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Abstract

We study the problem of finding the Nash equilibrium in a two-player zero-sum
Markov game. Due to its formulation as a minimax optimization program, a natural
approach to solve the problem is to perform gradient descent/ascent with respect
to each player in an alternating fashion. However, due to the non-convexity/non-
concavity of the underlying objective function, theoretical understandings of this
method are limited. In our paper, we consider solving an entropy-regularized
variant of the Markov game. The regularization introduces structure into the opti-
mization landscape that make the solutions more identifiable and allow the problem
to be solved more efficiently. Our main contribution is to show that under proper
choices of the regularization parameter, the gradient descent ascent algorithm
converges to the Nash equilibrium of the original unregularized problem. We ex-
plicitly characterize the finite-time performance of the last iterate of our algorithm,
which vastly improves over the existing convergence bound of the gradient descent
ascent algorithm without regularization. Finally, we complement the analysis with
numerical simulations that illustrate the accelerated convergence of the algorithm.

1 Introduction

The two-player zero-sum Markov game is a special case of competitive multi-agent reinforcement
learning where two agents driven by opposite reward functions jointly determine the state transition
in an environment. Usually cast as a non-convex non-concave minimax optimization program, this
framework finds applications in many practical problems including game playing [Lanctot et al.,
2019, Vinyals et al., 2019], robotics [Riedmiller and Gabel, 2007, Shalev-Shwartz et al., 2016], and
robust policy optimization [Pinto et al., 2017].

A convenient class of methods frequently used to solve multi-agent reinforcement learning problems
is the independent learning approach. Independent learning algorithms proceed iteratively with each
player taking turns to optimize its own objective while pretending that the other players’ policies are
fixed to their current iterates. In the context of two-player zero-sum Markov games, the independent
learning algorithm performs gradient descent ascent (GDA), which alternates between the gradient
updates of the two agents that seek to maximize and minimize the same value function. Despite
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the popularity of such algorithms in practice, their theoretical understandings are sparse and do not
follow from those in the single-agent case as the environment is not stationary from the eye of any
agent. [Daskalakis et al., 2017] shows that iterates of GDA can possibly diverge or be trapped in limit
cycles even in the simplest single-state case when the two players learn with the same rate.

It may be tempting to analyze the two-player zero-sum Markov game by applying the existing
theoretical results on minimax optimization. However, as the objective function in a Markov game is
not convex or concave, current analytical tools in minimax optimization that require the objective
function to be convex/concave at least on one side are inapplicable. Fortunately, the Markov game
has its own structure: it exhibits a “gradient domination” condition with respect to each player,
which essentially guarantees that every stationary point of the value function is globally optimal.
Exploiting this property, Daskalakis et al. [2020] builds on the theory of Lin et al. [2020a] and shows
that a two-time-scale GDA algorithm converges to the Nash equilibrium of the Markov game with
a complexity that depends polynomially on the specified precision. However, deriving an explicit
finite-time convergence rate is still an open problem. In addition, the analysis in Daskalakis et al.
[2020] does not guarantee the convergence of the last iterate; convergence is shown on the average of
all past iterates.

In this paper, we show that introducing an entropy regularizer into the value function significantly
accelerates the convergence of GDA to the Nash equilibrium. By dynamicially adjusting the regular-
ization weight towards zero, we are able to give a finite-time last-iterate convergence guarantee to the
Nash equilibrium of the original Markov game.

Main Contributions

• We show that the entropy-regularized Markov game is highly structured; in particular, it obeys a
condition similar to the well-known Polyak-Łojasiewicz condition, which allows linear convergence
of GDA to the (unique) equilibrium point of the regularized game with fixed regularization weight.
We also show that the distance of the equilibrium point of the regularized game to the equilibrium
point of the original game can be bounded in terms of the regularizing weight.

• We show that by dynamically driving the regularization weight towards zero, we can solve the
original Markov game. We propose two approaches to reduce the regularization weight and study
their finite-time convergence. The first approach uses a piecewise constant weight that decays
geometrically fast, and its analysis follows as a straightforward consequence of our analysis for the
case of fixed regularization weight. To reach a Nash equilibrium of the Markov game up to error ✏,
we find that this approach requires at most O(✏�3) gradient updates, where O only hides structural
constants. The second approach reduces the regularization weight online along with the gradient
updates. Through a multi-time-scale analysis, we optimize the regularization weight sequence along
with the step size as polynomial functions of k, where k is the iteration index. We show that the
last iterate of the GDA algorithm converges to the Nash equilibrium of the original Markov game
at a rate of O(k�1/3). Compared with the state-of-the-art analysis of the GDA algorithm without
regularization which shows that the convergence rate of the averaged iterates is polynomial in the
desired precision and all related parameters, our algorithms enjoy faster last-iterate convergence
guarantees.

