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Abstract

Representing probability distributions by the gradient of their density functions has
proven effective in modeling a wide range of continuous data modalities. However,
this representation is not applicable in discrete domains where the gradient
is undefined. To this end, we propose an analogous score function called the
“Concrete score”, a generalization of the (Stein) score for discrete settings. Given
a predefined neighborhood structure, the Concrete score of any input is defined
by the rate of change of the probabilities with respect to local directional changes
of the input. This formulation allows us to recover the (Stein) score in continuous
domains when measuring such changes by the Euclidean distance, while using the
Manhattan distance leads to our novel score function in discrete domains. Finally,
we introduce a new framework to learn such scores from samples called Concrete
Score Matching (CSM), and propose an efficient training objective to scale our
approach to high dimensions. Empirically, we demonstrate the efficacy of CSM on
density estimation tasks on a mixture of synthetic, tabular, and high-dimensional
image datasets, and demonstrate that it performs favorably relative to existing
baselines for modeling discrete data.

1 Introduction

When estimating a statistical model, the representation of the underlying probability distribution has
profound implications on the downstream modeling task. Likelihood-based model families such as
Variational Autoencoders (VAEs) [1–4], normalizing flows [5–13], and diffusion models [14–16]
are forced to either approximate the intractable normalizing constant or utilize restrictive model
architectures; implicit models [17–20] try to capture the underlying sampling process by relying
on unstable adversarial training procedures. On the other hand, representing the distribution as
the gradient of the log probability density function—also known as the (Stein) score—allows us to
circumvent such issues. This is key to score matching’s success on a wide range of continuous data
modalities [21–25]. In fact, its recent resurgence has led to significant advances in machine learning
applications of density estimation, such as image generation [26, 16, 27, 15] and audio synthesis
[28, 29], among others.

However, score matching approaches that rely on modeling the gradient of the data distribution are
inherently designed for continuous data; such methods hinge on the existence of the gradient, which
is undefined for discrete domains [22]. Given the ubiquitous nature of structured, discrete data in
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our world today such as graphs, text, genomic sequences, images, we desire an approach that would
allow us to expand the successes of score-based generative models into discrete domains.

To address this challenge, we first introduce the Concrete score: a generalization of the (Stein) score
that is amenable to both continuous and discrete data types2. Given a predefined neighborhood
structure, the Concrete score leverages structural information in the data to construct surrogate
gradient information about the discrete space by considering the similarity between two neighboring
examples. More precisely, the Concrete score of any input is defined by the rate of change of the
probabilities with respect to directional changes of the input. In direct analogy to the continuous
(Stein) score, the intuition is that the Concrete score should remain small when two examples are
“close” to one another; when the two examples are very different, the Concrete score will be large. We
find that measuring such changes by the Euclidean distance recovers the (Stein) score in continuous
domains, while using the Manhattan distance leads to our novel score function in discrete domains.

Using this definition of the Concrete score, we then introduce a framework to learn such scores from
samples called Concrete Score Matching (CSM). To successfully scale our method to high dimensions,
we also propose an efficient training objective as well as several variations of our approach that
improve performance in practice. Empirically, we demonstrate the efficacy of CSM on a wide range
of density estimation tasks on a mixture of synthetic, tabular, and high-dimensional image datasets,
and demonstrate that it performs favorably relative to existing baselines for modeling discrete data.

The contributions of our work can be summarized as follows:

1. We propose the Concrete score, a generalization of the (Stein) score to discrete domains.
We construct the Concrete score such that it leverages structural information in the data to
capture surrogate “gradient” information over discrete spaces.

2. We introduce a novel score matching framework for estimating such scores from samples
called Concrete Score Matching (CSM). We then outline several connections between CSM
and existing (continuous) score matching techniques, such denoising score matching (DSM).

3. We propose efficient learning objectives that allow our method to scale gracefully to high-
dimensional datasets, and show how to port over the recent successes in continuous score
matching approaches to discrete domains.

2 Preliminaries

Let pdata(x) be the unknown data distribution over X ∈ RD, for which we have access to i.i.d.
samples {xi}Ni=1 ∼ pdata(x). The (Stein) score of pdata(x) is the first order derivative of the log data
density function s(x) = ∇x log p(x). The goal of score matching is to learn an unnormalized density
qθ(x) indexed by θ ∈ Θ such that the estimated score function sθ(x) = ∇x log qθ(x) is close to s(x).

In practice, we leverage a score network sθ : RD → RD that is trained to minimize the Fisher
divergence between qθ(x) and pdata(x) [23, 26]. Although the original objective is intractable to
compute due to its dependence on the ground truth data scores s(x), we can leverage integration by
parts [21] to simplify the objective as follows:

JSM (θ) = Epdata(x)

[
1

2
∥sθ(x)∥22 + tr(∇xsθ(x))

]
+ const. (1)

where tr(·) denotes the matrix trace, and the optimal score model satisfies sθ∗(x) ≈ s(x). While
the trace term in Eq. 1 remains problematic—it requires an expensive evaluation of the Hessian of
the log-density function—recent works [23, 16] leverage the Skilling-Hutchinson trace estimator
[31, 32] or directional derivatives [33] to efficiently approximate the training objective.

Despite their key role in successfully scaling score-based generative models to high-dimensional
datasets, we note two critical limitations of existing score matching techniques: (1) X must be
continuous; and (2) the density function pdata(x) must be differentiable. This poses a significant
challenge in discrete domains, where both requirements fail to hold.

2We borrow the terminology from “concrete mathematics” [30].
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3 The Concrete Score

The above limitations prevent the direct application of score matching techniques to discrete data.
We thus propose the Concrete score, a generalization of the (Stein) score for discrete settings. The
key intuition is that although the gradient is undefined in discrete spaces, we can still construct a
surrogate for the gradient by leveraging local directional changes to the input. We do so by exploiting
special neighborhood structures in the data, and elaborate upon the necessary conditions on these
structures to guarantee that our surrogate gradient indeed recovers a valid score function that (1)
completely characterizes the distribution, and (2) is amenable for parameter estimation.

3.1 Constructing Surrogate Gradients for Discrete Data

To be more precise, let pdata(x) be the data distribution over X . We denote N : X → XK as the
function mapping each example x ∈ X to a set of neighbors, such that N (x) = {xn1

, ...,xnk
}

and K = |N (x)| 3. This neighborhood induces a particular graphical structure onto the support of
pdata(x), which we call the "neighborhood-induced graph", that will play a key role in constructing
the surrogate gradient. We provide a formal definition below.
Definition 1 (Neighborhood-induced graph). Let pdata(x) be the data distribution over X and N be
the function mapping each node x ∈ X to its set of neighbors. The neighborhood-induced graph G is
the directed graph which results from adding a directed edge from x to each node in its neighborhood
set xn ∈ N (x), for all x ∈ supp(pdata(x)).

An important point is that the neighborhood structure can be asymmetric, since the neighborhood-
induced graph is a directed graph. This implies that there may exist cases where N (x) = {x1} does
not necessarily imply that N (x1) = {x}. We provide an intuitive example below.
Example 1. When X = {x0,x1, . . . ,x5}, and the neighborhood structure N is defined as: N (x0) =
{∅} and N (xi) = {x0} ∀i = 1, . . . , 5, the neighborhood-induced graph is the star graph in Figure 1.

There exist a wide range of neighborhood structures, all of which yield different neighborhood-
induced graphs. We visualize five common structures in Figure 1.
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Figure 1: Examples of common neighborhood structures and their corresponding (connected)
neighborhood-induced graphs, where the arrows point to the neighbors of a given node. Note
that the neighborhood structure is directed.

Such graphs provide insight into the kinds of neighborhood structures that are amenable to our
framework. One necessary characteristic of such graphs is connectedness. In fact, the five common
graphical structures (among others) shown in Figure 1 are all weakly connected graphs. We emphasize
that connectedness does not take the directionality of the underlying graph G’s edges into account—it
does not matter whether a node x has an incoming or outgoing edge.

