a result, the observed sequences will be more probable under our full
model pHYPRO while the noise sequences will be less probable: see equation (2).

Theoretical guarantees of general Binary-NCE can be found in Gutmann & Hyvärinen (2010).
For general conditional probability models like ours, Binary-NCE implicitly assumes self-
normalization (Mnih & Teh, 2012; Ma & Collins, 2018): i.e., Zθ

(
x[0,T ]

)
= 1 is satisfied.

This type of training objective has been used to train a hybridly normalized text generation model by
Deng et al. (2020); see section 4 for more discussion about its relations with our work.

Multi-NCE Objective. Another option is to use Multi-NCE objective2, which means we maximize

Jmulti = −Eθ(x(0)[0,T ′])− log

N∑
n=0

exp
(
−Eθ(x(n)[0,T ′]))

)
(4)

By maximizing this objective, we are pushing our energy function Eθ such that each observed
sequence has relatively lower energy than the noise sequences sharing the same observed prefix. In
contrast, Jbinary attempts to make energies absolutely low (for observed data) or high (for noise data)
without considering whether they share prefixes. This effect is analyzed in Analysis-III of section 5.2.

This Jmulti objective also enjoys better statistical properties than Jbinary since it doesn’t assume self-
normalization: the normalizing constant Zθ

(
x[0,T ]

)
is neatly cancelled out in its derivation; see

Appendix A.1 for a full derivation of both Binary-NCE and Multi-NCE.

Theoretical guarantees of Multi-NCE for discrete-time models were established by Ma & Collins
(2018); Mei et al. (2020b) generalized them to temporal point processes.

Considering Distances Between Sequences. Previous work (LeCun et al., 2006; Bakhtin et al.,
2019) reported that energy functions may be better learned if the distances between samples are
considered. This has inspired us to design a regularization term that enforces such consideration.

Suppose that we can measure a well-defined “distance” between the true sequence x(0)[0,T ′] and any

noise sequence x(n)[0,T ′]; we denote it as d(n). We encourage the energy of each noise sequence to be
higher than that of the observed sequence by a margin; that is, we propose the following regularization:

Ω =

N∑
n=1

max
(

0, βd(n) + Eθ(x
(0)
[0,T ′])− Eθ(x

(n)
[0,T ′])

)
(5)

where β > 0 is a hyperparameter that we tune on the held-out development data. With this
regularization, the energies of the sequences with larger distances will be pulled farther apart: this
will help discriminate not only between the observed sequence and the noise sequences, but also
between the noise sequences themselves, thus making the energy function Eθ more informed.

This method is general so the distance d can be any appropriately defined metric. In section 5, we
will experiment with an optimal transport distance specifically designed for event sequences.

Note that the distance d in the regularization may be the final test metric. In that case, our method is
directly optimizing for the final evaluation score.

Generating Noise Sequences. Generating event sequences from an autoregressive temporal point
process has been well-studied in previous literature. The standard way is to call the thinning
algorithm (Lewis & Shedler, 1979; Liniger, 2009). The full recipe for our setting is in Algorithm 1.

3.2 Inference Algorithm

Inference involves drawing future sequences x(T,T ′] from the trained full model pHYPRO; due to the
uncomputability of the normalizing constant Z(x[0,T ]), exact sampling is intractable.

We propose a normalized importance sampling method to approximately draw x(T,T ′] from
pHYPRO; it is shown in Algorithm 2. We first use the trained pauto to be our proposal distribu-
tion and call the thinning algorithm (Algorithm 1) to draw proposals x〈1〉[T,T ′], . . . , x

〈M〉
[T,T ′]. Then we

2It was named as Ranking-NCE by Ma & Collins (2018), but we think Multi-NCE is a more appropriate
name since it constructs a multi-class classifier over one correct answer and multiple incorrect answers.

4



Algorithm 1 Generating Noise Sequences.

