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Abstract

Data valuation, or the valuation of individual datum contributions, has seen growing
interest in machine learning due to its demonstrable efficacy for tasks such as noisy
label detection. In particular, due to the desirable axiomatic properties, several
Shapley value approximation methods have been proposed. In these methods,
the value function is typically defined as the predictive accuracy over the entire
development set. However, this limits the ability to differentiate between training
instances that are helpful or harmful to their own classes. Intuitively, instances
that harm their own classes may be noisy or mislabeled and should receive a lower
valuation than helpful instances. In this work, we propose CS-SHAPLEY, a Shapley
value with a new value function that discriminates between training instances’ in-
class and out-of-class contributions. Our theoretical analysis shows the proposed
value function is (essentially) the unique function that satisfies two desirable
properties for evaluating data values in classification. Further, our experiments on
two benchmark evaluation tasks (data removal and noisy label detection) and four
classifiers demonstrate the effectiveness of CS-SHAPLEY over existing methods.
Lastly, we evaluate the “transferability” of data values estimated from one classifier
to others, and our results suggest Shapley-based data valuation is transferable for
application across different models.

1 Introduction

Data valuation methods aim to quantify the contribution of each datum to the predictive performance
of a learning model. Among these, Shapley values have been proposed as a means to identify helpful
or harmful data [3, 10]. A number of approximations and extensions for Shapley-based data valuation
have been developed, with demonstrable efficacy for tasks such as mislabeled or noisy example
detection and data selection [3, 10, 14, 4, 11]. The performance gains of Shapley-based approaches
over alternative data valuation methods have typically been attributed to the axiomatic basis of
Shapley values that satisfies fairness guarantees from cooperative game theory. Importantly, Shapley
values rest on an underlying assumption that a game is well-represented by its value function [21].

The value function of prior Shapley-based data valuation methods has typically been defined as
the predictive accuracy over the entire development set. However, in the context of valuing data
for learning models on classification tasks, this may have limited ability to differentiate helpful or
harmful training instances. Consider the case where we want to evaluate the value of data points i
and j for a binary classification task, where both points belong to class 1. As shown in the real world
example provided in Figure 1, if the predictive accuracy on the development set is the same when
adding each point individually, then the contribution of these two data points is considered to be
equivalent. However, how i and j contribute to the classifier differs. To be specific, the contribution of
data point i to class 1 is positive (helpful), while the contribution of j to class 1 is negative (harmful).
Similar distinction between training instances that are “helpful” and “harmful” to their own class
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Figure 1: Development accuracy by class when
adding two different points, i and j, to the training
set of a binarized version of CIFAR10, using logistic
regression (the experiment setup is provided in sec-
tion 5). Both points belong to class 1 and produce the
same overall development accuracy change. However,
i increases the in-class accuracy, and j decreases the
in-class accuracy. If measuring contribution using the
overall predictive accuracy, i and j will have equiva-
lent contributions. In contrast, by differentiating be-
tween in-class and out-of-class accuracy changes, the
proposed value function considers i to have a larger
contribution than j.

has previously been used for post-hoc analysis in prior data contribution literature, such as influence
functions [12, 20].

In this work, we propose a class-wise value function that differentiates between the contribution of a
data point to its own class and to other classes. Consider the running example in Figure 1, i increases
in-class accuracy, while j decreases in-class accuracy. Intuitively, i should receive a higher value than
j, as j could be a mislabeled, adversarial, or otherwise noisy instance. Our proposed class-wise value
function vy(S [ {i}) measures the contribution of data point i based on its class label y = 1, where
the accuracy of class 1 is a measure of contribution of i and the accuracy of class 2 is a weighting
factor. The definition of this new value function is detailed in section 3. For the example in Figure 1,
this new class-wise value function measures the contribution as v1(S [ {i}) > v1(S [ {j}). A key
conceptual message of this paper is to demonstrate that such distinction of in-class and out-of-class
accuracy not only leads to desirable theoretical properties for measuring data values in classification
(section 4) but also exhibits high efficacy in extensive empirical evaluations (section 5).