With the above definitions in place, we can now define the surrogate gradient as the local differences
between a set of examples (similar to directional derivative in the continuous case). Using this notion
of the “gradient”, we construct the Concrete score as the rate of change of the probabilities with
respect to these local directional changes in the input x as defined below.
Definition 2 (Concrete score). Let N be a function mapping each point x to its set of neighbors
N (x) = {xn1 , ...,xnk

}. Then, the Concrete score cpdata
(x;N ) : X → R|N (x)| for a given

distribution pdata(x) evaluated at x is:

cpdata
(x;N ) ≜

[
pdata(xn1

)− pdata(x)

pdata(x)
, ...,

pdata(xnk
)− pdata(x)

pdata(x)

]T
. (2)

3We consider a fixed number of neighbors K for each x to simplify our notation, but note that this can be
generalized to a variable number of neighbors for every x.
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Although we have defined the Concrete score, we have yet to justify whether it is indeed a suitable
score function for estimating pdata(x). The necessary condition, which we call completeness [34],
ensures that the Concrete score preserves enough information about pdata(x) such that we can
successfully learn pdata(x) from data samples using score matching. We make this statement more
precise in the following theorem.
Theorem 1 (Completeness). Let pdata(x) be a (discrete) data distribution. Denote cpdata

(x;N ) as
the Concrete score of pdata(x) with neighboring structure N , and cθ(x;N ) the Concrete score for a
distribution pθ(x) parameterized by θ ∈ Θ. When the graph induced by the neighborhood structure
N is connected, cθ(x;N ) = cpdata

(x;N ) implies that pθ(x) = pdata(x) ∀x ∈ X .

Proof sketch. If two nodes x and x′ in a neighborhood-induced graph G share an edge, then their
density ratio pdata(x

′)/pdata(x) can be uniquely identified using cpdata
(x;N ). Thus when G is

connected, the density ratio between any node pairs in G is uniquely identified given cpdata
(x;N ).

Therefore, knowing the density ratio between any two points uniquely identifies pdata(x).

We provide the full proof in Appendix A. We emphasize here that the connectedness of the
neighborhood-induced graph (a kind of regularity condition on N and pdata(x)) was crucial for
demonstrating the completness of the Concrete score.

Note that Theorem 1 only requires the neighborhood-induced graph to be connected. This implies that
given a connected graph, we can augment it with additional edges—the new graph will still remain
complete, but contain additional information in the augmented neighborhood structure that may help
parameter estimation in practice. This is a phenomenon that we observe empirically in Section 5.3.

3.2 Connection to Stein Scores and Existing Score Matching Techniques

The form of the Concrete score in Eq. 2 suggests a natural connection with the Stein score in
continuous domains. In the following proposition, we illustrate the connection between the two
when we define the neighborhood structure to be similar to the grid in Figure 1. In particular, as
the distance between neighboring nodes shrinks to zero, our Concrete score converges to the Stein
score up to a multiplicative constant.
Proposition 1. For x ∈ RD, p(x) ∈ P(RD), and δ > 0, let the neighborhood structure Nδ(x) =
{x+ δei}Di=1. Then, we have:

lim
δ→0

cp(x;Nδ)

δ
= ∇x log p(x).

We note that while from this perspective the Concrete score can be seen as a finite-difference
approximation to the continuous (Stein) score, CSM is different from finite difference score matching
(FD-SM) [33]. We introduce a new family of score functions generalizable to discrete domains in the
form of (p(x+v)− p(x))/p(x), where v is the direction from x pointing to its neighbor with length
δ. On the other hand, FD-SM still attempts to match the Stein score, and approximates directional
derivatives with finite difference using two neighbors in the form of log p(x + v) − log p(x − v).
Nevertheless, the differences between the two forms are o(δ) as δ → 0.

3.3 Inference with Concrete Scores

To perform inference, we note that there exist several ways to define Markov chain Monte Carlo
(MCMC) samplers that only rely on the Concrete score—we highlight the simplest setting of
Metropolis-Hastings [35–37] for clarity of exposition. We first note that, by definition:

cpdata
(x;N ) + 1 =

[
pdata(xn1)

pdata(x)
, ...,

pdata(xnk
)

pdata(x)

]T
(3)

This implies that we can obtain the density ratios between the neighboring pairs pdata(xn1)/pdata(x)
and pdata(x)/pdata(xn1) given the Concrete score. Given a proposal distribution q, our sampler
will accept the proposed update x′ with acceptance probability A(x′|x) = min

(
1, pdata(x

′)q(x|x′)
pdata(x)q(x′|x)

)
.

Specifically, we can choose q to sample uniformly among N (x) given a particular x. When the neigh-
borhood structure is symmetric, this selection leads to a simplified acceptance probability A(x′|x) =
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min
(
1, pdata(x

′)
pdata(x)

)
. We note that when the underlying graph is connected, the chain is aperiodic (due

to the presence of a rejection step), irreducible, and positive recurrent (since there is a finite number of
discrete states), so the Markov chain is guaranteed to converge in the limit to the model distribution.

This means that we can also compute tighter bounds on log-likelihood estimates obtained by un-
normalized probability models trained via CSM. In particular, we can compute both a lower bound
estimated via Annealed Importance Sampling (AIS) [38] and a conservative upper bound estimated
via the Reverse Annealed Importance Sampling Estimator (RAISE) [39]. This is because both
AIS and RAISE allow us to approximate the intractable normalizing constant by constructing a
sequence of intermediate distributions between our estimated target distribution and another proposal
distribution, and we know that the Concrete score can be repurposed to obtain the necessary density
ratios between neighboring pairs of distributions along this sequence.

4 Learning Concrete Scores with Concrete Score Matching

4.1 The Concrete Score Matching Objective

Next, under the assumption that N induces a weakly connected graph over the support of pdata(x),
we propose a new score matching framework called Concrete Score Matching (CSM) for estimating
Concrete scores from data samples. To do so, we estimate cpdata

(x;N ) with a score model cθ(·;N ) :

RD → R|N (x)|, where |N (x)| denotes the size of the neighborhood of x. Our proposed training
objective is quite natural, as it measures the average ℓ2 difference between our score model cθ(·;N )
and the true score cpdata

(·;N ) similar to (continuous) score matching:

LCSM(θ) =
∑
x

pdata(x) ∥cθ(x;N )− cpdata
(x;N )∥22 (4)

In the following theorem, we demonstrate that Eq. 4 is indeed a principled learning objective: the
estimated θ∗ is a consistent estimator for the true underlying distribution pdata(x).
Theorem 2 (Consistency). In the limit of infinite data and infinite model capacity, the optimal θ∗
that minimizes Eq. 4 recovers the true Concrete score, or satisfies cθ∗(x;N ) = cpdata

(x;N ).

Theorem 1 implies that the estimated (underlying) pθ∗(x) from cθ∗(x;N ) satisfies pθ∗(x) =
pdata(x) ∀x ∈ X . Next, we note that Eq. 4 can be simplified to an objective that we can tractably op-
timize by removing its dependence on the unknown cpdata

(x;N ), similar in spirit to Eq. 1. Although
the added flexibility of the score model may potentially lead to situations where it does not correspond
to a valid probability distribution—similar to how continuous score models do not necessarily form a
conservative vector field—this does not appear to hurt CSM’s performance empirically.
Theorem 3. Optimizing Equation (4) is equivalent to optimizing:

JCSM(θ) =
∑
x

|N (x)|∑
i=1

pdata(x)

(
cθ(x;N )2i + 2cθ(x;N )i

)
︸ ︷︷ ︸

J1

−
∑
x

|N (x)|∑
i=1

2pdata(xni
)cθ(x;N )i︸ ︷︷ ︸

J2

(5)

where N (x) = {xn1
, ...,xnk

} is the set of neighbors of x.