Input: an event sequence x[0,T ] over the given interval [0, T ] and an interval (T, T ′] of interest;
trained autoregressive model pauto and number of noise samples N

Output: a collection of noise sequences
1: procedure DRAWNOISE(x[0,T ], T

′, pauto, N )
2: for n = 1 to N :
3: . use the thinning algorithm to draw each noise sequences from the autoregressive model pauto

4: . in particular, call the method in Algorithm 3 that is described in Appendix A.2
5: x

(n)
(T,T ′] ← THINNING(x[0,T ], T

′, pauto)

6: return x(1)(T,T ′], . . . , x
(N)
(T,T ′]

reweight those proposals with the normalized weights w〈m〉 that are defined as

w〈m〉
def
=

pHYPRO(x
〈m〉
[T,T ′])/pauto(x

〈m〉
[T,T ′])∑M

m′=1
pHYPRO(x

〈m′〉
[T,T ′])/pauto(x

〈m′〉
[T,T ′])

=
exp
(
−Eθ(x〈m〉

[0,T ′])
)

∑M
m′=1

exp
(
−Eθ(x〈m′〉

[0,T ′])
) (6)

This collection of weighted proposals is used for the long-horizon prediction over the interval (T, T ′]:
if we want the most probable sequence, we return the x〈m〉[T,T ′] with the largest weight w〈m〉; if we
want a minimum Bayes risk prediction (for a specific risk metric), we can use existing methods (e.g.,
the consensus decoding method in Mei et al. (2019)) to compose those weighted samples into a single
sequence that minimizes the risk. In our experiments (section 5), we used the most probable sequence.

Note that our sampling method is biased since the weights w〈m〉 are normalized. Unbiased
sampling in our setting is intractable since that will need our weights to be unnormalized: i.e.,
w

def
= pHYPRO/pauto = exp (−Eθ) /Z which circles back to the problem ofZ’s uncomputability. Exper-

imental results in section 5 show that our method indeed works well in practice despite that it is biased.

Algorithm 2 Normalized Importance Sampling for Long-Horizon Prediction.

Input: an event sequence x[0,T ] over the given interval [0, T ] and an interval (T, T ′] of interest;
trained autoregressive model pauto and engergy function Eθ, number of proposals M

Output: a collection of weighted proposals
1: procedure NIS(x[0,T ], T

′, pauto, Eθ,M )
2: . use normalized importance sampling to approximately draw M proposals from pHYPRO

3: x
〈1〉
[T,T ′], . . . , x

〈M〉
[T,T ′] ← DRAWNOISE(x[0,T ], T

′, pauto,M ) . see Algorithm 1

4: construct completed sequences x〈1〉[0,T ′], . . . , x
〈M〉
[0,T ′] by appending each x〈m〉[T,T ′] to x[0,T ]

5: compute the exponential of minus energy e〈m〉 = exp
(
−Eθ(x〈m〉[0,T ′])

)
for each proposal

6: compute the normalized weights w〈m〉 = e〈m〉/
∑M
m′=1 e

〈m′〉

7: return (w〈1〉, x
〈1〉
[T,T ′]), . . . , (w

〈M〉, x
〈M〉
[T,T ′]) . return the collection of weighted proposals

4 Related work

Over the recent years, various neural temporal point processes have been proposed. Many of them are
built on recurrent neural networks, or LSTMs (Hochreiter & Schmidhuber, 1997); they include Du
et al. (2016); Mei & Eisner (2017); Xiao et al. (2017a,b); Omi et al. (2019); Shchur et al. (2020); Mei
et al. (2020a); Boyd et al. (2020). Some others use Transformer architectures (Vaswani et al., 2017;
Radford et al., 2019): in particular, Zuo et al. (2020); Zhang et al. (2020); Enguehard et al. (2020);
Sharma et al. (2021); Zhu et al. (2021); Yang et al. (2022). All these models all autoregressive: they
define the probability distribution over event sequences in terms of a sequence of locally-normalized
conditional distributions over events given their histories.

Energy-based models, which have a long history in machine learning (Hopfield, 1982; Hinton, 2002;
LeCun et al., 2006; Ranzato et al., 2007; Ngiam et al., 2011; Xie et al., 2019), define the distribution
over sequences in a different way: they use energy functions to summarize each possible sequence
into a scalar (called energy) and define the unnormalized probability of each sequence in terms of
its energy, then the probability distribution is normalized across all sequences; thus, they are also
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called globally normalized models. Globally normalized models are a strict generalization of locally
normalized models (Lin et al., 2021): all the locally normalized models are globally normalized;
but the converse is not true. Moreover, energy functions are good at capturing global features and
structures (Pang et al., 2021; Du & Mordatch, 2019; Brakel et al., 2013). However, the normalizing
constants of globally normalized models are often uncomputable (Lin & McCarthy, 2022). Existing
work that is most similar to ours is the energy-based text generation models of Bakhtin et al. (2019)
and Deng et al. (2020) that train energy functions to reweight the outputs generated by pretrained
autoregressive models. The differences are: we work on different kinds of sequential data (continuous-
time event sequences vs. discrete-time natural language sentences), and thus the architectures of our
autoregressive model and energy function are different from theirs; additionally, we explored a wider
range of training objectives (e.g., Multi-NCE) than they did.

