
Contrastive Intrinsic Control for Unsupervised
Reinforcement Learning

Michael Laskin
UC Berkeley

mlaskin@berkeley.edu

Hao Liu
UC Berkeley

Xue Bin Peng
UC Berkeley

Denis Yarats
NYU, Meta AI

Aravind Rajeswaran
UC Berkeley, Meta AI

Pieter Abbeel
UC Berkeley, Covariant

Abstract

We introduce Contrastive Intrinsic Control (CIC), an unsupervised reinforcement
learning (RL) algorithm that maximizes the mutual information between state-
transitions and latent skill vectors. CIC utilizes contrastive learning between
state-transitions and skills vectors to learn behaviour embeddings and maximizes
the entropy of these embeddings as an intrinsic reward to encourage behavioural
diversity. We evaluate our algorithm on the Unsupervised RL Benchmark (URLB)
in the asymptotic state-based setting, which consists of a long reward-free pre-
training phase followed by a short adaptation phase to downstream tasks with
extrinsic rewards. We find that CIC improves over prior exploration algorithms in
terms of adaptation efficiency to downstream tasks on state-based URLB. 1

Deep RL is a powerful approach toward solving complex control tasks in the presence of extrinsic
rewards. Successful applications include playing video games from pixels [1], mastering the game of
Go [2, 3], robotic locomotion [4, 5, 6] and dexterous manipulation [7, 8, 9] policies. While effective,
the above advances produced agents that are unable to generalize to new downstream tasks beyond the
one they were trained to solve. Humans and animals on the other hand are able to acquire skills with
minimal supervision and apply them to solve a variety of downstream tasks. In this work, we seek
to train agents that acquire skills without supervision with generalization capabilities by efficiently
adapting these skills to downstream tasks.

Over the last few years, unsupervised RL has emerged as a promising framework for developing RL
agents that can generalize to new tasks. In the unsupervised RL setting, agents are first pre-trained
with self-supervised intrinsic rewards and then finetuned to downstream tasks with extrinsic rewards.
Unsupervised RL algorithms broadly fall into three categories - knowledge-based, data-based, and
competence-based methods2. Knowledge-based methods maximize the error or uncertainty of a
predictive model [12, 13, 14]. Data-based methods maximize the entropy of the agent’s visitation [15,
16]. Competence-based methods learn skills that generate diverse behaviors [17, 18]. This work falls
into the latter category of competence-based exploration methods.

Unlike knowledge-based and data-based algorithms, competence-based algorithms simultaneously
address both the exploration challenge as well as distilling the generated experience in the form
of reusable skills. This makes them particularly appealing, since the resulting skill-based policies
(or skills themselves) can be finetuned to efficiently solve downstream tasks. While there are many
self-supervised objectives that can be utilized, our work falls into a family of methods that learns skills
by maximizing the mutual information between visited states and latent skill vectors. Many earlier

1Project website and code: https://sites.google.com/view/cicneurips2022/
2These categories for exploration algorithms were introduced by [10] and inspired by [11].

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://sites.google.com/view/cicneurips2022/

Leap forward

Jog
Walk left

Flip upright

Nudge brick

Figure 1: Qualitative visualizations of unsupervised skills discovered in Walker, Quadruped, and Jaco arm
environments. The Walker learns to balance and move, the Quadruped learns to flip upright and walk, and
the 6 DOF robotic arm learns how to move without locking. Unlike prior competence-based methods for
continuous control which evaluate on OpenAI Gym (e.g. [17]), which reset the environment when the agent
loses balance, CIC is able to learn skills in fixed episode length environments which are much harder to explore
(see Appendix I).

works have investigated optimizing such objectives [17, 18, 19, 20]. However, competence-based
methods have been empirically challenging to train and have under-performed when compared to
knowledge and data-based methods [21].

In this work, we take a closer look at the challenges of pre-training agents with competence-based
algorithms. We introduce Contrastive Intrinsic Control (CIC) – an exploration algorithm that uses
a new estimator for the mutual information objective. CIC combines particle estimation for state
entropy [22, 15] and noise contrastive estimation [23] for the conditional entropy which enables it
to both generate diverse behaviors (explore) and discriminate high-dimensional continuous skills
(exploit). To the best of our knowledge, CIC is the first exploration algorithm to utilize noise
contrastive estimation to discriminate between state transitions and latent skill vectors. Empirically,
we show that CIC adapts to downstream tasks more efficiently than prior exploration approaches
on the state-based Unsupervised Reinforcement Learning Benchmark (URLB). CIC achieves 79%
higher returns on downstream tasks than prior competence-based algorithms and 18% higher returns
than the next-best exploration algorithm overall.