Contributions. 1) we propose a new value function that differentiates between in-class and out-of-
class contribution for computing Shapley values on classification datasets; 2) we theoretically show
that this value function is essentially the unique choice — up to some freedom to change a constant —
that satisfies two desirable properties for data valuation in classification; 3) we perform a systematic
evaluation on two benchmark tasks using four classifiers, nine datasets, and three baseline methods.
Our results demonstrate that our method outperforms existing methods across almost all experimental
conditions; 4) last but not least, we also propose a new evaluation task to measure the transferability
of data values estimated from different classifiers; using the proposed transferability task, we show
that Shapley-based data value estimates can be transferred across classifiers, including transfer to
neural models.1

2 Related work

Data valuation methods. Shapley values are a foundational concept in cooperative game theory that
ensures fair division of rewards in cooperative games [21]. In a machine learning setting, Shapley
values have been applied to data valuation, i.e. quantifying the contribution of individual datum
[3, 10]. Exact computation of Shapley-based data values, however, requires exhaustively retraining
and evaluating marginal contributions of every datum using every possible data subset. To circumvent
this, Shapley-based data values have been approximated with methods such as truncated Monte-Carlo
Sampling [3], influence-based approximations of parameters changes [10], and federated learning
[24]. To our knowledge, our work is the first to consider Shapley values induced by a value function
that discriminates between in-class and out-of-class accuracy. In section 4, we theoretically analyze
the desirable properties of class-wise Shapley values within the context of classification.

Other work that builds upon Shapley-based data values includes using the context of the underlying
data distribution to increase valuation stability [4, 15], relaxing the Shapley efficiency axiom to reduce
noise [14], and using k-nearest neighbor classifiers over pretrained feature embeddings as surrogates
for larger models [11]. Notably, there are alternative methods to measure data contribution such as

1Code is available at https://github.com/stephanieschoch/cs-shapley

2

https://github.com/stephanieschoch/cs-shapley


the leave-one-out method [2], influence functions [12], and reinforcement learning [26], however,
these methods have not been proven to share the fairness guarantees of Shapley values.

Applications of Shapley-based data values. Prior work has demonstrated the benefits of using
Shapley-based data values in many applications, such as mislabeled example detection [23, 3, 14],
data selection for transfer learning [18] and active learning [5], and data sharing [22, 7]. The core
idea behind these applications is that the Shapley value of a training instance indicates its contribution
to a trained predictive model. By designing a new value function, our method aims to provide more
effective estimates of data values and has the potential to apply to all of these applications. For
real-world applications, we recognize the computational challenge of estimating Shapley values
directly from classifiers used in practice (e.g., neural network models). Therefore, we also propose to
systematically study the transferability of Shapley-based data values across different classifiers, in
addition to evaluating on two benchmark evaluation tasks.

3 Proposed method: CS-SHAPLEY

3.1 Preliminaries

Consider a training dataset T = {(xi, yi)}ni=1 that contains n training instances. Let A denote a
classification algorithm and v(S) : 2T ! R be a value function that evaluates the value of any subset
of data S ✓ T . For classification tasks, v(·) is often considered to be the classification accuracy on
a development set D [3, 14, 10, 11], and v(S) represents the development accuracy aS(D) when
the classifier is trained on S and evaluated on D. For each data point i in the training set, the
Shapley value �i(T,A, v) is defined as the average marginal contribution of i to every possible subset
S ✓ T\{i}:
Definition 1 (Data Shapley value [21, 3]). Given a value function v(·), the Shapley value �i(T,A, v)
for any data point i is defined as

�i(T,A, v) =
X

S✓T\{i}

v(S [ {i})� v(S)�n�1
|S|
� (1)

When the dataset T , classification model A, and value function v are clear from the context, we
simply use �i to denote the Shapley value. Shapley values satisfy the following axioms [21]:

• Symmetry: if for all S ✓ T\{i, j}, v(S [ {i}) = v(S [ {j}), then �i = �j .
• Linearity: �i(v + w) = �i(v) + �i(w) for value functions v and w.
• Null player: if for all S ✓ T\{i}, v(S) = v(S [ {i}), then �i = 0.
• Efficiency: v(T ) =

P
i2T �i.