1.1 Related Work

A Markov game reduces to a standard Markov Decision Process (MDP) with respect to one player if
the policy of the other player is fixed. This is an important observation that allows our work to exploit
the recent advances in the analysis of policy gradient methods for MDPs [Nachum et al., 2017, Neu
et al., 2017, Agarwal et al., 2020, Mei et al., 2020, Lan, 2022]. Various entropy-based regularizers are
introduced in these works that inspire the regularization of this paper. Our particular regularization is
also considered by Cen et al. [2021], but we discuss and leverage structure in the regularized Markov
game that was previously unknown.

As the two-player zero-sum Markov game can be formulated a minimax optimization problem,
our work relates to the vast volume of literature in this domain. Minimax optimization has been
extensively studied in the case where the objective function is convex/concave with respect to at
least one variable [Lin et al., 2020a,b, Wang and Li, 2020, Ostrovskii et al., 2021]. In the general
non-convex non-concave setting, the problem becomes much more challenging as even the notion
of stationarity is unclear [Jin et al., 2020]. In Nouiehed et al. [2019], non-convex non-concave
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objective functions obeying a one–sided PŁ condition are considered, which the authors use to show
the convergence of GDA. Yang et al. [2020] analyzes GDA under a two-sided PŁ condition and has a
tight connection to our work as the value function of our regularized Markov game also has structure
that is similar to, but weaker than, the PŁ condition on two sides.

By exploiting the gradient domination condition of a Markov game with respect to each player,
Daskalakis et al. [2020] is the first to show that the GDA algorithm provably converges to a Nash
equilibrium of a Markov game. A finite-time complexity is not derived in Daskalakis et al. [2020],
but their analysis and choice of step sizes indicate that the convergence rate is at least worse than
O(k�1/10.5). Additionally, Daskalakis et al. [2020] does not guarantee the convergence of the last
iterate, but rather analyzes the average of all iterates. In contrast, our work provides a finite-time
convergence analysis on the last iterate of the GDA algorithm.

While our work treats the Markov game purely from the optimization perspective, we would like to
point out another related line of works that consider value-based methods [Perolat et al., 2015, Bai
and Jin, 2020, Xie et al., 2020, Cen et al., 2021, Sayin et al., 2022]. In particular, Perolat et al. [2015]
is among the first works to extend value-based methods from single-agent MDP to two-player Markov
games. Since then, the basic techniques for analyzing value-based methods for Markov games are
relatively well-known. Bai and Jin [2020] considers a value iteration algorithm with confidence
bounds. In Cen et al. [2021], a nested-loop algorithm is designed where the outer loop employs value
iteration and the inner loop runs a gradient-descent-ascent-flavored algorithm to solve a regularized
bimatrix game. In comparison, pure policy optimization algorithms are much less understood for
Markov games, but this is an important subject to study due to their wide use in practice. In single-
agent MDPs, value-based methods and policy optimization methods enjoy comparable convergence
guarantees today, and our work aims to narrow the gap between the understanding of these two
classes of algorithms in two-player Markov games.

Finally, we note the recent surge of interest in solving two-player games and minimax optimization
programs with extragradient or optimistic gradient methods in the cases where vanilla gradient
algorithms often cannot be shown to converge [Chavdarova et al., 2019, Mokhtari et al., 2020, Li et al.,
2022, Wei et al., 2021, Zhao et al., 2021, Cen et al., 2021, Chen et al., 2021]. These methods typically
require multiple gradient evaluations at each iteration and are more complicated to implement. Most
related to our work, Cen et al. [2021] shows the linear convergence of an extragradient algorithm
for solving regularized bilinear matrix games. They also show that a regularized Markov game can
be decomposed into a series of regularized matrix games and present a nested-loop extragradient
algorithm which solves these games successively and eventually converges to the Nash equilibrium
of the regularized Markov game. The regularization weight can then be selected based on the desired
precision of the unregularized problem. Although our overall goal of finding the Nash equilibrium of
a general Markov game is the same, the manner in which we decompose and analyze the problem
is different. Our analysis here is based on GDA applied directly to a general regularized Markov
game. We show that for a fixed regularization parameter for a general Markov game, GDA has linear
convergence to the modified equilibrium point. We also give a scheduling scheme for adjusting the
regularization parameter as the GDA iterations proceed, making them converge to the solution to the
original problem.