We note that in Eq. 5, the objective JCSM(θ) can be approximated using Monte Carlo samples. We
elaborate on the empirical training details in Section 4.2.

4.2 Efficient Training via Monte Carlo

In practice, Eq. 5 is still inefficient; it involves a summation over all |N (x)| neighbors for x, which
can be expensive for high-dimensional datasets. Therefore, we propose several modifications to the
original training objective that we found to be crucial for scaling up and improving our approach.

We begin with the leftmost term J1. First, we approximate the outer expectation w.r.t. pdata(x)
with Monte Carlo samples from the empirical data distribution. Next, rather than evaluating the
objective for all |N (x)| neighbors, we sample a neighbor xni

uniformly at random among N (xi) for
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every xi in a mini-batch. We then upweight the output from the model using this sample by |N (x)|.
We provide the unbiased training algorithm for the leftmost term in Algorithm 1. We note that is
similar in spirit to sliced score matching [23], an approximation technique to make continuous score
matching scalable to higher dimensions.

Next, we turn to the rightmost term J2. Similar to J1, we can estimate J2 using an unbiased estimator
based on samples as demonstrated in Algorithm 2. We define N−1(x′) = {(x, i)|N (x)i = x′}
as the “reverse neighborhood” set, where an element (x, i) ∈ N−1(x′) indicates that x′ is the i-th
neighbor of x. There could be multiple x with the same i in N−1(x′) as in the case of the star graph.
Computing and storing N−1 as a hash table mapping x to the set of N−1(x) has a time and space
complexity of at most O(

∑
x |N (x)|) (i.e., the number of edges). For special structures (e.g., grid),

we can design specific algorithms that bypass this process. We provide more details in Appendix C.

Algorithm 1 An unbiased estimator of J1

Input: pdata, N , cθ (model).
1. Sample x ∼ pdata(x).
2. Sample i ∼ Uniform{1, . . . , |N (x)|}.
Output: |N (x)| ·

(
cθ(x;N )2i + 2cθ(x;N )i

)
.

Algorithm 2 An unbiased estimator of J2

Input: pdata, N , cθ (model).
1. Sample x′ ∼ pdata(x).
2. Sample (x, i) ∼ Uniform(N−1(x′)).
Output: 2 · |N−1(x′)| · cθ(x;N )i.

We leverage the grid structure in our experiments, where the neighbors of x are defined to be
N (x) = {x ± ed}Dd=1. Algorithm 1 and Algorithm 2 allow us to efficiently train the model by
sampling a dimension d ∈ [D] and flipping the bit for the dth entry of x for each xn.

4.3 Denoising Concrete Score Matching

Finally, we propose another training objective to approximate Eq. 5, with a focus on computational
efficiency. Similar to denoising score matching (DSM) for (Stein) score estimation [22], we derive a
denoising counterpart for Concrete score estimation called “Denoising Concrete Score Matching”
(D-CSM). Specifically, given a discrete data distribution pdata(x) and a discrete noise distribution
q̃(x̃|x), we define the perturbed data distribution p̃(x̃) =

∑
x pdata(x)q̃(x̃|x), and the posterior

q(x|x̃) = pdata(x)q̃(x̃|x)
p̃(x̃) . Then, we can show that the Concrete score of the perturbed data distribution

p̃(x̃) can be obtained via cp̃(x̃)(x̃;N ) =
∑

x cq̃(x̃|x)(x̃;N )q(x|x̃). This property allows us to obtain
the D-CSM objective, as shown in the following theorem:

Theorem 4 (Denoising Concrete Score Matching). The objective:

JD−CSM(θ) =
∑
x,x̃

pdata(x)q̃(x̃|x)
∥∥cθ(x̃;N )− cq(x̃|x)(x̃;N )

∥∥2
2

(6)

is minimized when cθ(x̃;N ) = cp(x̃)(x̃;N ).

We draw a direct analogy to DSM in order to provide additional insight into D-CSM. Recall that in
DSM, there exists a noise distribution q(x̃|x) (i.e. N (x̃|x, σ2I)) such that the magnitude of Stein
scores captures the distance between the perturbed x̃ and its clean counterpart x. D-CSM enjoys a sim-
ilar interpretation. In particular, consider an input space x ∈ X ⊆ ZD with the neighborhood structure
N (x) = {x+ v|v ∈ {−1, 0, 1}D}. If we define q(x̃|x) = 1

2D+k where k is the Manhattan distance
between x̃ and x, then the Concrete score cp̃(x̃)(x̃;N ) captures how close x is to x̃ as measured by
the Manhattan distance. Therefore, D-CSM can also be understood through the lens of a denoiser.
We provide additional experimental results exploring the performance of D-CSM in Appendix B.3.

5 Experimental Results

In this section, we evaluate the performance of CSM on synthetic, tabular, and discrete image datasets
on a variety of sampling and density estimation tasks. We provide additional details on specific
experimental settings and hyperparameter configurations in Appendix C.
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5.1 Baselines

In our experiments, we compare CSM to two relevant baselines for modeling discrete data: Ratio
Matching and Discrete Score Matching with Marginalization (Discrete Marginalization). For
conciseness, we provide additional details and derivations for their training objectives in Appendix D.

Ratio Matching. Similar to score matching, Ratio Matching [34] leverages the fact that ratios of
probabilities are independent of the intractable normalizing constant (due to cancellation). The
method then seeks to match the ground truth density ratios pdata(x)

pdata(x−d)
= qθ(x)

qθ(x−d)
where x−d denotes

the vector x with the dth entry bit-flipped (e.g. from 0 to 1).

Discrete Score Matching with Marginalization (Discrete Marginalization). The Discrete Marginal-
ization baseline is another way of estimating discrete probability distributions with score matching as
in [34]. However, we note that this approach is difficult to scale because it requires us to marginalize
over the data dimension, which may also cause instabilities during training.

5.2 1-D Discrete Data

In this experiment, we consider a 16-category 1-D data distribution as shown in Figure 2. We
parameterize our Concrete score model cθ(x,N ) using a shallow MLP model with Tanh activations,
and use the Cycle neighborhood structure during training. We demonstrate that the learned Concrete
score model can faithfully capture the true data distribution when trained with CSM. As shown on
the left side of Figure 2, we find that CSM generates samples (blue) using MH that almost perfectly
matches the samples drawn from pdata(x) (green).

We also observe in Appendix A.3 that the Concrete score on pdata(x) can recover the Stein score of a
data distribution perturbed with triangular noise. Even though the Concrete score model is trained on
discrete data (green), this connection allows us to sample with Langevin dynamics using the recovered
Stein score. On the right side of Figure 2, we show how the samples generated using Langevin
dynamics (smoothed orange) closely match the triangular noise-perturbed data distribution (gray).
Then, we leverage a closed-form denoising formula for the perturbed distribution (Appendix A.3) to
recover the clean data distribution (green) from samples obtained via Langevin dynamics (smoothed
orange). The resulting denoised samples (orange) are labeled as Denoised in Figure 2. We provide
more details and discussion in Appendix A.3.

Data Triangular noiseMH samples Langevin samplesPerturbed data Denoised
0 1-1

1

Figure 2: Sampling results from a toy 1-D discrete dataset. CSM recovers the true data distribution
pdata(x) using Metropolis-Hastings (left). The Concrete score can also be used to recover the
Stein score of the triangular noise-perturbed data distribution, allowing for sampling with Langevin
dynamics. Such samples can be denoised to recover the original (clean) data distribution (right).