The task of long-horizon prediction has drawn much attention in several machine learning areas
such as regular time series analysis (Yu et al., 2019; Le Guen & Thome, 2019), natural language
processing (Guo et al., 2018; Guan et al., 2021), and speech modeling (Oord et al., 2016). Deshpande
et al. (2021) is the best-performing to-date in long-horizon prediction of event sequences: they adopt a
hierarchical architecture similar to ours and use a ranking objective based on the counts of the events.
Their method can be regarded as a special case of our framework (if we let our energy function read
the counts of the events), and our method works better in practice (see section 5).

5 Experiments

We implemented our methods with PyTorch (Paszke et al., 2017). Our code can be found at https:
//github.com/alipay/hypro_tpp and https://github.com/iLampard/hypro_tpp. Im-
plementation details can be found in Appendix B.2.

5.1 Experimental Setup

Given a train set of sequences, we use the full sequences to train the autoregressive model pauto by
maximizing equation (1). To train the energy function Eθ, we need to split each sequence into a prefix
x[0,T ] and a continuation x(T,T ′]: we choose T and T ′ such that there are 20 event tokens within
(T, T ′] on average. During testing, for each prefix x[0,T ], we draw 20 weighted samples (Algorithm 2)
and choose the highest-weighted one as our prediction x̂(T,T ′]. We evaluate our predictions by:

• The root of mean square error (RMSE) of the number of the tokens of each event type: for each
type k, we count the number of type-k tokens in the true continuation—denoted as Ck—as well as

that in the prediction—denoted as Ĉk; then the mean square error is

√
1
K

∑K
k=1

(
Ck − Ĉk

)2
.

• The optimal transport distance (OTD) between event sequences defined by Mei et al. (2019): for
any given prefix x[0,T ], the distance is defined as the minimal cost of editing the prediction x̂(T,T ′]

(by inserting or deleting events, changing their occurrence times, and changing their types) such
that it becomes exactly the same as the true continuation x(T,T ′].

We did experiments on two real-world datasets (see Appendix B.1 for dataset details):

• Taobao (Alibaba, 2018). This public dataset was created and released for the 2018 Tianchi Big
Data Competition. It contains time-stamped behavior records (e.g., browsing, purchasing) of
anonymized users on the online shopping platform Taobao from November 25 through December
03, 2017. Each category group (e.g., men’s clothing) is an event type, and we have K = 17 event
types. We use the browsing sequences of the most active 2000 users; each user has a sequence.
Then we randomly sampled disjoint train, dev and test sets with 1300, 200 and 500 sequences.
The time unit is 3 hours; the average inter-arrival time is 0.06 (i.e., 0.18 hour), and we choose the
prediction horizon T ′ − T to be 1.5 that approximately covers 20 event tokens.

• Taxi (Whong, 2014). This dataset tracks the time-stamped taxi pick-up and drop-off events across
the five boroughs of the New York city; each (borough, pick-up or drop-off) combination defines
an event type, so there are K = 10 event types in total. We work on a randomly sampled subset of
2000 drivers and each driver has a sequence. We randomly sampled disjoint train, dev and test sets
with 1400, 200 and 400 sequences. The time unit is 1 hour; the average inter-arrival time is 0.22,
and we set the prediction horizon to be 4.5 that approximately covers 20 event tokens.
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(b) Taxi Data
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(c) StackOverflow Data
Figure 1: Performance of all the methods on Taobao (1a), Taxi (1b) and StackOverflow (1c) datasets, measured
by RMSE (up) and OTD (down). In each figure, the models from left to right are: DualTPP (dualtpp); NHP
(nhp); NHP with more parameters (nhp-lg); AttNHP (att); AttNHP with more parameters (att-lg); our HYPRO
with Transformer energy function trained via Binary-NCE (hypro-a-b) and Multi-NCE (hypro-a-m).

• StackOverflow (Leskovec & Krevl, 2014). This dataset has two years of user awards on a question-
answering website: each user received a sequence of badges and there are K = 22 different kinds
of badges in total. We randomly sampled disjoint train, dev and test sets with 1400, 400 and 400
sequences from the dataset. The time unit is 11 days; the average inter-arrival time is 0.95 and we
set the prediction horizon to be 20 that approximately covers 20 event tokens.

We choose two strong autoregressive models as our base model pauto:

• Neural Hawkes process (NHP) (Mei & Eisner, 2017). It is an LSTM-based autoregressive model
that has demonstrated effective at modeling event sequences in various domains.