1 Background and Notation

Markov Decision Process: We operate under the assumption that our system is described by a
Markov Decision Process (MDP) [24]. An MDP consists of the tuple (S,A,P, r, γ) which has states
s ∈ S , actions a ∈ A, transition dynamics p(s′|s, a) ∼ P , a reward function r, and a discount factor
γ. In an MDP, at each timestep t, an agent observes the current state s, selects an action from a policy
a ∼ π(·|s), and then observes the reward r and next state s′ once it acts in the environment. Note that
usually r refers to an extrinsic reward. However, in this work we will first be pre-training an agent
with intrinsic rewards rint and finetuning on extrinsic rewards rext.

For convenience we also introduce the variable τ = (s, s′) which is a tuple denoting a transition
between two consecutive states. Importantly, τ does not denote a state-action trajectory. In addition
to the standard MDP notation, we will also be learning skills z ∈ Z where Z is the skill set, which
can be a discrete or continuous real-valued vector space, and our policy will be skill-conditioned
a ∼ π(·|s, z).
Unsupervised Skill Discovery through Mutual Information Maximization: Most competence-
based approaches to exploration maximize the mutual information between states and skills. Our work
and a large body of prior research [17, 20, 18, 25, 26, 27] aims to maximize a mutual information
objective with the following general form:

I(τ ; z) = H(z)−H(z|τ) = H(τ)−H(τ |z) (1)

Competence-based algorithms use different choices for τ and can condition on additional information
such as actions or starting states. For a full summary of competence-based algorithms and their
objectives see Table 2.

2

Noise Contrastive Loss

query

key

k-NN

Replay Buffer Entropy Conditional EntropyIntrinsic Reward Representation LearningReplay Buffer

Figure 2: Architecture illustrating the practical implementation of CIC . During a gradient update step, random
τ = (s, s′) tuples are sampled from the replay buffer, then a particle estimator is used to compute the entropy
and a noise contrastive loss to compute the conditional entropy. The contrastive loss is backpropagated through
the entire architecture. The entropy and contrastive terms are then scaled and added to form the intrinsic reward.
The RL agent is optimized with a DDPG [29].

Lower Bound Estimates of Mutual Information: The mutual information I(s; z) is intractable to
compute directly. Since we wish to maximize I(s; z), we can approximate this objective by instead
maximizing a lower bound estimate. Most known mutual information maximization algorithms use
the variational lower bound introduced in [28]:

I(τ ; z) = H(τ)−H(τ |z) ≥ H(τ) + Eτ,z[log q(τ |z)] (2)

The variational lower bound can be applied to both decompositions of the mutual information. The
design decisions of a competence-based algorithm therefore come down to (i) which decomposition
of I(τ ; z) to use, (ii) whether to use discrete or continuous skills, (iii) how to estimate H(z) or H(τ),
and finally (iv) how to estimate H(z|τ) or H(τ |z).

2 Motivation

Results from the recent Unsupervised Reinforcement Learning Benchmark (URLB) [21] show that
competence-based approaches underperform relative to knowledge-based and data-based baselines
on DeepMind Control (DMC). We argue that the underlying issue with current competence-based
algorithms when deployed on harder exploration environments like DMC has to do with the currently
used estimators for I(τ ; z) rather than the objective itself. To produce structured skills that lead to
diverse behaviors, I(τ ; z) estimators must (i) explicitly encourage diverse behaviors and (ii) have
the capacity to discriminate between high-dimensional continuous skills. Current approaches do not
satisfy both criteria.