Prior work usually considers v(·) to be the predictive accuracy on the development set. Recalling
the example in Figure 1, this may not be an ideal setting to discriminate between harmful (or noisy)
and helpful instances. Notably, this limitation cannot be addressed simply by switching to another
development set level metric such as F1, precision, or recall; we will further illustrate this with an
example in Appendix B. This key drawback motivates the development of a new value function,
described in the following section, which has been designed to better differentiate between harmful
and helpful instances.

3.2 Class-wise data Shapley

Along the previous lines of discussion, we suggest data for classification may contain implicit,
pre-existing coalitions based on class membership, which should be accounted for when evaluating
contributions. Motivated by this intuition, we propose a new value function that differentiates between
the contribution of adding one instance to its own class vs. to other classes. The key idea behind our
design is to use in-class accuracy as the measurement of contribution and out-of-class accuracy as a
discounting factor. In this way, we gain the benefits of evaluating value on the class level, yet assure
we do not assign high value to instances that may be detrimental to the out-of-class performance.

Class-wise value function. Consider the problem of estimating the contribution of a data point
i, (xi, yi), given a subset of training instances S ✓ T\{i}, and a development set D. To define a
class-wise value function, we need to partition D into two subsets Dyi and D�yi . Dyi contains the
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development instances with the class label yi and D�yi contains the development instances with
the other labels. For multi-class classification, D�yi has all the instances with labels other than yi.
Similarly, we have Syi and S�yi with S = Syi [ S�yi . To measure the contribution of data point i
to its own class yi and to the other classes �yi, we define two separate accuracy numbers, in-class
accuracy aS(Dyi) and out-of-class accuracy aS(D�yi), as the following

aS(Dyi) =
# of correct predictions in Dyi

|D| , aS(D�yi) =
# of correct predictions in D�yi

|D| (2)

Note that since aS(Dyi) and aS(D�yi) share the same denominator, we have aS(Dyi)+aS(D�yi) =
aS(D), which is the accuracy on the whole development set. With aS(Dyi) and aS(D�yi), our
class-wise value function is defined as

vyi(Syi |S�yi) = aS(Dyi) · eaS(D�yi ) (3)

Figure 2: Contour plot of vyi(S).

Figure 2 visualizes the contour plot of vyi(S) based on different
aS(Dyi) and aS(D�yi). Between the two variables used in the
value function, the significant factor is the in-class accuracy
aS(Dyi). The effect of the out-of-class accuracy aS(D�yi) is
controlled by the value of aS(Dyi). Particularly, when aS(Dyi)
is small, the effect of aS(D�yi) can be ignored. To better under-
stand how this value function works, assume aS(Dyi) = 0.1,
which indicates class yi is difficult to learn. Under this condi-
tion, the value of adding an instance in this class is primarily
from the prediction performance improvement of its own class,
rather than that of other classes. This is a desirable property of
the class-wise value function, which will be formally defined
in section 4.