• Attentative neural Hawkes process (AttNHP) (Yang et al., 2022). It is an attention-based
autoregressive model—like Transformer language model (Vaswani et al., 2017; Radford et al.,
2019)—whose performance is comparable to or better than that of the NHP as well as other
attention-based models (Zuo et al., 2020; Zhang et al., 2020).

For the energy function Eθ, we adapt the continuous-time Transformer module of the AttNHP
model: the Transformer module embeds the given sequence of events x into a fixed-dimensional
vector (see section-2 of Yang et al. (2022) for details), which is then mapped to a scalar ∈ R via a
multi-layer perceptron (MLP); that scalar is the energy value Eθ(x).

We first train the two base models NHP and AttNHP; they are also used as the baseline methods
that we will compare to. To speed up energy function training, we use the pretrained weights of the
AttNHP to initialize the Transformer part of the energy function; this trick was also used in Deng et al.
(2020) to bootstrap the energy functions for text generation models. As the full model pHYPRO has
significantly more parameters than the base model pauto, we also trained larger NHP and AttNHP with
comparable amounts of parameters as extra baselines. Additionally, we also compare to the DualTPP
model of Deshpande et al. (2021). Details about model parameters are in Table 2 of Appendix B.3.

5.2 Results and Analysis

The main results are shown in Figure 1. The OTD depends on the hyperparameter Cdel, which is the
cost of deleting or adding an event token of any type, so we used a range of values of Cdel and report
the averaged OTD in Figure 1; OTD for each specific Cdel can be found in Appendix B.4. As we can
see, NHP and AttNHP work the worst in most cases. DualTPP doesn’t seem to outperform these
autoregressive baselines even though it learns to rerank sequences based on their macro statistics; we
believe that it is because DualTPP’s base autoregressive model is not as powerful as the state-of-the-
art NHP and AttNHP and using macro statistics doesn’t help enough. Our HYPRO method works
significantly better than these baselines.

Analysis-I: Does the Cascading Error Exist? Handling cascading errors is a key motivation for
our framework. On the Taobao dataset, we empirically confirmed that this issue indeed exists.
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(a) Without the using distance-based regularization of equation (5).
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(b) Using the distance-based regularization of equation (5).
Figure 2: Energy scores computed on the held-out development data of Taobao dataset.

We first investigate whether the event type prediction errors are cascaded through the subsequent
events. We grouped the sequences based on how early the first event type prediction error was made
and then compared the event type prediction error rate on the subsequent events:

• when the first error is made on the first event token, the base AttNHP model has a 71.28% error
rate on the subsequent events and our hybrid model has a much lower 66.99% error rate.

• when the first error is made on the fifth event token, the base AttNHP model has a 58.88% error
rate on the subsequent events and our hybrid model has a much lower 51.89% error rate.

• when the first error is made on the tenth event token, the base AttNHP model has a 44.48% error
rate on the subsequent events and our hybrid model has a much lower 35.58% error rate.

Obviously, when mistakes are made earlier in the sequences, we tend to end up with a higher error rate
on the subsequent predictions; that means event type prediction errors are indeed cascaded through
the subsequent predictions. Moreover, in each group, our hybrid model enjoys a lower prediction
error; that means it indeed helps mitigate this issue.

We then investigate whether the event time prediction errors are cascaded. For this, we performed a
linear regression: the independent variable x is the absolute error of the prediction on the time of the
first event token; the dependent variable y is the averaged absolute error of the prediction on the time
of the subsequent event tokens. Our fitted linear model is y = 0.7965x+ 0.3219 where the p-value
of the coefficient of x is ≈ 0.0001 < 0.01. It means that the time prediction errors are also cascaded
through the subsequent predictions.

Analysis-II: Energy Function or Just More Parameters? The larger NHP and AttNHP have
almost the same numbers of parameters with HYPRO, but their performance is only comparable
to the smaller NHP and AttNHP. That is to say, simply increasing the number of parameters in an
autoregressive model will not achieve the performance of using an energy function.

To further verify the usefulness of the energy function, we also compared our method with another
baseline method that ranks the completed sequences based on their probabilities under the base
model, from which the continuations were drawn. This baseline is similar to our proposed HYPRO
framework but its scorer is the base model itself. In our experiments, this baseline method is not
better than our method; details can be found in Appendix B.5.

Overall, we can conclude that the energy function Eθ is essential to the success of HYPRO.