5.3 Sampling with Toy 2-D Multi-Class Datasets

Next, we consider three 2-D toy benchmark datasets with multiple modes and discontinuities as
commonly used in the density estimation literature [40, 41]. We quantize the data into 91× 91 bins
to obtain the discrete training data for the experiment (see Figure 3). We compare our method against
the two baselines: (1) Ratio Matching [42]; and (2) Discrete Marginalization [34]. In particular, we
found that the original equations in [34] were incorrect, and provide results using the correct training
objectives (denoted as Ratio-fixed and Marginal-fixed) in Figure 3. We provide a step-by-step
derivation addressing this issue with the correct expressions for the training objectives in Appendix D.

For a fair comparison, we use the same model architecture and training configurations across all
methods. We use the grid neighborhood structure for training CSM. As shown in Figure 3, the
samples from CSM best capture the shape of the underlying data distributions across all three datasets
(leftmost column). Baselines implemented using the original equations in [34] indeed demonstrate
poor performance on the density estimation task (Ratio and Marginal columns) in Figure 3.
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Data Ratio Ratio-fixed Marginal Marginal-fixed CSM (Ours)

Figure 3: Sampling results on toy 2-D benchmark datasets. We find that CSM produces the highest
quality samples across all 3 datasets relative to all baselines.

Datasets Ratio Matching (↑) Discrete Marginalization (↑) CSM (Ours) (↑)
NLTCS -6.15 -6.21 -6.13
Plants -15.44 -19.03 -14.02
Jester -56.49 -57.06 -54.91
Amazon Diaper -10.69 -42.52 -11.13
Amazon Feeding -12.09 -35.96 -12.65
Amazon Gifts -4.57 -4.28 -4.22
Amazon Media -10.22 -13.77 -10.30
Amazon Toys -9.83 -16.34 -9.30

Table 1: Log-likelihood comparisons on discrete tabular datasets. Higher is better. We find that CSM
demonstrates good performance, almost always outperforming or performing comparably relative to
the Ratio Matching and Discrete Marginalization baselines.

5.4 Likelihood Evaluation on Discrete Tabular Data

We then evaluate the performance of CSM on density estimation tasks for a wide range of tabular
(discrete) datasets drawn from both the Twenty Datasets [43] and the Amazon Baby Registries
benchmarks [44]. In order to evaluate likelihoods, we directly parameterize the density with a
discrete autoregressive model (MADE [45]), but train the model using the baseline approaches and
CSM. For a fair comparison, we use the same model architecture and experimental configurations
across all methods. Similar to our previous experiments, we use the grid neighborhood structure for
training CSM. As shown in Table 1, our approach (CSM) demonstrates favorable performance relative
to the Ratio Matching and Discrete Marginalization baselines. We provide additional
experimental results in Appendix B.1 and more experimental details in Appendix C.

5.5 Generative Modeling with High-dimensional Images

For our final experiment, we demonstrate that we can scale CSM to achieve good performance on
complex, high-dimensional binarized image datsets. We experiment with the MNIST [46] dataset,
which has 784 dimensions. We directly parameterize the Concrete score function with a U-Net [47],
and train the model using the CSM based on a grid neighborhood structure. Similar to [26], we
perturb the image with different levels of discrete (Categorical) noise, and train the models at different
noise levels with annealing. After the Concrete score model is trained, we sample from the model
using Metropolis-Hastings as discussed in Section 3.3 and follow a similar sample initialization
process as [26]. We provide more details in Appendix C. We present the samples from our model in
Figure 4b. We observe that our CSM approach with Metropolis-Hastings is able to generate samples
that look similar to the digit examples in the training set (Figure 4a).
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(a) Binary training images (b) MNIST samples (MH)

Figure 4: Image samples from CSM on the binarized MNIST dataset. We observe that CSM is able
generate high-quality samples on MNIST using Metropolis-Hastings.

6 Related Work

Score Matching. Our work builds on the body of literature on score matching [21, 22] and score-
based generative modeling [23, 26, 16]. Notably, we build upon the generalization of score matching
to discrete data [42, 48, 34]. Our score function can be viewed through the lens of generalized score
matching as in [34], where the Concrete score serves as a particular instantiation of the linear operator
in their framework. However, we provide a novel perspective in terms of constructing the Concrete
score via surrogate gradient information over a structured discrete space, and provide efficient
training objectives for CSM. Our work is also closely related to score matching with finite difference
(FD-SM) [33] as discussed in Section 3.2. However, rather than approximating the gradient with
finite differences for continuous data, we leverage the first-order forward difference to construct our
Concrete score function in discrete domains. In addition, CSM bears similarities to a concurrent work
on scaling up Ratio Matching [34] for discrete energy-based models (EBMs) [49] called RMwGGIS—
our approach can be viewed as a different way to train discrete EBMs (via the Concrete score).

Generative Modeling for Discrete Data. CSM also provides another way to train generative models
for discrete data. A related work is [50], which trains a score-based model on distributions over
graphs. However, they perturb the adjacency matrices with Gaussian noise and use the continuous
variant of DSM. Although there exist several model families for learning binary and Categorical
probability distributions such as normalizing flows [51–53], Sum-Product Networks (SPNs) [54, 55],
denoising diffusion probabilistic models [56], discrete (latent) [57, 58] EBMs [49], and Generative
Flow Networks (GFNs) [59], there does not yet exist a discrete score-based model that can scale to
high-dimensional discrete datasets. Finally, our approach bears similarities with Gibbs with Gradients
(GWG) [60]. In particular, GWG augments existing MCMC samplers with gradient information by
leveraging local structure to estimate likelihood ratios for transitioning to the next state. However,
GWG utilizes gradients from the probability mass functions of the underlying discrete distributions,
in contrast to the way in which we construct the Concrete score function.

7 Conclusion

We introduced Concrete Score Matching (CSM), a novel framework for learning discrete probability
distributions via score matching. We proposed to leverage particular kinds of structural information in
the data to construct surrogate gradient information about the discrete space, and used this to define
a valid score function. We also introduced several modifications to the original training objective that
allowed CSM to scale gracefully to high-dimensional datasets, and demonstrated that CSM performs
well on a variety of sampling and density estimation tasks.

However, this work is not without limitations. Since CSM depends on the neighborhood structure,
certain types of graphs may work better for score matching in practice than others. Additionally,
our efficient training objectives may suffer from high variance when scaling to high dimensions for
particular kinds of neighborhood-induced graphs, such as the Star graph. For future work, although
we fixed the number of neighbors K for each x in our experiments, it would be interesting to
adaptively determine the optimal number of neighbors to use for each x during training. We also
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believe that CSM can be generalized to leverage more complex neighborhood structures than those
we explored in the paper. Additionally, empirically investigating the performance of D-CSM with
Langevin dynamics relative to CSM would be interesting future work.

Broader Impact. This work introduces a novel score function—the Concrete score—that is defined
over discrete spaces, as well as a corresponding score matching (CSM) framework that can scale to
high-dimensional discrete datasets. This leads to empirical performance improvements over a range
of density estimation and sampling tasks, and does not have a direct consequence on societal issues.
However, we note that CSM could serve as the basis for developing more powerful generative models
of structured, discrete data. Although this could lead to tangible benefits (e.g. improved generative
modeling of text data), we should be mindful to take the usual precautions required for generative
modeling research (e.g. against the development of deepfakes).
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Appendix

A Proofs of Theoretical Results

In this section, we provide proofs and additional discussions of the theoretical results.

A.1 Concrete Score Matching

Theorem 1 (Completeness). Let pdata(x) be a (discrete) data distribution. Denote cpdata
(x;N ) as

the Concrete score of pdata(x) with neighboring structure N , and cθ(x;N ) the Concrete score for a
distribution pθ(x) parameterized by θ ∈ Θ. When the graph induced by the neighborhood structure
N is connected, cθ(x;N ) = cpdata

(x;N ) implies that pθ(x) = pdata(x) ∀x ∈ X .