Class-wise Shapley values. With the new value function, the
Class-wiSe Shapley (CS-SHAPLEY) value of instance i conditioned on any out-of-class “environment”
S�yi is defined as

�i|S�yi =
X

Syi✓Tyi\{i}

vyi(Syi [ {i}|S�yi)� vyi(Syi |S�yi)�n�1
|Syi |

� . (4)

To compute the marginal CS-SHAPLEY value of instance i, we then simply average over all possible
environmental data S�yi ✓ T�yi with equal weight, which leads to our following definition of the
Canonical CS-SHAPLEY

�i =
1

2|T�yi |

X

S�yi

[�i|S�yi ] (5)

We remark that the word “canonical” here refers to our simple choice of equal weight 1

2
|T�yi

| for
each sampled out-of-class environment S�yii ✓ T�yi . More generally, one could possibly consider
non-canonical and more sophisticated weights, e.g. weights depending on the size of S�yi . However,
it turns out that the canonical choice in Equation (5) already performs very well in our experiments.
Following the principle of Occam’s Razor, we thus will stick with this canonical form for the
remainder of this paper.

Algorithm. Exactly computing �i in Equation (5) requires averaging over exponentially many S�yi ,
which is computationally prohibitive. Thus we use a relatively small number of subsets S�yi ✓ T�yi

for approximating �i

�i ⇡
1

K

X

S(k)
�yi

✓T�yi ;k2{1,..,K}

[�i|S(k)
�yi

]. (6)

In our implementation, we use K = 500. Such approximation via samples is widely used in previous
works [14], and has been proved to give good approximations under structural assumptions about the
value function [17, 1]. Although the description above only talks about a single instance, the actual
implementation of the algorithm is much more efficient, if we compute the values per class. The
detailed implementation of our algorithm can be found in the pseudo-code deferred to Appendix A.
At a high level, for any given class label y, the algorithm first samples a subset S�y from T�y . Then,

4



for all the examples in class y, we adopt the truncated Monte Carlo algorithm [3] to estimate the
conditional class-wise Shapley values defined in Equation (4). By repeating this procedure K times,
the CS-SHAPLEY value estimation is done by Equation (6). Before switching to another class, we
normalize the estimated Shapley values by the in-class accuracy when using the whole training set to
satisfy the efficiency axiom.

4 Theoretical justifications of the value function choice

In this section, we carry out a theoretical analysis to provide insight and justifications about our
approach. We will formally prove that, to fulfil some desirable properties of a class-wise value
function, the form that we adopt in Equation (3) is essentially the unique choice, up to the choice of
the basis of the exponential function.

To distinguish the accuracy from the in-class and out-of-class development set, we start by assuming
that the value function is separable and has the following generic form for any subset of data S ✓ T :

vyi(S) = f(aS(Dyi)) · g(aS(D�yi)) (7)

where f, g are naturally assumed to be continuous and monotone increasing functions. For normal-
ization reasons, without loss of generality, we further assume f(0)g(0) = 0. Next, we describe two
additional desirable properties of the value function on any development set D:

• Property 1: Priority of In-class Accuracy (i.e., aS(Dyi)). Specifically, for any aS(Dyi) > 0,
we have f(aS(Dyi))g(0) > f(0)g(1).

• Property 2: In-class Value Additivity and Out-of-class Weight Discounting. Specifically, for
any partitions of in-class development set Dyi = Dyi,1 [Dyi,2 and out-of-class development
D�yi = D�yi,1 [D�yi,2, we have

f(aS(Dyi)) · g(aS(D�yi)) = f(aS(Dyi,1)) · g(aS(D�yi,1)) · g(aS(D�yi,2))

+f(aS(Dyi,2)) · g(aS(D�yi,1)) · g(aS(D�yi,2)) (8)

The first property above tries to formalize the intuition that in-class accuracy should be prioritized.
Concretely, the value function for getting positive in-class accuracy aS(Dyi) and 0 out-of-class
accuracy is no less than getting even perfect out-of-class accuracy but 0 in-class accuracy. The
following theorem shows that this property is the underlying reason of the observed contour line in
Figure 2. This also justifies the adoption of Property 1.
Theorem 1. Suppose the value function defined in Equation (7) satisfies the property of Priority of
In-class Accuracy, then no contour lines will intersect the axis of aS(D�yi), except the special line
for f(aS(Dyi)) · g(aS(D�yi)) = 0.2

Proof of Theorem 1. By the property of Priority of In-class Accuracy, we know f(aS(Dyi))g(0) >
f(0)g(1) for any aS(Dyi) > 0. By taking the limit of letting aS(Dyi) ! 0 in the above inequality,
we have limaS(Dyi )!0 f(aS(Dyi))g(0) = f(0)g(0) = 0 � f(0)g(1).