2 Preliminaries

We consider a two-player Markov game characterized by M = (S,A,B,P, �, r). Here, S is the
finite state space, A and B are the finite action spaces of the two players, � 2 (0, 1) is the discount
factor, and r : S ⇥A⇥ B ! [0, 1] is the reward function. Let �F denote the probability simplex
over a set F , and P : S ⇥ A ⇥ B ! �S be the transition probability kernel, with P(s0 | s, a, b)
specifying the probability of the game transitioning from state s to s

0 when the first player selects
action a 2 A and the second player selects b 2 B. The policies of the two players are denoted by
⇡ 2 �S

A
and � 2 �S

B
, with ⇡(a | s), �(b | s) denoting the probability of selecting action a, b in state

s according to ⇡, �. Given a policy pair (⇡,�), we measure its performance in state s 2 S by the
value function

V
⇡,�(s) = Eak⇠⇡(·|sk),bk⇠�(·|sk),sk+1⇠P(·|sk,ak,bk)

hX1

k=0
�
k
r (sk, ak, bk) | s0 = s

i
.

Under a fixed initial distribution ⇢ 2 �S , we define the discounted cumulative reward under (⇡,�)
J(⇡,�) , Es0⇠⇢[V

⇡,�(s0)],
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where the dependence on ⇢ is dropped for simplicity. It is known that the Nash equilibrium always
exists in two-player zero-sum Markov games [Shapley, 1953], i.e. there exists an optimal policy pair
(⇡?,�?) such that

max
⇡2�S

A

min
�2�S

B

J(⇡,�) = min
�2�S

B

max
⇡2�S

A

J(⇡,�) = J(⇡?,�?). (1)

However, as J is generally non-concave with respect to the policy of the first player and non-convex
with respect to that of the second player, direct GDA updates may not find (⇡?,�?) and usually
exhibit an oscillation behavior, which we illustrate through numerical simulations in Section 5. Our
approach to address this issue is to enhance the structure of the Markov game through regularization.

2.1 Entropy-Regularized Two-Player Zero-Sum Markov Games

In this section we define the entropy regularization and discuss structure of the regularized objective
function and its connection to the original problem. Let the regularizers be

H⇡(s,⇡,�) , Eak⇠⇡(·|sk),bk⇠�(·|sk),sk+1⇠P(·|sk,ak,bk)

hX1

k=0
��k log ⇡ (ak | sk) | s0 = s

i
,

H�(s,⇡,�) , Eak⇠⇡(·|sk),bk⇠�(·|sk),sk+1⇠P(·|sk,ak,bk)

hX1

k=0
��k log � (bk | sk) | s0 = s

i
.

We define the regularized value function

V
⇡,�
⌧ (s) , V

⇡,�(s) + ⌧H⇡(s,⇡,�)� ⌧H�(s,⇡,�)

= E⇡,�,P
hX1

k=0
�
k
⇣
r (sk, ak, bk)� ⌧ log ⇡(ak | sk) + ⌧ log �(bk | sk)

⌘
| s0 = s

i
,

where ⌧ � 0 is a weight parameter. Again under a fixed initial distribution ⇢ 2 �S we denote
J⌧ (⇡,�) , Es⇠⇢[V ⇡,�

⌧ (s)]. The regularized advantage function is

A
⇡,�
⌧ (s, a, b) , r(s, a, b)� ⌧ log ⇡(a | s) + ⌧ log �(b | s) + �Es0⇠P(·|s,a,b)

⇥
V
⇡,�
⌧ (s0)

⇤
� V

⇡,�
⌧ (s),

which later helps us to express the policy gradient.

We use d
⇡,�
⇢ 2 �S to denote the discounted visitation distribution under any policy pair (⇡,�) and

the initial state distribution ⇢

d
⇡,�
⇢ (s) , (1� �)E⇡,�,P

hX1

k=0
�
k1(sk = s) | s0 ⇠ ⇢

i

For sufficient state visitation, we assume that the initial state distribution is bounded away from zero.
This is a standard assumption in the entropy-regularized MDP literature [Mei et al., 2020, Ying et al.,
2022].
Assumption 1. The initial state distribution ⇢ is strictly positive for any state, and we denote

⇢min = mins2S ⇢(s) > 0.