Proof. If two nodes x and x′ in a neighborhood-induced graph G share an edge, then their density
ratio pdata(x

′)/pdata(x) and pdata(x)/pdata(x
′) can be uniquely identified using cpdata

(x;N ) based
on the definition:

cpdata
(x;N ) + 1 =

[
pdata(xn1)

pdata(x)
, ...,

pdata(xnk
)

pdata(x)

]T
. (7)

For simplicity, we name the elements in X : {x1,x2, ...,xN}. Note that when G is a weakly
connected graph, any node pair (x1,xn) is connected via a path in the graph. Denoting the path
between these two nodes as x1 → ... → xn, we can obtain the density ratio for any neighboring pairs
on the path using the definition of cpdata

(x;N ). Therefore the density ratio pdata(xn)/pdata(x1)
can be computed using the products of the density ratios for all neighboring data pairs on the
path. This implies that when G is weakly connected, we can uniquely recover the density ratios
{pdata(x1)/pdata(x1), pdata(x2)/pdata(x1), . . . , pdata(xN )/pdata(x1)}, which uniquely determine
pdata(x). Therefore, knowing the density ratio between any two points uniquely identifies pdata(x).

Theorem 2 (Consistency). In the limit of infinite data and infinite model capacity, the optimal θ∗
that minimizes Eq. 4 recovers the true Concrete score, or satisfies cθ∗(x;N ) = cpdata

(x;N ).

Proof. It is easy to see the optimal θ∗ that minimizes the following equation

LCSM(θ) =
∑
x

pdata(x) ∥cθ(x;N )− cpdata
(x;N )∥22 (8)

satisfies cθ∗(x;N ) = cpdata
(x;N ) almost everywhere.

Theorem 3. Optimizing Equation (4) is equivalent to optimizing:

JCSM(θ) =
∑
x

|N (x)|∑
i=1

pdata(x)

(
cθ(x;N )2i + 2cθ(x;N )i

)
︸ ︷︷ ︸

J1

−
∑
x

|N (x)|∑
i=1

2pdata(xni
)cθ(x;N )i︸ ︷︷ ︸

J2

(5)

where N (x) = {xn1 , ...,xnk
} is the set of neighbors of x.

Proof. Recall that by definition

cpdata
(x;N ) ≜

[
pdata(xn1

)− pdata(x)

pdata(x)
, ...,

pdata(xnk
)− pdata(x)

pdata(x)

]T
. (9)
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argmin
θ

LCSM(θ)

= argmin
θ

∑
x

pdata(x) ∥cθ(x;N )− cpdata
(x;N )∥22

= argmin
θ

∑
x

pdata(x)

[
∥cpdata

(x;N )∥22 − 2cθ(x;N )T cpdata
(x;N ) + ∥cθ(x;N )∥22

]
= argmin

θ

∑
x

pdata(x)

[
∥cθ(x;N )∥22 − 2cθ(x;N )T cpdata

(x;N )

]

= argmin
θ

∑
x

|N (x)|∑
i=1

pdata(x)

(
cθ(x;N )2i + 2cθ(x;N )i

)
︸ ︷︷ ︸

J1

−
∑
x

|N (x)|∑
i=1

2pdata(xni
)cθ(x;N )i︸ ︷︷ ︸

J2

= argmin
θ

JCSM(θ)

A.2 Denoising Concrete Score Matching

Property 1. cp̃(x̃)(x̃;N ) =
∑

x cq̃(x̃|x)(x̃;N )q(x|x̃)

Proof. For simplicity, given a distribution p(x), we define the operator L[p(x)] =

[
p(xn1) −

p(x), ..., p(xnk
) − p(x)

]T
, where N (x) = {xn1

, . . . ,xnk
} are the neighbors of x. Recall that by

definition, p̃(x̃) =
∑

x pdata(x)q̃(x̃|x) and the posterior q(x|x̃) = pdata(x)q̃(x̃|x)
p̃(x̃) . We have

cp̃(x̃)(x̃;N ) =
L[p̃(x̃)]

p̃(x̃)

=
L[
∑

x pdata(x)q̃(x̃|x)]
p̃(x̃)

=

∑
x pdata(x)L[q̃(x̃|x)]

p̃(x̃)
(by linearity)

=
∑
x

L[q̃(x̃|x)]
q̃(x̃|x)

pdata(x)q̃(x̃|x)
p̃(x̃)

=
∑
x

cq̃(x̃|x)(x̃;N )q(x|x̃)

Theorem 4 (Denoising Concrete Score Matching). The objective:

JD−CSM(θ) =
∑
x,x̃

pdata(x)q̃(x̃|x)
∥∥cθ(x̃;N )− cq(x̃|x)(x̃;N )

∥∥2
2

(6)

is minimized when cθ(x̃;N ) = cp(x̃)(x̃;N ).

Proof. The model cθ that minimizes the least squares

θ∗ = argmin
θ

∑
x,x̃

pdata(x)q̃(x̃|x)||cθ(x̃;N )− cq̃(x|x̃)(x̃;N )||2 (10)

satisfies cθ(x̃;N ) =
∑

x cq̃(x̃|x)(x̃;N )q(x|x̃) = cp̃(x̃)(x̃;N ) using Property 1.
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A.3 Connection to distribution perturbed with triangular noise

As discussed in Section 5.2, our approach can be used to denoise a given data distribution perturbed
with triangular noise. For simplicity, we assume x ∈ X ⊆ ZD. The argument proceeds in a similar
manner to how denoising score matching can be used to compute the expected posterior Ex[p(x|x̃)],
where x̃ is the perturbed data.
Definition 3 (Triangular noise). We define the PDF of the D-dimensional triangular distribution
with lower limit -1, upper limit 1, and mode 0 as the following:

TD(x) =


0 x < −1

x+ 1 −1 ≤ x ≤ 0

1− x 0 < x ≤ 1

0 x > 1

(11)

Lemma 1. Given a D-dimensional discrete distribution pdata(x), let p̃(x̃) be the distribution of
pdata(x) when perturbed with triangular noise as defined in Equation (11).

p̃(x̃) ≜
∑
x

pdata(x)TD(x̃− x). (12)

Then for any x,y ∼ pdata(x) we have p̃(x)
p̃(y) =

pdata(x)
pdata(y)

.

Proof. It is easy to see that for any x,y ∈ X ⊆ ZD, we have

p̃(x) = pdata(x)TD(0), p̃(y) = pdata(y)TD(0) (13)

because the width of the triangular noise is less than one. Thus p̃(x)
p̃(y) =

pdata(x)
pdata(y)

.

Denote x̄d the integer such that the d-th index of x̃, denoted x̃d, satisfies x̃d ∈ [x̄d, x̄d + 1).
Similar to Section 4.3, in the discrete case with perturbed triangular noise TD(x), we define p̃(x̃) =∑

x pdata(x)TD(x̃|x) and the posterior q(x|x̃) = pdata(x)TD(x̃|x)
p̃(x̃) , where TD(x̃|x) = TD(x̃− x).

We have

Ex[q(x|x̃)] =
∑

x∈{xd∈{x̄d,x̄d+1}}

xq(x|x̃) (14)

=
∑

x∈{xd∈{x̄d,x̄d+1}}

x
pdata(x)TD(x̃|x)

p(x̃)
(15)

Using the fact that TD is independent among dimensions, we have

pdata(x)TD(x̃|x) = pdata(x)

D∏
d=1

(
1[xd = x̄d] ∗ (x̄d + 1− x̃d) + 1[xd = x̄d + 1] ∗ (x̃d − x̄d)

)
(16)

and

p̃(x̃) =
∑

x∈{xd∈{x̄d,x̄d+1}}

pdata(x)

D∏
d=1

(
1[xd = x̄d] ∗ (x̄d + 1− x̃d) + 1[xd = x̄d + 1] ∗ (x̃d − x̄d)

)
(17)

Plugging in Equation (16) and Equation (17), we have

q(x|x̃) =

∏D
d=1

(
1[xd = x̄d] ∗ (x̄d + 1− x̃d) + 1[xd = x̄d + 1] ∗ (x̃d − x̄d)

)
∑

y∈{yd∈{x̄d,x̄d+1}}
pdata(y)
pdata(x)

∏D
d=1

(
1[yd = x̄d] ∗ (x̄d + 1− x̃d) + 1[yd = x̄d + 1] ∗ (x̃d − x̄d)

) .