Next, we prove the theorem by contradiction. Suppose, for the purpose of contradiction, that there
exists a c > 0 such that its contour line intersects the axis of aS(D�yi) at some point (0, y) for
some y  1. Then we have f(0)g(y) = c by the definition of contour line. This however yields the
following contradicting inequalities:

0 < c = f(0)g(y)  f(0)g(1)  0 (9)

where the last inequality is proved at the beginning of this proof. Therefore, it must be the case that
the only countour line that can intersect the aS(D�yi) is the f(aS(Dyi)) · g(aS(D�yi)) = 0 line.
This concludes our proof.

The intuition behind the second property is based on the role of f and g in the definition. As a
value measurement on the target class, f(aS(Dyi)) is expected to be the sum of the value of any two
non-overlapped splits of Dyi . In addition, as a weighting function g, the effect of aS(D�yi) should
be equivalent to applying the weights from aS(D�yi,1) and aS(D�yi,2) separately.

2Figure 2 is an example of such contour lines.
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Theorem 2 shows that our previously defined value function vyi(S) = vyi(Syi |S�yi) = aS(Dyi) ·
eaS(D�yi ) is (essentially) the only choice that satisfies the two desirable properties above. This
theoretically justifies our choice of the value function.
Theorem 2. If the value function satisfies both Property 1 and 2 above, then it must have the form
vyi(S) = c0aS(Dyi) · caS(D�yi ) for some constant c > 1, c0 > 0.3

Remark 1. The re-scaling constant c0 in the above theorem will not affect the value much. What
truly matters in the function format is the parameter c, which affects how fast the weight function g(·)
changes. Our value function choice picked c as the natural number e.

Proof of Theorem 2. The non-trivial part of the proof is to first prove f(0) = 0 and g(0) = 1, which
are not clear in hindsight even given the two properties above. With these two “boundary” conditions,
we will then be able to pin down the concrete format of f and g.

Letting aS(Dyi) ! 0, we first have limaS(Dyi )!0 f(aS(Dyi))g(0) = f(0)g(0) = 0 which is at
least f(0)g(1) due to the Property 1. By monotonicity, we have for any y 2 [0, 1]

0 = f(0)g(0)  f(0)g(y)  f(0)g(1)  0 (10)

This implies that the inequalities above must all be tight, and thus f(0)g(y) = 0 for any y. Since
g(y) is not always 0, this implies f(0) = 0.

With f(0) = 0 as proven above, we are now ready to pin down the format of g(·). Then under
the special case that Dyi,1 = ;, we have f(aS(Dyi,1)) = f(0) = 0 and thus the second property
becomes

f(aS(Dyi)) · g(aS(D�yi)) = f(aS(Dyi)) · g(aS(D�yi,1)) · g(aS(D�yi,2)) (11)

for any D�yi = D�yi,1 [ D�yi,2. Plugging any Dyi such that f(aS(Dyi)) 6= 0 into the above
equality, we thus have

g(aS(D�yi)) = g(aS(D�yi,1)) · g(aS(D�yi,2)).

Since aS(D�yi)) = aS(D�yi,1) + aS(D�yi,2), this implies log
�
g(aS(D�yi))

�
is an additive

function. That is, there exists c00 such that log
�
g(aS(D�yi))

�
= c00aS(D�yi), or equivalently,

g(aS(D�yi)) = ec
00aS(D�yi ) = caS(D�yi ) for c = ec

00
> 1.