Analysis-III: Binary-NCE vs. Multi-NCE. Both Binary-NCE and Multi-NCE objectives aim to
match our full model distribution pHYPRO with the true data distribution, but Multi-NCE enjoys
better statistical properties (see section 3) and achieved better performance in our experiments (see
Figure 1). In Figure 2a, we display the distributions of the energy scores of the observed sequences,
pHYPRO-generated sequences, and pauto-generated noise sequences: as we can see, the distribution of
pHYPRO is different from that of noise data and indeed closer to that of real data.
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(a) Taobao Dataset.
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(b) Taxi Dataset.
Figure 3: Adding the regularization term Ω. In each figure, the suffix -reg denotes “with regularization”.
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Figure 4: HYPRO vs. AttNHP for different horizons on Taobao Dataset.

Analysis-IV: Effects of the Distance-Based Regularization Ω. We experimented with the proposed
distance-based regularization Ω in equation (5); as shown in Figure 3, it slightly improves both Binary-
NCE and Multi-NCE. As shown in Figure 2b, the regularization makes a larger difference in the
Binary-NCE case: the energies of pHYPRO-generated sequences are pushed further to the left.

We did the paired permutation test to verify the statistical significance of our regularization technique;
see Appendix B.6 for details. Overall, we found that the performance improvements of using the
regularization are strongly significant in the Binary-NCE case (p-value < 0.05 ) but not significant in
the Multi-NCE case (p-value ≈ 0.1). This finding is consistent with the observations in Figure 2.

Analysis-V: Effects of Prediction Horizon. Figure 4 shows how well our method performs for
different prediction horizons. On Taobao Dataset, we experimented with horizon being 0.3, 0.8, 1.5, 2,
corresponding to approximately 5, 10, 20, 30 event tokens, and found that our HYPRO method
improves significantly and consistently over the autoregressive baseline AttNHP.
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(a) Using different energy functions on Taobao Data
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(b) Using different energy functions on Taxi Data

Figure 5: Using different energy functions. In each figure, the suffix -n-b and -n-m denote using a continuous-time
LSTM as the energy function trained by Binary-NCE and Multi-NCE, respectively.

Analysis-VI: Different Energy Functions. So far we have only shown the results and analysis of
using the continuous-time Transformer architecture as the energy function Eθ. We also experimented
with using a continuous-time LSTM (Mei & Eisner, 2017) as the energy function and found that
it never outperformed the Transformer energy function in our experiments; see Figure 5. We think

9



it is because the Transformer architectures are better at embedding contextual information than
LSTMs (Vaswani et al., 2017; Pérez et al., 2019; O’Connor & Andreas, 2021).

Analysis-VII: Negative Samples. On the Taobao dataset, we analyzed how the number of negative
samples affects training and inference. We experimented with the Binary-NCE objective without the
distance regularization (i.e., hypro-a-b). The results are in Figure 6. During training, increasing the
number of negative samples from 1 to 5 has brought improvements but further increasing it to 10
does not. During inference, the results are improved when we increase the number of samples from
5 to 20, but they stop improving when we further increase it. Throughout the paper, we used 5 in
training and 20 in inference (Appendix B.3).
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(b) Inference.

Figure 6: Effects of the number of negative samples in training and inference on the Taobao dataset.

6 Conclusion

We presented HYPRO, a hybridly normalized neural probabilistic model for the task of long-horizon
prediction of event sequences. Our model consists of an autoregressive base model and an energy
function: the latter learns to reweight the sequences drawn from the former such that the sequences
that appear more realistic as a whole can end up with higher probabilities under our full model.
We developed two training objectives that can train our model without computing its normalizing
constant, together with an efficient inference algorithm based on normalized importance sampling.
Empirically, our method outperformed current state-of-the-art autoregressive models as well as a
recent non-autoregressive model designed specifically for the same task.

7 Limitations and Societal Impacts

Limitations. Our method uses neural networks, which are typically data-hungry. Although it worked
well in our experiments, it might still suffer compared to non-neural models if starved of data.
Additionally, our method requires the training sequences to be sufficiently long so it can learn to
make long-horizon predictions; it may suffer if the training sequences are short.

Societal Impacts. Our paper develops a novel probabilistic model for long-horizon prediction of
event sequences. By describing the model and releasing code, we hope to facilitate probabilistic
modeling of continuous-time sequential data in many domains. However, like many other machine
learning models, our model may be applied to unethical ends. For example, its abilities of better
fitting data and making more accurate predictions could potentially be used for unwanted tracking of
individual behavior, e.g. for surveillance.
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