When the policy of the first player is fixed to ⇡ 2 �S

A
, the Markov game reduces to an MDP for

the second player with state transition probability eP�(s0 | s, b) =
P

a2A
P(s0 | s, a, b)⇡(a | s) and

reward function er�(s, b) =
P

a2A
r(s, a, b)⇡(a | s). A similar argument holds for the first player if

the second player’s policy is fixed. To denote the operators that map one player’s policy to the best
response of the other player and the corresponding value function, we define

⇡⌧ (�) , argmax
⇡2�S

A

J⌧ (⇡,�), �⌧ (⇡) , argmin
�2�S

B

J⌧ (⇡,�),

g⌧ (⇡) , min
�2�S

B

J⌧ (⇡,�) = J⌧ (⇡,�⌧ (⇡)). (2)

For any ⌧ > 0, the following lemma bounds the performance difference between optimal and sub-
optimal policies and establishes the uniqueness of ⇡⌧ (�) and �⌧ (⇡). When ⌧ = 0, we use ⇡0(�) and
�0(⇡) to denote one of the maximizers and minimizers since they may not be unique.
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Lemma 1 (Performance Difference). Under Assumption 1 and given ⌧ > 0, ⇡⌧ (�) is unique for any

� 2 �S

B
, and �⌧ (⇡) is unique for any ⇡ 2 �S

A
. Given any min player policy � 2 �S

B
,

J⌧ (⇡⌧ (�),�)� J⌧ (⇡,�) �
⌧⇢min

2 log(2)
k⇡⌧ (�)� ⇡k2, 8⇡ 2 �S

A
. (3)

Given any max player policy ⇡ 2 �S

A
,

J⌧ (⇡,�⌧ (⇡))� J⌧ (⇡,�)  � ⌧⇢min

2 log(2)
k�⌧ (⇡)� �k2, 8� 2 �S

B
. (4)

The Nash equilibrium of the regularized problem is sometimes referred to as the quantal response
equilibrium [McKelvey and Palfrey, 1995] and is known to exist under any ⌧ . Leveraging Lemma 1,
we formally state the conditions guaranteeing its existence and affirm that it is unique.
Lemma 2 (Minimax Theorem for Entropy-Regularized Markov Game). Under Assumption 1, for any

regularization weight ⌧ > 0, there exists a unique Nash equilibrium policy pair (⇡?⌧ ,�
?
⌧ ) such that

max
⇡2�S

A

min
�2�S

B

J⌧ (⇡,�) = min
�2�S

B

max
⇡2�S

A

J⌧ (⇡,�) = J⌧ (⇡
?
⌧ ,�

?
⌧ ). (5)

We are only interested in the solution of the regularized Markov game if it gives us knowledge of
the original problem in (1). In the following lemma, we show that the distance between the Nash
equilibrium of the regularized game and that of the original one is bounded by the regularization
weight. This is an important condition guaranteeing that we can find an approximate solution to the
original Markov game by solving the regularized problem. In addition, this lemma also shows that the
same policy pair produces value functions with bounded distance under two regularization weights.
Lemma 3. For any ⌧ � ⌧

0 � 0 and policy ⇡,

�(⌧ � ⌧
0) log |B|  J⌧ (⇡

?
⌧ ,�

?
⌧ )� J⌧ 0(⇡?⌧ 0 ,�

?
⌧ 0)  (⌧ � ⌧

0) log |A|. (6)
�(⌧ � ⌧

0) log |B|  g⌧ (⇡)� g⌧ 0(⇡) = J⌧ (⇡,�⌧ (⇡))� J⌧ 0(⇡,�⌧ 0(⇡))  (⌧ � ⌧
0) log |A|. (7)

�⌧ � ⌧
0

1� �
log |B|  J⌧ (⇡,�)� J⌧ 0(⇡,�)  ⌧ � ⌧

0

1� �
log |A|. (8)

2.2 Softmax Parameterization

In this work we use a tabular softmax policy parameterization and maintain two tables ✓ 2 RS⇥A,
 2 RS⇥B that parameterize the policies of the two players according to

⇡✓(a | s) = exp (✓(s, a))P
a02A

exp (✓(s, a0))
, and � (b | s) =

exp ( (s, b))P
b02A

exp ( (s, b0))
.