Finally, we prove the format of f(·). The above proof for g(·) implies g(aS(;)) = caS(;) = c0 = 1.
Therefore, under the special case that D�yi = ;, the second property becomes

f(aS(Dyi)) = f(aS(Dyi,1)) + f(aS(Dyi,2)) (12)

for any Dyi = Dyi,1 [Dyi,2. That is, f must be an increasing linear function and thus there is a
positive c0 such that f(aS(Dyi)) = c0 ⇥ aS(Dyi). This concludes the proof of the theorem.

5 Experiments

5.1 Experiment setup

To compare with prior Shapley-based data valuation methods, we adopted most of the experiment
setup from prior work, detailed along with other implementation details in Appendix A. In this
section, we highlight some important details.

Baseline methods. We compare CS-SHAPLEY against three baselines: Data Shapley with the
Truncated Monte Carlo approximation (TMC) [3], Beta Shapley [14], and Leave-One-Out (LOO)
[2]. For Beta Shapley, we used the best ↵ and � values suggested in the original paper, which were
also verified by our preliminary hyperparameter search. Note that another popular baseline method,
KNN-Shapley [9], is also essentially covered by applying the data Shapley method to KNN classifiers.

Evaluation tasks. We adopted two benchmark evaluation tasks from prior work: high-value data
removal and noisy label detection [3, 14]. In addition, we propose a new evaluation task to quantify

3We ignored the trivial situation that c0 = 0 or c = 1, which is not interesting.

6



Table 1: Weighted accuracy drop for Logistic Regression and SVM-RBF using CS-SHAPLEY (CS),
TMC-Shapley (TMC), Beta Shapley (Beta), and Leave-One-Out (LOO).

Dataset Logistic Regression SVM-RBF

CS TMC Beta LOO CS TMC Beta LOO

CIFAR10 0.119 0.108 0.062 0.059 0.114 0.098 0.069 0.089
Click 0.053 0.007 0.017 0.016 0.004 0.004 0.004 0.004
Covertype 0.293 0.250 0.112 0.183 0.193 0.214 0.175 0.193
CPU 0.036 0.022 0.029 0.040 0.028 0.027 0.021 0.004
Diabetes 0.114 0.059 0.038 0.062 0.106 0.037 0.022 -0.002
FMNIST 0.091 0.082 0.038 0.062 0.077 0.048 0.032 0.028
MNIST-2 0.014 0.007 0.010 0.008 0.007 0.007 0.006 0.007
MNIST-10 0.128 0.117 0.064 0.050 0.203 0.247 0.093 0.100
Phoneme 0.154 0.009 0.061 0.072 0.051 0.035 0.035 0.030

(a) CIFAR10 (b) Click (c) Covertype (d) CPU (e) Diabetes

(f) FMNIST (g) MNIST-2 (h) MNIST-10 (i) Phoneme
Figure 3: Performance across datasets when removing high-value instances for logistic regression.

the transferability of data value estimates across classifiers, to reveal a potential solution for mitigating
the computational cost of estimating Shapley values for neural models.

Datasets and classifiers. We use nine benchmark datasets: Diabetes, CPU, Click, Covertype,
CIFAR10 (binarized), FMNIST (binarized), MNIST (multi-class and binarized versions, denoted
using -2 and -10, respectively), and Phoneme. When creating data subsets, we keep the original label
distribution, instead of creating balanced subsets as in prior work. In addition, for each dataset and
evaluation task, we systematically test the data valuation performance on four classifiers: logistic
regression, SVM with the RBF kernel, KNN, and a gradient boosting classifier. We also include
a multi-layer perceptron (MLP) as a target classifier to test the transferability of data values, since
computing Shapley values with this classifier is prohibitively expensive.

Summary of experiments in appendix: Due to page limits, we report representative results in the
main content and all additional results in Appendix C.

