
A Competence-based Exploration Algorithms

The competence-based algorithms considered in this work aim to maximize I(τ ; s). The algorithms
differ by ho they decompose mutual information, whether they explicitly maximize behavioral
entropy, their skill space (discrete or continuous) and their intrinsic reward structure. We provide a
list of common competence-based algorithms in Table 2.

B Deep Deterministic Policy Gradient (DDPG)

A DDPG is an actor-critic RL algorithm that performs off-policy gradient updates and learns a Q
function Qϕ(s, a) and an actor πθ(a|s). The critic is trained by satisfying the Bellman equation.

LQ(ϕ,D) = E(st,at,rt,st+1)∼D

[(
Qϕ(st, at)− rt − γQϕ̄(st+1, πθ(st+1)

)2
]
. (6)

Here, ϕ̄ is the Polyak average of the parameters ϕ. As the critic minimizes the Bellman error, the
actor maximizes the action-value function.

Lπ(θ,D) = Est∼D [Qϕ(st, πθ(st))] . (7)

C Baselines

For baselines, we choose the existing set of benchmarked unsupervised RL algorithms on URLB. We
provide a quick summary of each method. For more detailed descriptions of each baseline we refer
the reader to URLB [21]

Competence-based Baselines: CIC is a competence-based exploration algorithm. For baselines, we
compare it to DIAYN [17], SMM [26], and APS [27]. Each of these algorithms is described in
Table 2. Notably, APS is a recent state-of-the-art competence-based method that is the most closely
related algorithm to the CIC algorithm.

Knowledge-based Baselines: For knowledge-based baselines, we compare to ICM [12], Disagree-
ment [13], and RND [14]. ICM and RND train a dynamics model and random network prediction
model and define the intrinsic reward to be proportional to the prediction error. Disagreement trains
an ensemble of dynamics models and defines the intrinsic reward to be proportional to the uncertainty
of an ensemble.

Data-based Baselines: For data-based baselines we compare to APT [15] and ProtoRL [16]. Both
methods use a particle estimator to estimate the state visitation entropy. ProtoRL also performs
discrete contrastive clustering as in [43] as an auxiliary task and uses the resulting clusters to compute
the particle entropy. While ProtoRL is more effective than APT when learning from pixels, on state-
based URLB APT is competitive with ProtoRL. Our method CIC is effectively a skill-conditioned
APT agent with a contrastive discriminator.

15



D Full CIC Algorithm

The full CIC algorithm with both pre-training and fine-tuning phases is shown in Algorithm 1. We
pre-train CIC for 2M steps, and finetune it on each task for 100k steps.

Algorithm 1 Contrastive Intrinsic Control
Require: Initialize all networks: encoders gψ1 and gψ2 , actor πθ , critic Qϕ, replay buffer D.
Require: Environment (env), M downstream tasks Tk, k ∈ [1, . . . ,M ].
Require: pre-train NPT = 2M and fine-tune NFT = 100K steps.

1: for t = 1..NPT do ▷ Part 1: Unsupervised Pre-training
2: Sample and encode skill z ∼ p(z) and z ← gψ2(z)
3: Encode state st ← gψ1(st) and sample action at ← πθ(st, z) + ϵ where ϵ ∼ N (0, σ2)
4: Observe next state st+1 ∼ P (·|st, at)
5: Add transition to replay buffer D ← D ∪ (st, at, st+1)
6: Sample a minibatch from D, compute contrastive loss in Eq.4 and update encoders gψ1 , gψ2 , compute

CIC intrinsic reward with Eq. 5 and update actor πθ and critic Qϕ

7: end for
8: for Tk ∈ [T1, . . . , TM ] do ▷ Part 2: Supervised Fine-tuning
9: Initialize all networks with weights from pre-training phase and an empty replay buffer D.

10: for t = 1 . . . 4, 000 do
11: Take random action at ∼ N (0, 1)
12: Select skill with grid sweep over unit interval [0, 1] every 100 steps
13: Sample minibatch from D and update actor πθ and critic Qϕ

14: end for
15: Fix skill z that achieved highest extrinsic reward during grid sweep.
16: for t = 4, 000 . . . NFT do
17: Encode state st ← gψ1(st) and sample action at ← πθ(st, z) + ϵ where ϵ ∼ N (0, σ2)
18: Observe next state and reward st+1, r

ext
t ∼ P (·|st, at)

19: Add transition to replay buffer D ← D ∪ (st, at, r
ext
t , st+1)

20: Sample minibatch from D and update actor πθ and critic Qϕ.
21: end for
22: Evaluate performance of RL agent on task Tk
23: end for

16



E Hyper-parameters

Baseline hyperparameters are taken from URLB [21], which were selected by performing a grid
sweep over tasks and picking the best performing set of hyperparameters. Except for the skill
dimension, hyperparameters for CIC are borrowed from URLB.