(18)
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Equation (18) means that given x̃, we can compute the posterior in closed form using density
ratios pdata(y)

pdata(x)
, which can be evaluated using Concrete scores as long as the graph induced by the

neighborhood structure is connected (based on Theorem 1). Knowing p(x|x̃) also allows us to sample
from p(x|x̃) to perform denoising. Similarly, given q(x|x̃), we can also compute Equation (14) in
closed form.

Recovering Stein Scores Given Concrete scores, we can uniquely recover the Stein score of p̃(x),
denoted s(x̃), using the following equation, where the d-th index of s(x̃) is defined as

s(x̃)d =
pdata(x̄d + 1)− pdata(x̄d)

pdata(x̄d + 1) ∗ (x̃d − x̄d) + pdata(x̄) ∗ (x̄d + 1− xd)
(19)

=

pdata(x̄d+1)
pdata(x̄d)

− 1

pdata(x̄d+1)
pdata(x̄d)

∗ (x̃d − x̄d) + (x̄d + 1− xd)
, (20)

where xd ∈ Z and xd ∈ [xd,xd+1). Thus, the Stein score s(x̃) of p̃(x) can be constructed using the
density ratio from Concrete scores. Given the recovered Stein score s(x̃), we can perform Langevin
dynamics to sample from p̃(x), which gives the smoothed sample in Figure 2 (smoothed orange). We
can then sample from q(x|x̃) using Equation (18) to perform closed-form denoising, which is shown
in Figure 2 (orange).

A.4 Connection to Stein Scores

In this section, we study a special case of the Concrete score, as described in Proposition 1, to highlight
its connection to both the continuous (Stein) score and existing score matching methods. Given a
D-dimensional continuous data distribution p(x) and δ > 0, we define a particular neighborhood
structure N (x) = {xni

}Di=1 where xni
= p(x+ δei) and ei is the standard (one-hot) basis vector

with the i-th element ei = 1. Then:

cθ(x,N )

δ
=

1

p(x)

[
p(x+ δe1)− p(x)

δ
, . . . ,

p(x+ δeD)− p(x)

δ

]T
(21)

From Eq. 21, we can make two observations. First, we see that
[
p(x+δe1)−p(x)

δ , ..., p(x+δeD)−p(x)
δ

]T
approximates the directional derivative of p(x) via a first-order forward difference operation. As a
result, the scaled Concrete score function cθ(x,N )

δ converges to s(x) in the limit of δ → 0:

lim
δ→0

cθ(x,N )

δ
=

1

p(x)
lim
δ→0

[
p(x+ δe1)− p(x)

δ
, . . . ,

p(x+ δeD)− p(x)

δ

]T
=

∇xp(x)

p(x)
= ∇x log p(x)

which is precisely the definition of the Stein score.

B Additional Experimental Results

B.1 Likelihood Evaluation on Discrete Tabular Data

We present additional results from Section 5.4, where we trained a MADE model using standard
maximum likelihood. We use the training setting as detailed in Appendix C. As shown in Table 2,
this maximum likelihood baseline serves as an upper bound on performance across all score-based
methods. We note that as in continuous (Stein) score matching, log-likelihoods and score matching
losses are not always correlated even though they both theoretically converge to the optimal solution
given infinite model capacity [23]. This is due to practical constraints such as model mis-specification
or optimization challenges. We believe that this is also the case for discrete score matching, which
explains why directly optimizing likelihood outperforms all other approaches in Table 2.

B.2 Neighborhood Structure Specification in Practice

In theory, our approach can use any neighborhood structure as long as the neighborhood-induced
graph is connected (see Theorem 1). In practice, the choice of neighborhood structure can affect
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Datasets Ratio Matching (↑) Discrete Marginalization (↑) CSM (Ours) (↑) Log-Likelihood (↑)
NLTCS -6.15 -6.21 -6.13 -6.00
Plants -15.44 -19.03 -14.02 -12.52
Jester -56.49 -57.06 -54.91 -51.77
Amazon Diaper -10.69 -42.52 -11.13 -9.82
Amazon Feeding -12.09 -35.96 -12.65 -11.29
Amazon Gifts -4.57 -4.28 -4.22 -3.43
Amazon Media -10.22 -13.77 -10.30 -7.79
Amazon Toys -9.83 -16.34 -9.30 -7.71

Table 2: Log-likelihood comparisons on discrete discrete tabular datasets. Higher is better. We find
that CSM demonstrates good performance, almost always outperforming or performing comparably
relative to the Ratio Matching and Discrete Marginalization baselines.

performance due to challenges in optimization and proper model specification. We provide an
empirical analysis to build intuition on a series of 1-D synthetic datasets, and believe that the same
intuition can generalize to higher dimensions.

First, we consider the 1-D distribution in Figure 5, where the data distribution does not contain
any low density regions (regions with close to zero density). We parameterize the unnormalized
probability distribution with softmax logits, and train the model using CSM. For the training objective,
we explore 4 different neighborhood structures (3 different cycles as well as a fully-connected graph)
as shown in Figure 5. In this setting, we observe that different neighborhood structures yield similar
performances as evaluated by log-likelihood (see Figure 5).

Case 1 (cycle) Case 2 (complete graph) Case 3 (cycle) Case 4 (cycle)

𝑥! 𝑥" 𝑥#𝑥$ 𝑥%𝑥&𝑥! 𝑥" 𝑥#𝑥$ 𝑥%𝑥& 𝑥$ 𝑥% 𝑥"𝑥! 𝑥#𝑥& 𝑥$ 𝑥" 𝑥#𝑥! 𝑥%𝑥&

Figure 5: Examples of neighborhood structures and their corresponding log-likelihood values (higher
is better) when trained with Concrete-SM.

Next, we consider a different 1-D data distribution which contains low density regions. As shown in
Figure 6, we observe that the neighborhood structure in this setting plays a critical role in the final
log-likelihoods: the complete graph in Case 2 outperforms all other structures. Interestingly, when
the low-density regions are in between sets of high-density modes (as in Case 3 in Figure 6), we find
that the model can still perform comparably relative to Case 2.

Case 1 (cycle) Case 2 (complete graph) Case 3 (cycle) Case 4 (cycle)

𝑥! 𝑥" 𝑥#𝑥$ 𝑥%𝑥&𝑥! 𝑥" 𝑥#𝑥$ 𝑥%𝑥& 𝑥$ 𝑥% 𝑥"𝑥! 𝑥#𝑥& 𝑥$ 𝑥" 𝑥#𝑥! 𝑥%𝑥&

Figure 6: Examples of neighborhood structures and their corresponding log-likelihood values (higher
is better) when trained with CSM.

This observation is similar to that of Stein score matching [26, 21]. Therefore, we believe that a
similar noise annealing procedure followed by denoising CSM may potentially alleviate the effects of
poorly chosen neighborhood structures for data distributions with low density regions. We will leave
this investigation for future work. Such empirical results highlight that the best-performing structure
in practice is often data-dependent. That is, a neighborhood graph which respects the particular
dataset structure will perform the best out of all possible graph structures (analogous to the way in
particular types of inductive biases are useful for solving specific tasks).
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One interesting avenue for future research would be to draw inspiration from [49] and investigate
whether it is possible to construct an “optimal” neighborhood structure for a given dataset. In this
work, we uniformly sample a set of neighbors from N (x) when computing the CSM objective in
practice (Algorithms 1 and 2), which can lead to issues with high variance during training. We
hypothesize that an optimal proposal distribution over N (x) that minimizes variance may lead to
insights on what the optimal neighborhood structure should be.