5.2 High-value data removal

Following the setup in prior work [3], for each valuation method, we gradually remove training
instances from the highest value to the lowest value. At each removal step, we retrain the classifier
and evaluate predictive performance on the held-out test data. Training instances with high value
estimates should be helpful for model performance, so we measure the performance of each method
with the accuracy drop following their removal. We follow prior work and plot the accuracy drop for
up to 50% train data removed. To further quantify the performance differences observed in the plots,
we also introduce a novel metric named weighted accuracy drop.

Weighted Accuracy Drop. An effective metric needs to evaluate two components underlying
removal performance: 1) the total accuracy drop resulting from each valuation method, and 2) how
quickly the drop in accuracy was achieved. Intuitively, the higher the relative value ranking of a data
point, the more weight its impact on model performance should hold. We can therefore define the
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Table 2: Area Under the Curve (AUC) for Logistic Regression and SVM-RBF using CS-SHAPLEY
(CS), TMC-Shapley (TMC), Beta Shapley (Beta), and Leave-One-Out (LOO).

Dataset Logistic Regression SVM-RBF

CS TMC Beta LOO CS TMC Beta LOO

CIFAR10 0.450 0.429 0.424 0.275 0.387 0.317 0.321 0.272
Click 0.816 0.689 0.797 0.149 0.855 0.769 0.789 0.200
Covertype 0.706 0.766 0.653 0.179 0.712 0.618 0.600 0.196
CPU 0.785 0.779 0.654 0.207 0.808 0.671 0.516 0.189
Diabetes 0.441 0.355 0.435 0.194 0.412 0.362 0.400 0.210
FMNIST 0.570 0.554 0.552 0.340 0.512 0.382 0.412 0.239
MNIST-2 0.831 0.815 0.806 0.280 0.837 0.663 0.611 0.300
MNIST-10 0.877 0.933 0.845 0.371 0.674 0.747 0.510 0.254
Phoneme 0.575 0.535 0.416 0.222 0.579 0.555 0.496 0.255

weighted accuracy drop (WAD) as the summation of the cumulative accuracy drop at each removal
step, weighed by the reciprocal of the removal step (i.e. reciprocal of the rank). Formally, for a
training set T = {(xi, yi)}n1 sorted from the highest to the lowest value we have:

WADT =
nX

j=1

 
1

j

jX

i=1

aT�{1:i�1}(D)� aT�{1:i}(D)

!

where T�{1:i} represents the training set with the first i instances removed based on the data valuation
rank. When i = 1, aT�{1:i�1}(D) = aT�;(D) equals the predictive accuracy with the full training
set T . In effect, this enables us to assign high importance to the highest-ranked data points while still
capturing the overall performance across removals, as depicted in the plots.

Results. We report the weighted accuracy drop using logistic regression and SVM with the RBF
kernel across datasets in Table 1 and plot the removal performance of logistic regression in Figure 3.
As shown, our method outperforms the baseline methods in most of the settings. Similar results are
observed for the other two classifiers, as shown in Appendix C. This demonstrates the efficacy of
using a value function that discriminates between in-class and out-of-class accuracy. For the SVM-
RBF results on the Click dataset, we observe the identical performance across methods. Whereas
prior work has used artificially balanced datasets, we performed stratified sampling to maintain the
label distribution. In the case of Click, the dataset is highly imbalanced and SVM usually needs
additional tricks to work on highly-imbalanced datasets [6].

5.3 Noisy label detection

To generate noisy training data, we shuffle the labels of a random 20% of the training data. We
compute value estimates on the noised training sets using each valuation method and then simulate
manual inspection by checking data labels from lowest value to highest value. The expectation is
that an effective data valuation method will assign low values to mislabeled instances relative to
the correctly labeled instances [3]. In our work, we use a rank-based approach to directly evaluate
performance and visualize the retrieval results with a precision-recall (PR) curve. In addition, we
also compute the Area Under the Curve (AUC) of the PR curve for quantitative results.