Competence-base algorithms do not ensure diverse behaviors: Most of the best known competence-
based approaches [17, 18, 25, 26], optimize the first decomposition of the mutual information
H(z)−H(z|τ). The issue with this decomposition is that while it ensures diversity of skill vectors
it does not ensure diverse behavior from the policy, meaning maxH(z) does not imply maxH(τ).
Of course, if H(z)−H(z|τ) is maximized and the skill dimension is sufficiently large, then H(τ)
will also be maximized implicitly. Yet in practice, to learn an accurate discriminator q(z|τ), the
above methods assume skill spaces that are much smaller than the state space (see Table 2), and thus
behavioral diversity may not be guaranteed. In contrast, the decomposition I(τ ; z) = H(τ)−H(τ |z)
ensures diverse behaviors through the entropy term H(τ). Methods that utilize this decomposition
include [27, 20].

Why it is important to utilize high-dimensional skills: Once a policy is capable of generating diverse
behaviors, it is important that the discriminator can distill these behaviors into distinct skills. If the set
of behaviors outnumbers the set of skills, this will result in degenerate skills – when one skill maps
to multiple different behaviors. It is therefore important that the discriminator can accommodate
continuous skills of sufficiently high dimension. Empirically, the discriminators used in prior work
utilize only low-dimensional continuous skill vectors. DIAYN [17] utilized 16 dimensional skills,
DADS [20] utilizes continuous skills of dimension 2− 5, while APS [27], an algorithm that utilizes
successor features [30, 31] for the discriminator, is only capable of learning continuous skills with

3

Resets when agent
loses balance

Resets are fixed
at 1000 steps

OpenAI Gym Hopper DeepMind Control Hopper

Figure 3: To empirically demonstrate issues inherent to competence-based exploration methods, we run
DIAYN [17] and compare it to ICM [12] and a Fixed baseline where the agent receives an intrinsic reward of 1.0
for each timestep and no extrinsic reward on both OpenAI Gym (episode resets when agent loses balance) and
DeepMind Control (DMC) (episode is fixed for 1k steps) Hopper environments. Since Gym and DMC rewards
are on different scales, we normalize rewards based on the maximum reward achieved by any algorithm (1k
for Gym, 3 for DMC). While DIAYN is able to achieve higher extrinsic rewards than ICM on Gym, the Fixed
intrinsic reward baseline performs best. However, on DMC the Fixed and DIAYN agents achieve near-zero
reward while ICM does not. This is consistent with findings of prior work that DIAYN is able to learn diverse
behaviors in Gym [17] as well as the observation that DIAYN performs poorly on DMC environments [21]

dimension 10. We show how small skill spaces can lead to ineffective exploration in a simple
gridworld setting in Appendix G and evidence that skill dimension affects performance in Fig. 5.

On the importance of benchmarks for evaluation: While prior competence-based approaches such
as DIAYN [17] were evaluated on OpenAI Gym [32], Gym environment episodes terminate when
the agent loses balance thereby leaking some aspects of extrinsic signal to the exploration agent.
On the other hand, DMC episodes have fixed length. We show in Fig 3 that this small difference in
environments results in large performance differences. Specifically, we find that DIAYN is able to
learn diverse skills in Gym but not in DMC, which is consistent with both observations from DIAYN
and URLB papers. Due to fixed episode lengths, DMC tasks are harder for reward-free exploration
since agents must learn to balance without supervision.

3 Method

3.1 Contrastive Intrinsic Control

From Section 2 we are motivated to find a lower bound for I(τ ; z) with a discriminator that is capable
of supporting high-dimensional continuous skills3. Additionally, we wish to increase the diversity of
behaviors so that the discriminator can continue learning new skills throughout training. We choose
the forward decomposition of MI I(τ ; z) = H(τ)−H(τ |z) similar to [27] and estimate the lower
bound with Eq. 2. The entropy is estimated H(τ) with a particle-based estimator similar to [15]. As
such, the primary technical contribution of this work is a novel estimator for the discriminator.

To improve the discriminator, we propose to utilize noise contrastive estimation (NCE) [23] between
state-transitions and latent skills as a lower bound for I(τ ; z). It has been shown previously that such
estimators provide a valid lower bound for mutual information [33]. However, to the best of our
knowledge, this is the first work to investigate contrastive representation learning for intrinsic control.

Representation Learning: Specifically, we propose to learn embeddings by parameterizing the
discriminator with a contrastive density estimator. This is a novel choice that differs from prior works
which utilize a classifier [17] or non-contrastive density estimation [20].

log q(τ |z) := f(τ, z)− log
1

N

N∑
j=1

exp(f(τj , z)). (3)

where f(τ, z) is any real valued function.