Table 4: Hyper-parameters used for CIC .
DDPG hyper-parameter Value
Replay buffer capacity 106

Action repeat 1
Seed frames 4000
n-step returns 3
Mini-batch size 1024
Seed frames 4000
Discount (γ) 0.99
Optimizer Adam
Learning rate 10−4

Agent update frequency 2
Critic target EMA rate (τQ) 0.01
Features dim. 1024
Hidden dim. 1024
Exploration stddev clip 0.3
Exploration stddev value 0.2
Number pre-training frames 2× 106

Number fine-turning frames 1× 105

CIC hyper-parameter Value
Skill dim 64 continuous
Prior Uniform [0,1]
Skill sampling frequency (steps) 50
State net arch. gψ1

(s) dim(O) → 1024 → 1024 → 64 ReLU MLP
Skill net arch. gψ2

(z) 64 → 1024 → 1024 → 64 ReLU MLP
Prediction net arch. 64 → 1024 → 1024 → 64 ReLU MLP

17



Statistic ICM Dis. RND APT Proto DIAYN APS SMM CIC % CIC > APS % CIC > Proto

Median ↑ 0.45 0.56 0.58 0.62 0.66 0.44 0.47 0.22 0.76 +61% +15%
IQM ↑ 0.41 0.51 0.61 0.65 0.65 0.40 0.43 0.25 0.77 +79% +18%
Mean ↑ 0.43 0.51 0.63 0.66 0.65 0.44 0.46 0.35 0.76 +65% +17%
OG ↓ 0.57 0.49 0.37 0.35 0.35 0.56 0.54 0.65 0.24 -44% -68%

Table 5: Statics for downstream task normalized scores for CIC and baselines from URLB [21].
CIC improves over both the prior leading competence-based method APS [27] and overall next-
best exploration algorithm ProtoRL [16] across all readout statistics. Each data point is a statistic
computed using 10 seeds and 12 downstream tasks (120 experiments per data point). The statistics
are computed using RLiable [35].

F Raw Numerical Results

We provide a list of raw numerical results for finetuning CIC and baselines in Tables 5 and 6. All
baselines were run using the code provided by URLB [21] for 10 seeds per downstream task.

Pre-trainining for 2× 106 environment steps
Domain Task Expert DDPG CIC ICM Disagreement RND APT ProtoRL SMM DIAYN APS

Walker

Flip 799 538±27 631 ± 34 417±16 346±13 474±39 544±14 456±12 450±24 319±17 465±20
Run 796 325±25 486 ± 25 247±21 208±15 406±30 392±26 306±13 426±26 158±8 134±16

Stand 984 899±23 959 ± 2 859±23 746±34 911±5 942±6 917±27 924±12 695±46 721±44
Walk 971 748±47 885 ± 28 627±42 549±37 704±30 773±70 792±41 770±44 498±27 527±79

Quadruped

Jump 888 236±48 595 ± 42 178±35 389±62 637±12 648±18 617±44 96±7 660±43 463±51
Run 888 157±31 505 ± 47 110±18 337±30 459±6 492±14 373±33 96±6 433±29 281±17

Stand 920 392±73 761 ± 54 312±68 512±89 766±43 872±23 716±56 123±11 851±43 542±53
Walk 866 229±57 723 ± 43 126±27 293±37 536±39 770±47 412±54 80±6 576±81 436±79

Jaco

Reach bottom left 193 72±22 138 ± 9 111±11 124±7 110±5 103±8 129±8 45±7 39±6 76±8
Reach bottom right 203 117±18 145 ± 7 97±9 115±10 117±7 100±6 132±8 46±11 38±5 88±11

Reach top left 191 116±22 153 ± 7 82±14 106±12 99±6 73±12 123±9 36±3 19±4 68±6
Reach top right 223 94±18 163 ± 4 103±11 139±7 100±6 90±10 159±7 47±6 28±6 76±10

Table 6: Performance of CIC and baselines on state-based URLB after first pre-training for 2× 106

steps and then finetuning with extrinsic rewards for 1 × 105. All baselines were run for 10 seeds
per downstream task for each algorithm using the code provided by URLB [21]. A total of 1080 =
9 algorithms × 12 tasks × 10 seeds experiments were run.