B.3 Denoising Concrete Score Matching

We present additional experiments on denoising concrete score matching (D-CSM) as introduced
in Section 4.3. In particular, we consider two 2-D toy benchmark datasets as commonly used in
the density estimation literature [40, 41]. We quantize the data into 91 × 91 equally-distanced
bins to obtain the discrete training data (see Clean data in Figure 7). Similar to our previous
experiments, we use the grid neighborhood structure as detailed in Section 5.3 for training via D-CSM.

For the discrete noise distribution q̃(x̃|x), we consider the following distribution where each marginal
is an independent 1-D Categorical distribution defined as:

q̃(x̃|x)i =
{
w when x̃i = xi
1−w
90 when x̃i ̸= xi,

(22)

where 0 < w < 1 and q̃(x̃|x)i denotes the i-th entry of q̃(x̃|x). Note that higher values of w
correspond to smaller noise levels. We use the same experimental setting as detailed in Appendix C.2,
where we parameterize the un-normalized probability distribution with softmax logits, but train the
model using D-CSM (see Equation (6)).

We present the results in Figure 7. We observe that samples from our model (green) matches samples
from the ground truth noisy data distributions p̃(x̃) (blue), indicating the practical effectiveness of
D-CSM. We leave a more in-depth exploration of the D-CSM approach for future work.

Noisy data (𝑤 = 0.8) Samples (𝑤 = 0.8)Noisy data (𝑤 = 0.6) Samples (𝑤 = 0.6) Noisy data (𝑤 = 0.7) Samples (𝑤 = 0.7)Clean data

Figure 7: Samples from models trained with D-CSM. The blue samples are the ground truth samples
from p̃(x̃) obtained by perturbing the clean data distribution with q̃(x̃|x). As we increase w, the
variance of the noise distribution q̃(x̃|x) decreases and the perturbed data distribution p̃(x̃) becomes
less noisy. The samples from our models (green) match the ground truth perturbed data samples
(blue) across different values of w, demonstrating the effectiveness of D-CSM.

C Experimental Details

In this section, we provide more details for each of the experimental settings. We will release our
code upon publication.

C.1 1-D Discrete Data

We discuss the experimental setting for Section 5.2. We use a 16-category 1-D data distribution with
class labels from 0 to 15, and normalize the data to [0, 1] before feeding it into the model. We use
a 3-layer shallow MLP for the score network with 100 hidden units and Tanh activations. We use
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the model to directly parameterize the Concrete score and define the neighborhood structure to be a
Cycle structure as shown in Figure 8. We train the model using the Adam optimizer with learning rate
0.001 for 100,000 iterations. The Langevin samples and denoised samples in Figure 2 are obtained
using the approach detailed in Appendix A.3.

C.2 2-D Multi-Class Datasets

For the 2-D experiments, we consider three 2-D toy benchmark datasets with multiple modes and
discontinuities as commonly used in the density estimation literature [40, 41]. We quantize the data
into 91× 91 equally-distanced bins to obtain the discrete training data (see Figure 3). We use the
grid neighborhood structure for training via CSM (see Figure 8). For a fair comparison, we use the
same model architecture and training configurations across all methods. We directly parameterize the
unnormalized probability distribution with softmax logits, but train the model using the baselines and
CSM. Since there are 91× 91 possible classes, our model directly parameterizes an unnormalized
distribution with 91×91 possible values. We initialize the model to have a uniform probability across
classes and train the model using the Adam optimizer with learning rate 0.0005. To sample from the
model, we can either use likelihood sampling (by normalizing the model) or Metropolis-Hastings.
We empirically observe that both approaches work well.

C.3 Discrete Tabular Data

For the tabular experiments, we consider tabular (discrete) datasets drawn from both the Twenty
Datasets [43] and the Amazon Baby Registries benchmarks [44]. In order to evaluate likelihoods, we
directly parameterize the probability distribution with a discrete autoregressive model (MADE [45]),
but train the model using the baseline approaches and CSM. The MADE model uses 2 residual blocks
with latent dimension 100 and Tanh activations. We train the model for 50000 iterations using the
Adam optimizer with learning rate 0.0005. We use a grid neighborhood structure for CSM (see
Figure 8). For a fair comparison, we use the same model architecture and experimental configurations
across all methods. Similar to our previous experiments, we use the grid neighborhood structure for
training via CSM (see Figure 8).

C.4 Discrete Image Data

We experiment with the binarized MNIST [46] dataset, which has 784 dimensions. We perturb the
images x with binarized Gaussian noise q(x̃|x) = N (x̃|x, σ2

i I) (i = 1, ..., 7). Specifically, given
a sample from the noisy data distribution x̃ ∼ q(x̃|x), we discretize x̃ by mapping it to its nearest
integer neighbor, and then take the modula by 2 to map x̃ into binary bins. We note that this process
is similar to applying Categorical noise. In our experiment, we use {σ1, σ2, σ3, σ4, σ5, σ6, σ7} =
{0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.65}. We normalize the data to lie in between [−1, 1] before feeding it
into the model. We directly parameterize the Concrete score function with a U-Net [47], and train the
model using CSM based on a grid neighborhood structure. We train the models until convergence
with the Adam optimizer using learning rate 0.0002.

We use Metropolis-Hastings for sampling from the model after training: in particular, we initialize
the sample to be drawn from uniform binary noise then use the model corresponding to noise level σ7

to perform Metropolis-Hastings updates. After that, we use the output from the model to initialize the
input for sampling from the model with noise level σ6. We then repeat the procedure and initialize
the model corresponding to the previous noise level with the output from the next noise level—a
process similar to [26]. We observe that each noise level requires around 100-800 steps to obtain
reasonable results.

C.5 Training for Special Neighborhood Structures

In this section, we provide additional details on special neighborhood structures where we can design
even more efficient training procedures than using Algorithm 1 and Algorithm 2. For simplicity, we
name the elements in X : {x1,x2, ...,xN}.
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Figure 8: Special types of neighborhood structures considered in the paper.

Chain. When the neighborhood-induced graph is a Chain (Figure 8), the second term J2 in
Equation (5) simplifies to the following via reparameterization:

N−1∑
k=1

2pdata(xk+1)cθ(xk;N )1 =

N∑
k=2

2pdata(xk)cθ(xk−1;N )1. (23)

Note that the subscript of cθ is always one since each node has at most one neighbor.

Cycle. Similarly, when the neighborhood-induced graph is a Cycle (Figure 8), the second term J2

becomes:
N∑

k=1

2pdata(xk+1)cθ(xk;N )1 =

N∑
k=1

2pdata(xk)cθ(x(k−1 modN);N )1 (24)

Thus for both Chains and Cycles, the term J2 in Equation (5) can be evaluated efficiently using
samples from pdata(x).

Grid. When the neighborhood-induced graph is a Grid (Figure 8), the second term J2 can be
approximated efficiently by decomposing each dimension into smaller Cycles. Specifically, to
estimate J2, we can uniformly sample a dimension d, and then use the same reparameterization
approach used for the Cycle structure at each dimension.
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D Additional Related Works and Corrections

In this section, we provide additional details about the baseline methods: in particular, we found that
the original equations in [34] were incorrect. We elaborate upon them below.