3In high-dimensional state-action spaces the number of distinct behaviors can be quite large.

4

Figure 4: We report the aggregate statistics using stratified bootstrap intervals [35] for 12 downstream tasks
on URLB with 10 seeds, so each statistic for each algorithm has 120 seeds in total. We find that overall, CIC
achieves leading performance on URLB in terms of the IQM, mean, and OG statistics. As recommended by [35],
we use the IQM as our primary performance measure. In terms of IQM, CIC improves upon the next best skill
discovery algorithm (APS) by 79% and the next best algorithm overall (ProtoRL) by 18%.

For our practical algorithm, we parameterize this function as f(τ, z) =
gψ1

(τ)⊤gψ2
(z)/∥gψ1

(τ)∥∥gψ2
(z)∥T where τ = (s, s′) is a transition tuple, gψk

are neural
encoders, and T is a temperature parameter. This inner product is similar to the one used in
SimCLR [34].

The representation learning loss backpropagates gradients from the NCE loss which maximizes
similarity between state-transitions and corresponding skills.

FCIC(τ) =
gψ1

(τi)
⊤gψ2

(zi)

∥gψ1
(τi)∥∥gψ2

(zi)∥T
− log

1

N

N∑
j=1

exp

(
gψ1

(τj)
⊤gψ2

(zi)

∥gψ1
(τj)∥∥gψ2

(zi)∥T

)
(4)

whereN−1 is the number of negatives. The total number of elements in the summation isN because
it includes one positive, so the index j includes the positive index i similar to the objective in [33].
We provide pseudocode for the CIC representation learning loss:

1 """
2 PyTorch -like pseudocode for the CIC loss
3 """
4

5 def cic_loss(s, s_next , z, temp):
6 """
7 states: s, s_next (B, D), skills: z (B, D)
8 """
9

10 tau = concat(s, s_next , dim=1)
11

12 query = query_net(z)
13 key = key_net(tau)
14

15 query = normalize(query , dim =1)
16 key = normalize(key , dim =1)
17

18 logits = matmul(query , key.T) / temp #logits are (B, B)
19 labels = arange(logits.shape [0]) # positives are on diagonal
20

21 # softmax_cross_entropy API same as in PyTorch docs
22 loss = softmax_cross_entropy(logits , labels)
23

24 return loss
Listing 1: Pseudocode for the CIC loss.

Intrinsic reward: Although we have a representation learning objective, we still need to specify the
intrinsic reward for the algorithm for which there can be multiple choices. Prior works consider
specifying an intrinsic reward that is proportional to state-transition entropy [15], the discrimina-
tor [17], a similarity score between states and skills [36], and the uncertainty of the discriminator [37].

5

Projected
Not projected

0.0

0.1

0.2

0.3
No

rm
al

ize
d

Sc
or

e

(a) Skill projection

4 8 16 32 64 12
8

Skill dimension

0.0

0.1

0.2

0.3

No
rm

al
ize

d
sc

or
e

(b) Skill dimension

Zero Rand. CEM
 Beta CEM

 Gauss.Grid
 Sweep

0.0

0.1

0.2

0.3

0.4

No
rm

al
ize

d
Sc

or
e

(c) Skill adaptation

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Mean skill value

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
Sc

or
e Quad. Stand

Quad. Run

(d) Skill grid sweep

Figure 5: Design choices for pre-training and adapting with skills have significant impact on performance.
In (a) and (b) the agent’s zero-shot performance is evaluated while sampling skills randomly while in (c) and
(d) the agent’s performance is evaluated after finetuning the skills vector. (a) we show empirically that the
projecting skill vectors after sampling them from noise significantly improves the agent’s performance. (b) The
skill dimension is a crucial hyperparameter and, unlike prior methods, CIC scales to large skill vectors achieving
optimal performance at 64 dimensional skills. (c) We test several adapation strategies and find that a simple grid
search performs best given the small 4k step adaptation budget, (d) Choosing the right skill vector has substantial
impact on performance and grid sweeping allows the agent to select the appropriate skill.

We investigate each of these choices in Section 6 and find that an intrinsic reward that maximizes
state-transition entropy coupled with representation learning via the CPC loss defined in Sec. 3.1 is
the simplest variant that also performs well (see Table 1), which we use for all other experiments.