The gradients of the regularized value function with respect to the policy parameters admit closed-
form expressions

@J⌧ (⇡✓,� )

@✓(s, a)
=

1

1� �
d
⇡✓,� 
⇢ (s)⇡✓(a | s)

X
b2B

� (b | s)A
⇡✓,� 
⌧ (s, a, b),

@J⌧ (⇡✓,� )

@ (s, b)
=

1

1� �
d
⇡✓,� 
⇢ (s)� (b | s)

X
a2A

⇡✓(a | s)A⇡✓,� ⌧ (s, a, b),

and computing them exactly requires knowledge of the dynamics of the environment. Note that the
gradients of value function and the regularizer are Lipschitz with respect to the policy parameters
with constants LV = 8

(1��)3 and LH = 4+8 log |A|

(1��)3 . This property is more formally stated and proved
in Lemmas 5 and 6 of the appendix.

We next present an important property that we will later exploit to study the convergence of the
GDA updates to the solution of the regularized Markov game. Under the softmax parameterization,
the regularized value function enjoys a gradient domination condition with respect to the policy
parameter that resembles the PŁ condition.
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Lemma 4 (PL-Type Condition). Under Assumption 1, we have for any ✓ 2 RS⇥A
and  2 RS⇥B

kr✓J⌧ (⇡✓,� )k2 � 2(1� �)⌧⇢2min

|S|

✓
min
s,a

⇡✓(a | s)
◆2

(J⌧ (⇡⌧ (� ),� )� J⌧ (⇡✓,� )) ,

kr J⌧ (⇡✓,� )k2 � 2(1� �)⌧⇢2min

|S|

✓
min
s,b

� (b | s)
◆2

(J⌧ (⇡✓,� )� J⌧ (⇡✓,�⌧ (⇡✓))) .

The PŁ condition is a tool commonly used in the optimization community to show the linear
convergence of the gradient descent algorithm [Karimi et al., 2016, Yu and Jin, 2019, Khaled
and Richtárik, 2020, Zeng et al., 2021b]. The condition in Lemma 4 is weaker than the common
PŁ condition in two aspects. First, our PŁ coefficient is a function of the smallest policy entry. When
we seek to bound the gradient of the iterates kr✓J⌧ (⇡✓k ,� k)k2 and kr J⌧ (⇡✓k ,� k)k2 later in
the analysis, the PŁ coefficients will depend on mins,a ⇡✓k(a | s) and mins,b � k(b | s), which may
not be lower bounded by any positive constant. Second, the coefficients involve ⌧ , which is not a
constant but needs to be carefully chosen to control the error between the regularized problem and
the original one.

3 Solving Regularized Markov Games

Leveraging the structure introduced in Section 2, our first aim is to establish the finite-time conver-
gence of the GDA algorithm to the Nash equilibrium of the regularized Markov game under a fixed
regularization weight ⌧ > 0. The GDA algorithm executes the updates

✓k+1 = ✓k + ↵kr✓J⌧ (⇡✓k ,� k),  k+1 =  k � �kr J⌧ (⇡✓k+1 ,� k). (9)

The convergence bound we will derive reflects a trade-off for the regularization weight ⌧ : when ⌧ is
large, we get faster convergence to the Nash equilibrium of the regularized problem, but it is farther
away from the Nash equilibrium of the original one. The result in this section will inspire the ⌧
adjustment schemes designed later in the paper to achieve the best possible convergence to the Nash
equilibrium of the original unregularized Markov game.

It can be shown that the Nash equilibrium of the regularized Markov game is a pair of completely
mixed policies, i.e. 8⌧>0 there exists c⌧>0 such that mins,a⇡?⌧ (a | s)�c⌧ , and mins,b�?⌧ (b | s)�c⌧

[Nachum et al., 2017]. In this work, we further assume the existence of a uniform lower bound on the
entries of (⇡?⌧ ,�?⌧ ) across ⌧ . We provide more explanation of the assumption in Remark 1.
Assumption 2. There exists a positive constant c (independent of ⌧ ) such that for any ⌧ > 0

min
s,a

⇡
?
⌧ (a | s) � c, min

s,b
�
?
⌧ (b | s) � c.

To measure the convergence of the iterates to the Nash equilibrium of the regularized Markov game,
we recall the definition of g⌧ in (2) and define

�
⇡
k = J⌧ (⇡

?
⌧ ,�

?
⌧ )� g⌧ (⇡✓k), �

�
k = J⌧ (⇡✓k ,� k)� g⌧ (⇡✓k). (10)

The convergence metric is asymmetric for two players: the first player is quantified by its performance
when the second player takes the most adversarial policy, while the second player is evaluated under
the current policy iterate of the first player. We note that �⇡k and ��k are non-negative, and �⇡k = �

�
k = 0

implies that (⇡✓k ,� k) is the Nash equilibrium. Under this convergence metric, the following theorem
states that the GDA updates in (9) solve the regularized Markov game linearly fast. The proofs of the
theoretical results of this paper are presented in Section A of the appendix.