D.1 Ratio Matching with Discrete Data

We assume with slight abuse of notation that X ∈ {0, 1}D, and pdata(x) is the unknown discrete
data distribution. Ratio matching [42, 34] was originally proposed as an alternative approach to
score matching for learning discrete binary probability distributions from samples. Similar to score
matching, it leverages the fact that ratios of probabilities are also independent of the intractable
normalizing constant (due to cancellation), and seeks to match the ground truth density ratios
pdata(x)

pdata(x−d)
= qθ(x)

qθ(x−d)
where x−d denotes the vector x with the dth entry bit-flipped (e.g. from 0 to

1). Concretely, ratio matching minimizes the following objective:

JRM (θ) = 1
2Epdata(x)

[∑D
d=1

(
g

(
pdata(x)

pdata(x−d)

)
− g

(
qθ(x)

qθ(x−d)

))2

+

(
g

(
pdata(x−d)
pdata(x)

)
− g

(
qθ(x−d)
qθ(x)

))2]
(25)

where g(z) = 1
1+z for z ∈ R+ is a nonlinear transformation of the ratios for numerical stability. The

symmetrized objective tries to minimize the squared distance between the two density ratios.

As the original ratio matching approach [42, 34] is proposed for binary data, [34] extends ratio
matching to multi-class data. Following the notation in [34], let x\i denote the vector formed by
dropping the i-th element (which we call xi) from x. To make things concrete, this means that
p(x) = p(x\i,xi). We also let qθ(ξi|x\i) denote the conditional probability for the i-th index of x
taking the value ξi, and let qθ(∼ ξi|x\i) denote the conditional probability for the i-th index of x not
taking the value ξi.

The generalized ratio matching objective proposed in [34] is:

θ∗ = argmin
θ

∑
x

pdata(x)

d∑
i=1

∑
ξi

[
g

(
p(ξi,x

\i)

p(∼ ξi,x\i)

)
− g

(
qθ(ξi,x

\i)

qθ(∼ ξi,x\i)

)]2
(26)

which can be simplified as:

θ∗ = argmin
θ

∑
x

pdata(x)

d∑
i=1

∑
ξi

(1− qθ(ξi|x\i))2. (27)

It is easy to see that the optimal θ∗ for Equation (27) can be achieved independent of pdata(x),
which is problematic. We also empirically show that model trained with Equation (27) cannot learn
meaningful features based on the data (see Ratio in Figure 3).

As an alternative, we provide a corrected multi-class ratio matching objective. Similar to [42, 48], we
assume that all the probabilities are non-zero. For simplicity, we use p(x) to denote pdata(x). The
objective for multi-class ratio matching can achieved by optimizing:

θ∗ = argmin
θ

∑
x

p(x)

d∑
i=1

∑
ξi

[
g

(
p(ξi,x

\i)

p(∼ ξi,x\i)

)
− g

(
qθ(ξi,x

\i)

qθ(∼ ξi,x\i)

)]2
(28)

= argmin
θ

∑
x

p(x)

d∑
i=1

[
(1− qθ(xi|x\i))2 +

∑
ξi ̸=xi

qθ(ξi|x\i)2
]
. (29)
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Proof.

θ∗ = argmin
θ

∑
x

p(x)

d∑
i=1

∑
ξi

[
g

(
p(ξi,x

\i)

p(∼ ξi,x\i)

)
− g

(
qθ(ξi,x

\i)

qθ(∼ ξi,x\i)

)]2

= argmin
θ

∑
x

p(x)

d∑
i=1

∑
ξi

[
p(∼ ξi|x\i)− qθ(∼ ξi|x\i)

]2

= argmin
θ

∑
x

p(x)

d∑
i=1

∑
ξi

[
p(ξi|x\i)− qθ(ξi|x\i)

]2

= argmin
θ

∑
x

p(x)

d∑
i=1

∑
ξi

[
q2θ(ξi|x\i)− 2p(ξi|x\i)qθ(ξi|x\i)

]2

= argmin
θ

∑
x

p(x)

d∑
i=1

∑
ξi

q2θ(ξi|x\i)−
∑
x

p(x)

d∑
i=1

∑
ξi

2p(ξi|x\i)qθ(ξi|x\i)

= argmin
θ

∑
x

p(x)

d∑
i=1

∑
ξi

q2θ(ξi|x\i)−
d∑

i=1

∑
x\i,xi

p(x)
∑
ξi

2p(ξi|x\i)qθ(ξi|x\i)

= argmin
θ

∑
x

p(x)

d∑
i=1

∑
ξi

q2θ(ξi|x\i)−
d∑

i=1

∑
x\i,ξi

2p(ξi,x
\i)qθ(ξi|x\i)

= argmin
θ

∑
x

p(x)

d∑
i=1

∑
ξi

q2θ(ξi|x\i)−
d∑

i=1

∑
x

2p(x)qθ(xi|x\i)

= argmin
θ

∑
x

p(x)

d∑
i=1

∑
ξi
q2θ(ξi,x

\i) + 2qθ(xi,x
\i)qθ(x

\i)

q2θ(x
\i)

= argmin
θ

∑
x

p(x)

d∑
i=1

−q2θ(x
\i) +

∑
ξi ̸=xi

q2θ(ξi,x
\i) + (

∑
ξi ̸=xi

qθ(ξi,x
\i))2

q2θ(x
\i)

= argmin
θ

∑
x

p(x)

d∑
i=1

∑
ξi ̸=xi

q2θ(ξi,x
\i) + (qθ(x

\i)− qθ(xi,x
\i))2

q2θ(x
\i)

= argmin
θ

∑
x

p(x)

d∑
i=1

[
(1− qθ(xi|x\i))2 +

∑
ξi ̸=xi

q2θ(ξi|x\i)

]
.

We provide the samples trained with Equation (28) in Figure 3 (Ratio-fixed). We observe that the
samples appear to be more reasonable then those from a model trained with Equation (27) (Ratio).

D.2 Discrete Marginalization

Given a multi-class discrete data distribution pdata(x), discrete marginalization [34] proposes to
learn the data distribution by minimizing

∑
x

pdata(x)

d∑
i=1

[(
Mip

p

)2

+

(
Miqθ
qθ

)2

− 2Mi

(
Miqθ
qθ

)]
, (30)

where Mi is the marginalization operator defined as Mi : F1 → F1 : f(x) →
∫
xi

f(x)dxi or∑
xi

f(x) in the discrete case. Thus Mip
p = 1

pdata(xi|x\i)
and Miqθ

qθ
= 1

qθ(xi|x\i)
.
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The authors further simplified Equation (30) to

θ∗ = argmin
θ

∑
x

pdata(x)

d∑
i=1

∑
ξi

1− 2qθ(ξi|x\i)

q2θ(ξi|x\i)
. (31)

However, we observe that this is a typo in Equation (31)—the optimal θ∗ can be achieved while being
independent of pdata(x). In our experiments, we also observe that model trained with Equation (31)
cannot learn meaningful representations of the data (see Marginal in Figure 3).

In the following, we provide the corrected simplified version of Equation (30).
Theorem 5. Optimizing Equation (30) is equivalent to optimizing

θ∗ = argmin
θ

∑
x

pdata(x)

d∑
i=1

[
1

q2θ(xi|x\i)
−

∑
ξi

2

qθ(ξi|x\i)

]
. (32)

Proof.

θ∗ = argmin
θ

∑
x

pdata(x)
d∑

i=1

[(
Mip

p

)2

+

(
Miqθ
qθ

)2

− 2Mi

(
Miqθ
qθ

)]
(33)

= argmin
θ

∑
x

pdata(x)

d∑
i=1

[(
Miqθ
qθ

)2

− 2Mi

(
Miqθ
qθ

)]
(34)

= argmin
θ

∑
x

pdata(x)

d∑
i=1

[
1

q2θ(xi|x\i)
−

∑
ξi

2

qθ(ξi|x\i)

]
. (35)

In the last equation, we used the fact that
∑

x pdata(x)Mi(
Miqθ
qθ

) =
∑

x pdata(x)
∑

ξi
(Miqθ

qθ
) =∑

x pdata(x)
∑

ξi
1

qθ(ξi|x\i)
, which directly follows from Lemma 4 in [34].

We provide the samples trained with Equation (32) in Figure 3 (Marginal-fixed). We observe
that the samples appear to be more reasonable then those from a model trained with Equation (31)
(Marginal).
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