18



G Toy Example to Illustrate the Need for Larger Skill Spaces

Figure 7: A gridworld example motivating the need for large skill spaces. In this environment, we place an
agent in a 10 × 10 gridworld and provide the agent access to four discrete skills. We show that the mutual
information objective can be maximized by mapping these four skills to the nearest neighboring states resulting
in low behavioral diversity and exploring only four of the hundred available states.

We illustrate the need for larger skill spaces with a gridworld example. Suppose we have an
agent in a 10 × 10 sized gridworld and that we have four discrete skills at our disposal. Now
let τ = s and consider how we may achieve maximal I(τ ; z) in this setting. If we decompose
I(τ ; z) = H(z)−H(z|τ) then we can achieve maximal H(z) by sampling the four skills uniformly
z ∼ p(z). We can achieve H(z|τ) = 0 by mapping each skill to a distinct neighboring state of the
agent. Thus, our mutual information is maximized but as a result the agent only explores four out of
the hundrend available states in the gridworld.

Now suppose we consider the second decomposition I(τ ; z) = H(τ)−H(τ |z). Since the agent is
maximizing H(τ) it is likely to visit a diverse set of states at first. However, as soon as it learns an
accurate discriminator we will have H(τ |z) and again the skills can be mapped to neighboring states
to achieve minimal conditional entropy. As a result, the skill conditioned policy will only be able to
reach four out of the hundrend possible states in this gridworld. This argument is shown visually in
Fig. 7.

Skill spaces that are too large can also be an issue. Consider if we had 100 skills at our disposal in
the same gridworld. Then the agent could minimize the conditional entropy by mapping each skill
to a unique state which would result in the agent memorizing the environment by finding a one-to-
one mapping between states and skills. While this is a potential issue it has not been encountered
in practice yet since current competence-based methods support small skill spaces relative to the
observation space of the environment.

H Qualitative Analysis of Skills

We provide two additional qualitative analyses of behaviors learned with the CIC algorithm. First, we
take a simple pointmass setting and set the skill dimension to 1 in order to ablate the skills learned by
the CIC agent in a simple setting. We sweep over different values of z and plot the behavioral flow
vector field (direction in which point mass moves) in Fig.8. We find that the pointmass learns skills
that produce continuous motion and that the direction of the motion changes as a function of the skill
value. Near the origin the pointmass learns skills that span all directions, while near the edges the
point mass learns to avoid wall collisions. Qualitatively, many behaviors are periodic.

Qualitatively, we find that methods like DIAYN that only support low dimensional skill vectors
and do not explicitly incentivize diverse behaviors in their objective produce policies that map
skills to a small set of static behaviors. These behaviors shown in Fig. 9 are non-trivial but also
have low behavioral diversity and are not particularly useful for solving the downstream task. This
observation is consistent with [44] where the authors found that DIAYN maps to static “yoga" poses
in DeepMind Control. In contrast, behaviors produce by CIC are dynamic resulting flipping, jumping,
and locomotive behaviors that can then be adapted to efficiently solve downstream tasks.

19



Pointmass with 1 skill

Behavior flow for different skill values

Figure 8: Learning curves for finetuning pre-trained agents for 100k steps. Task performance is aggregated for
each domain, such that each curve represents the mean normalized scores over 4× 10 = 40 seeds. The shaded
regions represent the standard error. CIC surpasses the performance of the prior state-of-the-art on Walker and
Jaco tasks while tying on Quadruped. CIC is the only algorithm that performs consistently well across all three
domains.

Figure 9: Qualitative visualization of DIAYN and CIC pre-training on the Walker and Quadruped domains from
URLB. Confirming findings in prior work [44], we also find that DIAYN policies produce static but non-trivial
behaviors mapping to “yoga" poses while CIC produces diverse and dynamic behaviors such as walking, flipping,
and standing. Though it’s hard to see from these images, all the DIAYN skills get stuck in frozen poses while
the CIC skills are producing dynamic behavior with constant motion.

I OpenAI Gym vs. DeepMind control: How Early Termination Leaks
Extrinsic Signal

Prior work on unsupervised skill discovery for continuous control [17, 20] was evaluated on OpenAI
Gym [32] and showed diverse exploration on Gym environments. However, Gym environment
episodes terminate early when the agent loses balance, thereby leaking information about the extrinsic
task (e.g. balancing or moving). However, DeepMind Control (DMC) episodes have a fixed length of
1k steps. In DMC, exploration is therefore harder since the agent needs to learn to balance without
any extrinsic signal.