Theorem 1. We define L = 3LH max{⌧, 1}, C1 = ⇢minc
2

64 log(2) , and C2 =
2
p

|S|p
(1��)⇢minc

, and choose

the initial policy parameters to be ✓0 = 0 2 R|S|⇥|A|
and  0 = 0 2 R|S|⇥|B|

(the initial policies ⇡✓0
and � 0 are uniform). Let the step sizes of (9) be

↵k = ↵, �k = �,

with ↵, � satisfying

max{↵,�}  1

L
,
↵

�
 min{ (1� �)⇢3minc

2
⌧
2

152 log(2)|S|L2
, 8}, ↵  min{(L+

C2L
2

⌧
)�1

,
16|S|

(1� �)⇢2minc
2⌧

}.
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If Assumption 1 holds and

3�⇡0 + �
�
0  C1⌧, (11)

then the iterates of (9) satisfy for all k � 0

3�⇡k + �
�
k  (1� (1� �)↵⌧⇢2minc

2

32|S| )k(3�⇡0 + �
�
0 ).

Theorem 1 establishes the linear convergence of the iterates of (9) to the Nash equilibrium of (5),
provided that the initial condition (11) is satisfied. The convergence is faster when ⌧ is large and
slower when ⌧ is small. Choosing ⌧ to be large enough guarantees the initial condition (see Section C
of the appendix for more discussion) but causes the Nash equilibrium of the regularized Markov game
to be distant from that of the original Markov game. This motivates us to make the regularization
weight a decaying sequence that starts off large enough to meet the initial condition and becomes
smaller over time to narrow the gap between the regularized Markov game and the original one. We
discuss two such schemes of reducing the regularization weight in the next section.

4 Main Results - Solving the Original Markov Game

This section presents two approaches to adjust the regularization weight that allow the GDA algorithm
to converge to the Nash equilibrium of the original Markov game. The first approach uses a piecewise
constant weight and results in the nested-loop updates stated in Algorithm 1. In the inner loop
the regularization weight and step sizes are fixed, and the two players update their policy iterates
towards the Nash equilibrium of the regularized Markov game. The outer loop iteration reduces
the regularization weight to make the regularized Markov game approach the original one. The
regularization weight decays geometrically in the outer loop, i.e. ⌧t+1 = ⌘⌧t, where ⌘ 2 (0, 1) must
be carefully balanced. On the one hand, recalling the definition of g⌧ in (2) and defining

�
⇡
t,k = J⌧t(⇡

?
⌧t ,�

?
⌧t)� g⌧t(⇡✓t,k), �

�
t,k = J⌧t(⇡✓t,k ,� t,k)� g⌧t(⇡✓t,k),

we need ⌘ to be large enough that if ✓t,0 and  t,0 observe the initial condition 3�⇡t,0 + �
�
t,0  C1⌧t,

then so do ✓t+1,0 and  t+1,0 in the worst case. On the other hand, an ⌘ selected excessively large
makes the reduction of ⌧t too slow to achieve the best possible convergence rate. Our next theoretical
result, as a corollary of Theorem 1, properly chooses ⌘ and Kt and establishes the convergence of
Algorithm 1 to the Nash equilibrium of the original original problem.

Algorithm 1: Nested-Loop Policy Gradient Descent Ascent Algorithm with Piecewise Constant
Regularization Weight
Initialize: Policy parameters ✓0,0 = 0 2 RS⇥A and  0,0 = 0 2 RS⇥B, step size sequences {↵t}

and {�t}, an initial regularization parameter ⌧0
for t = 0, 1, · · · , T do

for k = 0, 1, · · · ,Kt � 1 do

1) Max player update:

✓t,k+1 = ✓t,k + ↵tr✓J⌧ (⇡✓t,k ,� t,k)

2) Min player update:

 t,k+1 =  t,k � �tr J⌧ (⇡✓t,k+1 ,� t,k)

end

Set initial policies for next outer loop iteration ✓t+1,0 = ✓t,Kt ,  t+1,0 =  t,Kt

Reduce regularization weight ⌧t+1 = ⌘⌧t and properly adjust ↵t,�t

end

Corollary 1. Suppose that Assumption 1-2 hold and ⌧0 is chosen such that 3�⇡0,0 + �
�
0,0  C1⌧0

1
.