For the intrinsic reward, we use a particle estimate [22, 38] as in [15] of the state-transition entropy.
Similar to [15, 16] we estimate the entropy up to a proportionality constant, because we want the
agent to maximize entropy rather than estimate its exact value.

The APT particle entropy estimate is proportional to the distance between the current visited state
transition and previously seen neighboring points.

Hparticle(τ) ∝
1

Nk

Nk∑
h⋆
i ∈Nk

log ∥hi − h⋆i ∥ (5)

where hi is an embedding of τi shown in Fig. 2, h∗i is a kNN embedding, Nk is the number of kNNs.

Explore and Exploit: With these design choices the two components of the CIC algorithm can
be interpreted as exploration with intrinsic rewards and exploitation using representation learning
to distill behaviors into skills. The marginal entropy maximizes the diversity of state-transition
embeddings while the contrastive discriminator log q(τ |z) encourages exploitation by ensuring that
skills z lead to predictable states τ . Together the two terms incentivize the discovery of diverse
yet predictable behaviors from the RL agent. While CIC shares a similar intrinsic reward structure
to APT [15], we show that the new representation learning loss from the CIC estimator results in
substantial performance gains in Sec 6.

4 Practical Implementation

Our practical implementation consists of two main components: the RL optimization algorithm and
the CIC architecture. For fairness and clarity of comparison, we use the same RL optimization
algorithm for our method and all baselines in this work. Since the baselines implemented in
URLB [21] use a DDPG4 [29] as their backbone, we opt for the same DDPG architecture to optimize
our method as well (see Appendix B).

CIC Architecture: We use a particle estimator as in [15] to estimate H(τ). To compute the variational
density q(τ |z), we first sample skills from uniform noise z ∼ p(z) where p(z) is the uniform
distribution over the [0, 1] interval. We then use two MLP encoders to embed gψ1

(τ) and gψ2
(z),

4It was recently was shown that a DDPG achieves state-of-the-art performance [39] on DeepMind Control [40]
and is more stable than SAC [41] on this benchmark.

6

and optimize the parameters ψ1, ψ2 with the CPC loss similar to SimCLR [34] since f(τ, z) =
gψ1(τ)

T gψ2(z). We fix the hyperparameters across all domains and downstream tasks. We refer the
reader to the Appendices D and E for the full algorithm and a full list of hyperparameters.

Adapting to downstream tasks: To adapt to downstream tasks we follow the same procedure for
competence-based method adaptation as in URLB [21]. During the first 4k environment interactions
we populate the DDPG replay buffer with samples and use the extrinsic rewards collected during
this period to finetune the skill vector z. While it’s common to finetune skills with Cross Entropy
Adaptation (CMA), given our limited budget of 4k samples (only 4 episodes) we find that a simple
grid sweep of skills over the interval [0, 1] produces the best results (see Fig. 5). After this, we fix the
skill z and finetune the DDPG actor-critic parameters against the extrinsic reward for the remaining
96k steps. Note that competence-based methods in URLB also finetune their skills during the first 4k
finetuning steps ensuring a fair comparison between the methods. The full adaptation procedure is
detailed in Appendix D.

5 Experimental Setup

Environments We evaluate our approach on tasks from URLB, which consists of twelve downstream
tasks across three challenging continuous control domains for exploration algorithms – walker,
quadruped, and Jaco arm. Walker requires a biped constrained to a 2D vertical plane to perform
locomotion tasks while balancing. Quadruped is more challenging due to a higher-dimensional
state-action space and requires a quadruped to in a 3D environment to learn locomotion skills. Jaco
arm is a 6-DOF robotic arm with a three-finger gripper to move and manipulate objects without
locking. All three environments are challenging in the absence of an extrinsic reward.

Baselines: We implemented CIC using the URLB [21] codebase 5 and compare CIC to baselines
included in URLB across all three exploration categories. Knowledge-based basedlines include
ICM [12], Disagreement [13], and RND [14]. Data-based baselines incude APT [15] and Pro-
toRL [16]. Competence-based baselines include DIAYN [17], SMM [26], and APS [27]. The closest
baselines to CIC are APT, which is similar to CIC but without state-skill CPC representation learning
(no discriminator), and APS which uses the same decomposition of mutual information as CIC and
also uses a particle entropy estimate for H(τ). The main difference between APS and CIC is that
APS uses successor features while CIC uses a contrastive estimator for the discriminator. For further
details regarding baselines we refer the reader to Appendix C.