Results. We report AUC for logistic regression and SVM-RBF in Table 2. Similar to the removal
experiments, our method has the best overall performance. We do note slightly weaker performance
on the multi-class datasets compared to the removal experiments (see rows for Covertype and
MNIST-10 in Table 1 and Table 2). This could be attributable to the simple sampling strategy of
constructing S�yi . This suggests that in a multi-class setting, our method may benefit from increasing
the minimum number of out-of-class samples.

5.4 Transferability of data values

Even with approximation, Shapley values can be computationally expensive to compute for larger
models. For example, the experiments in subsection 5.2 had a 1:120 runtime ratio between the
quickest (Diabetes) and longest (Covertype) running datasets on logistic regression. This would have
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(a) CIFAR10 (b) Click (c) Covertype (d) CPU (e) Diabetes

(f) FMNIST (g) MNIST-2 (h) MNIST-10 (i) Phoneme
Figure 4: Performance across datasets when transferring values from logistic regression to MLP for
the high-value removal task.

scaled to nearly 4-months to run MLP on Covertype.4 It is therefore of great interest to understand
to what extent Shapley values computed with a simple classifier can be transferred to other models,
such as neural networks. In prior work, Jia et al. [11] demonstrated the efficacy of a specific case by
using a KNN trained over pre-trained embeddings as a surrogate classifier for several target learning
models. We generalize this idea and try to answer the question: to what extent can Shapley-based
data values computed with various simple classifiers be transferred and applied to other classifiers?

To answer this question, we use each of the four classifiers in subsection 5.2 as the “source” classifiers
and evaluate the computed data values with other “target” classifiers on the data removal task. In
addition to the four classifiers, we also include an MLP classifier in this evaluation, for which the
computational cost of TMC-Shapley was prohibitively large during our preliminary experiments.
Specifically, for data values computed with a source classifier on a given dataset, at each removal
timestep we remove an instance, retrain the target classifier, and evaluate predictive performance as
in the original removal experiments. In this experiment, we would like to answer two questions: (1)
is there a similar pattern of removal performance on the target classifiers as on the source classifiers;
and (2) which source classifier and data valuation method causes the greatest performance drop on
target classifiers, as this would indicate high applicability in a real world setting?

Results. Figure 4 shows transfer of logistic regression to MLP across all datasets, and we refer the
reader to Figure 3 for the source removal plots. Our results suggest that in general, Shapley-based
data values are transferable across classifiers. Specifically, across methods the overall pattern of
performance drop from source to target classifier is closely aligned. While these results demonstrate
that Shapley-based data value estimates are transferable from simpler models even to neural models,
they also suggest that the valuation performance on the source classifier can be used as an indicator of
how well the performance would be on a target classifier. As an implication of this, hyperparameter
tuning to achieve better source performance may lead to even better transferability results. We
leave this to future work. Additionally, this has implications for being able to gain the benefits of
application (such as training data selection) for large neural networks. Further, this transferability
may indicate that Shapley values capture some implicit data features that are generally beneficial or
harmful to learning models. We leave it to future work to empirically test this. Finally, as a result of
this transferability, we also observe that since our method outperformed other methods on the source
classifier, CS-SHAPLEY also outperforms when transferred across classifiers, and overall, logistic
regression is highly-effective as a source classifier.

6 Conclusion

In this work, we propose CS-SHAPLEY, a Shapley value with a new value function that discriminates
between training instances’ in-class and out-of-class contributions. Our theoretical analysis shows
the proposed value function is (essentially) the unique function that satisfies two desirable properties
for evaluating data values in classification. Further, our experiments demonstrate the effectiveness
of CS-SHAPLEY over existing methods on high-value data removal, noisy label detection, and data

4See Appendix A for information on compute resources.
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value transferability. Currently, the proposed method only works on classification problems. In future
work, we will explore the possibility of extending the a similar idea to regression.
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