We choose ⌘ = C1+2L�
2C1+2L�

, where L� = 4 log |A|+ 3 log |B|+ log |B|

1�� and C1 is defined in Theorem 1.

1This inequality is guaranteed to hold with a large enough ⌧0 if ⇡✓0 and � 0 are initialized to be uniform.
See Section C of the appendix for more discussion.
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Then, under proper choices of ↵t and �t, the iterates of Algorithm 1 converge to a point such that

J(⇡?,�?)� g0(⇡✓T,0)  ✏ and J(⇡✓T,0 ,� T,0)� g0(⇡✓T,0)  ✏ (12)

in at most T = O(log(✏�1)) outer loop iterations. The total number of gradient updates required isPT
t=0 Kt = O(✏�3).

Corollary 1 guarantees that (⇡✓T ,� T ) converge to an ✏-approximate Nash equilibrium of the original
Markov game in T = O(✏�3) gradient steps. In order to achieve this rate, Kt has to be adjusted
along with ⌧t: we need Kt = O(⌧�3

t ) when ⌧t becomes smaller than 1. The varying number of inner
loop iterations may cause inconvenience for practical implementation. To address this issue, we next
propose another scheme of adjusting the regularization weight that is carried out online along with
the update of the policy iterates.

Algorithm 2: Policy Gradient Descent Ascent Algorithm with Diminishing Regularization Weight
Initialize: Policy parameters ✓0 = 0 2 RS⇥A and  0 = 0 2 RS⇥B, step size sequences {↵k}

and {�k}, regularization parameter sequence {⌧k}
for k = 0, 1, · · · ,K do

1) Max player update:

✓k+1 = ✓k + ↵kr✓J⌧k(⇡✓k ,� k)

2) Min player update:

 k+1 =  k � �kr J⌧k(⇡✓k+1 ,� k)

end

Presented in Algorithm 2, the second approach is a single-loop algorithm that reduces the regular-
ization weight as a polynomial function of the iteration k. We define the auxiliary convergence
metrics

�
⇡
k = J⌧k(⇡

?
⌧k ,�

?
⌧k)� g⌧k(⇡✓k), �

�
k = J⌧k(⇡✓k ,� k)� g⌧k(⇡✓k),

which measure the convergence of (⇡✓k ,� k) to the Nash equilibrium of the Markov game regularized
with weight ⌧k. To judge the performance of the iterates in the original Markov game, we are
ultimately interested in bounding J(⇡?,�?) � g0(⇡✓k) and J(⇡✓k ,� k) � g0(⇡✓k). Thanks to
Lemma 3, we can quantify how fast �⇡k and ��k approach these desired quantities as ⌧k decays to 0.
Under an initial condition on �⇡k and ��k , we now establish the convergence rate of Algorithm 2 to
(⇡?,�?) of (1) through a multi-time-scale analysis.
Theorem 2. Let the step sizes and regularization parameter be

↵k =
↵0

(k + h)2/3
, �k = �0, ⌧k =

⌧0

(k + h)1/3
,

with ↵0, �0, ⌧0, and h � 1 satisfying a system of inequalities discussed in details in the analysis.

Under Assumption 1-2, the iterates of Algorithm 2 satisfy for all k � 0

J(⇡?,�?)� g0(⇡✓k) 
C1⌧0 + 3(log |A|+ log |B|)⌧0

3(k + h)1/3
, (13)

J(⇡✓k ,� k)� g0(⇡✓k) 
(1� �)C1⌧0 + (log |A|+ log |B|)⌧0

(1� �)(k + h)1/3
, (14)

where the constant C1 is defined in Theorem 1.

Theorem 2 states that the last iterate of Algorithm 2 converges to an O(k�1/3)-approximate Nash
equilibrium of the original Markov game in k iterations. This translates to the same sample complexity
as Algorithm 1 derived in Corollary 1. Compared with Algorithm 1, reducing ⌧k online along with
the gradient updates in a single loop simplifies the algorithm and makes tracking the regularization
weight, step sizes, and policy iterates simpler and more convenient. We note that the techniques in
Daskalakis et al. [2020] may be used to analyze the finite-time performance of GDA for Markov
games and lead to a convergence rate at least worse than O(k�1/10.5), which we improve over.
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Remark 1. Assumption 2 is a restrictive assumption that does not seem necessary but rather arises

as an artifact of the current analysis. When we apply the weaker PL-type condition (Lemma 4)

in the analysis, the entries of the iterates ⇡✓k ,� k need to be uniformly lower bounded, which is

difficult to establish using the game structure. We come up with an innovative induction approach

to quantify the connection between mins,a ⇡✓k(a | s),mins,b � k(b | s) and the optimal gap �
⇡
k , �

�
k .