To evaluate whether the difference in the two environments has impact on competence-based explo-
ration, we run DIAYN on the hopper environments from both Gym and DMC. We compare to ICM,
a popular exploration baseline, and a Fixed baseline where the agent receives an intrinsic reward
of 1 for each timestep and no algorithms receive extrinsic rewards. We then measure the extrinsic
reward, which loosely corresponds to the diversity of behaviors learned. Our results in Fig. 3 show
that indeed DIAYN is able to learn diverse behaviors in Gym but not in DMC while ICM is able to
learn diverse behaviors in both environments. Interestingly, the Fixed baseline achieves the highest

20



reward on the Gym environment by learning to stand and balance. These results further motivate us
to evaluate on URLB which is built on top of DMC.

J CIC vs Other Types of Contrastive Learning for RL

Contrastive learning in CIC is different than prior vision-based contrastive learning in RL such as
CURL [45], since we are not performing contrastive learning over augmented images but rather over
state transitions and skills. The contrastive objective in CIC is used for unsupervised learning of
behaviors while in CURL it is used for unsupervised learning of visual features.

We provide pseudocode for the CIC loss below:

1 def discriminator_loss(states , next_states , skills , temp):
2 """
3 - states and skills are sampled from replay buffer
4 - skills were sampled from uniform dist [0,1] during agent rollout
5 - states / next_states: dim (B, D_state)
6 - skills: dim (B, D_skill)
7 """
8

9 transitions = concat(states , next_states , dim =1)
10

11 query = skill_net(skills) # (B, D_hidden) -> (B, D_hidden)
12 key = transition_net(transitions) # (B, 2* D_state) -> (B, D_hidden

)
13

14 query = normalize(query , dim =1)
15 key = normalize(key , dim =1)
16

17 logits = matmul(query , key.T) / temp # (B, B)
18 labels = arange(logits.shape [0])
19

20 # positives are on diagonal , negatives are off diagonal
21 # for each skill , negatives are sampled from transitions
22 # while skills are fixed
23 loss = cross_entropy(logits , labels)
24

25 return loss

Listing 2: CIC discriminator loss

This is substantially different from prior contrastive learning works in RL such as CURL [45], which
perform contrastive learning over images.

1 def curl_loss(obs , W, temp):
2 """
3 - observation images are sampled from replay buffer
4 - obs: dim (B, C, H, W)
5 - W: projection matrix (D_hidden , D_hidden)
6 """
7

8 query = aug(obs)
9 key = aug(obs)

10

11 query = cnn_net(query) # (B, D_hidden)
12 key = cnn_net(key) # (B, D_hidden)
13

14 logits = matmul(matmul(query , W), key.T) / temp # (B, B)
15 labels = arange(logits.shape [0])
16

17 # positives are on diagonal
18 # negatives are off diagonal
19 loss = cross_entropy(logits , labels)
20

21



21 return loss

Listing 3: CURL contrastive loss

K On estimates of Mutual Information

In this work we have presented CIC - a new competence-based algorithm that achieves leading
performance on URLB compared to prior unsupervised RL methods.

One might wonder whether estimating the exact mutual information (MI) or maximizing the tightest
lower bound thereof is really the goal for unsupervised RL. In unsupervised representation learning,
state-of-the-art methods like CPC and SimCLR maximize the lower bound of MI based on Noise
Contrastive Estimation (NCE). However, as proven in CPC [33] and illustrated in [46] NCE is upper
bounded by logN , meaning that the bound is loose when the MI is larger than logN . Nevertheless,
these methods have been repeatedly shown to excel in practice. In [47] the authors show that
the effectiveness of NCE results from the inductive bias in both the choice of feature extractor
architectures and the parameterization of the employed MI estimators.

We have a similar belief for unsupervised RL - that with the right parameterization and inductive bias,
the MI objective will facilitate behavior learning in unsupervised RL. This is why CIC lower bounds
MI with (i) the particle based entropy estimator to ensure explicit exploration and (ii) a contrastive
conditional entropy estimator to leverage the power of contrastive learning to discriminate skills.
As demonstrated in our experiments, CIC outperforms prior methods, showing the effectiveness of
optimizing an intrinsic reward with the CIC MI estimator.

L Compute Resources

CIC runs on a single GPU. In our experiments we used 4 NVIDIA TITAN RTX GPUs. Pre-training
one seed of CIC for 2M steps takes 12-24 hours while fine-tuning to downstream tasks for 100k steps
takes 30min - 1 hour.

22