This approach allows us to transform the uniform lower bound requirement on ⇡✓k ,� k to that on

the Nash equilibrium, leading to Assumption 2. It is a future work to remove/relax this assumption.

A Markov game is said to be completely mixed if every Nash equilibrium of the game consists of

a pair of completely mixed policies, i.e. mins,a ⇡?(a | s) > 0,mins,b �?(b | s) > 0 for any Nash

equilibrium (⇡?,�?) of the Markov game (if more than one exists). Assumption 2 intuitively seems no

stronger than requiring the original Markov game to be completely mixed. If the original Markov

game has at least one completely mixed Nash equilibrium, the Nash equilibrium of the regularized

Markov game should also be completely mixed even when the regularization weight is small, since

the regularization encourages the solution to be more uniform. The reward function that results in

completely mixed Markov games is well studied in Raghavan [1978], Kaplansky [1995], Das et al.

[2017].

5 Numerical Simulations

In this section, we numerically verify the convergence of Algorithm 2 on small-scale synthetic
Markov games. Our aim is to confirm that the algorithm indeed converges rather than to visualize the
exact convergence rate, as achieving the theoretical rate derived in Theorem 2 requires very careful
selection of all involved parameters. Considering an environment with |S| = 2 and |A| = |B| = 2,
we first choose the reward and transition probability kernel such that the Markov game is completely
mixed2.

Figure 1: Convergence of GDA for a Completely Mixed Markov game

We run Algorithm 2 for 50000 iterations with ↵k = 10�3, �k = 10�2, ⌧k = (k + 1)�1/3, and
measure the convergence of ⇡k and �k by metrics considered in (13) and (14) of Theorem 2. As
shown in the first plot of Figure 1, the last iterate exhibits an initial oscillation behavior but converge
smoothly after 10000 iterations. In comparison, we visualize the convergence of the last iterate and
averaged iterate of the GDA algorithm without any regularization (second and third plots of Figure 1),
where the average is computed with equal weights as ⇡̄k = 1

k+1

Pk
t=0 ⇡✓t , �̄k = 1

k+1

Pk
t=0 � t .

The existing theoretical results in this case guarantee the convergence of the averaged iterate but not
the last iterate [Daskalakis et al., 2020]. According to our simulations, the last iterate indeed does not
converge, while the averaged iterate does, but at a slower rate than the convergence of the last iterate
of the GDA algorithm under the decaying regularization.

The theoretical results derived in this paper rely on Assumption 2. To investigate whether this
assumption is truly necessary, we also apply Algorithm 2 to a Markov game that has a deterministic

2To create a completely mixed game with |A| = |B| = 2, we simply need to choose the reward function
such that r(s, ·, ·) as a 2x2 matrix is diagonal dominant or sub-diagonal dominant for any state s 2 S, and we
can use an arbitrary transition probability kernel. The exact choice of the reward function and transition kernel
as well as the Nash equilibrium of this Markov game are presented in Section D of the appendix.
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Nash equilibrium and does not observe Assumption 23. As illustrated in Figure 2, the experiment
shows that Algorithm 2 still converges correctly to (⇡?,�?) of (1). This observation suggests
that Assumption 2 may be an artifact of the current analysis and motivates for us to investigate
ways to remove/relax this assumption in the future. We note that the pure GDA approach without
regularization also has a last-iterate convergence and does not exhibit the oscillation behavior observed
in Figure 1, since the gradients of both players never change signs regardless of the policy of the
opponent in this Markov game.

Figure 2: Convergence of GDA for a Deterministic Markov game

6 Conclusion & Future Work

In this paper, we present the finite-time analysis of two GDA algorithms that provably find the Nash
equilibrium of a Markov game with the help of a structured entropy regularization. Future directions
of this work include formalizing the link between Assumption 2 and completely mixed Markov
games, investigating the possibility of relaxing this assumption, and characterizing the convergence of
the stochastic GDA algorithm where the players do not have knowledge of the environment dynamics
and can only take samples to estimate the gradients.
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