Evaluation: We follow an identical evaluation to the 2M pre-training setup in URLB. First, we
pre-train each RL agent with the intrinsic rewards for 2M steps. Then, we finetune each agent to
the downstream task with extrinsic rewards for 100k steps. All baselines were run for 10 seeds per
downstream task for each algorithm using the code and hyperparameters provided by URLB [21].
Built on top of URLB, CIC is also run for 10 seeds per task. A total of 1080 = 9 algorithms ×
12 tasks × 10 seeds experiments were run for the main results. Importantly, all baselines and CIC
use a DDPG agent as their backbone.

To ensure that our evaluation statistics are unbiased we use stratified bootstrap confidence intervals to
report aggregate statistics across M runs with N seeds as described in Rliable [35] to report statistics
for our main results in Fig. 4. Our primary success metric is the interquartile mean (IQM) and the
Optimality Gap (OG). IQM discards the top and bottom 25% of runs and then computes the mean.
It is less susceptible to outliers than the mean and was shown to be the most reliable statistic for
reporting results for RL experiments in [35]. OG measures how far a policy is from optimal (expert)
performance. To define expert performance we use the convention in URLB, which is the score
achieved by a randomly initialized DDPG after 2M steps of finetuning (20x more steps than our
finetuning budget).

6 Results

We investigate empirical answers to the following research questions: (Q1) How does CIC adaptation
efficiency compare to prior competence-based algorithms and exploration algorithms more broadly?

5URLB is open-sourced under an MIT license https://github.com/rll-research/url_benchmark/
blob/main/LICENSE.

7

https://github.com/rll-research/url_benchmark/blob/main/LICENSE
https://github.com/rll-research/url_benchmark/blob/main/LICENSE

(Q2) Which intrinsic reward instantiation of CIC performs best? (Q3) How do the two terms in the
CIC objective affect algorithm performance? (Q4) How does skill selection affect the quality of the
pre-trained policy? (Q5) Which architecture details matter most?

Adaptation efficiency of CIC and exploration baslines: Expert normalized scores of CIC and
exploration algorithms from URLB are shown in Fig. 4. We find that CIC substantially outperforms
prior competence-based algorithms (DIAYN, SMM, APS) achieving a 79% higher IQM than the next
best competence-based method (APS) and, more broadly, achieving a 18% higher IQM than the next
best overall baseline (ProtoRL). In further ablations, we find that the contributing factors to CIC’s
performance are its ability to accommodate substantially larger continuous skill spaces than prior
competence-based methods.

Intrinsic reward specification: The intrinsic reward for competence-based algorithms can be
instantiated in many different ways. Here, we analyze intrinsic reward for CIC with the form
rint = H(τ) + D(τ, z), where D is some function of (τ, z). Prior works, select D to be (i)
the discriminator [27], (ii) a cosine similarity between embeddings [36], (iii) uncertainty of the
discriminator [37], and (iv) just the entropy D(τ, z) = 0 [15]. We run CIC with each of these variants
on the walker and quadruped tasks and measure the final mean performance across the downstream
tasks (see Tab. 1). The results show that the entropy-only intrinsic reward performs best followed by
an uncertainty-based intrinsic reward. We hypothesize that the reason why a simple entropy-only
intrinsic reward works well is that state-skill CPC representation learning clusters similar behaviors
together. Since similar behaviors are clustered, maximizing the entropy of state-transition embeddings
produces increasingly diverse behaviors.

disc. similarity uncertainty entropy APS

walker 0.79± 0.04 0.79± 0.03 0.76± 0.04 0.82± 0.02 0.50± .04
quad. 0.45± 0.07 0.60± 0.05 0.70± 0.03 0.76± 0.03 .48± 0.02

mean 0.62 0.70 0.73 0.80 0.49

Table 1: Comparing different potential intrinsic rewards for CIC, we find that entropy-based intrinsic
reward performs best, suggesting that the CIC discriminator is primarily useful for representation
learning. These are normalized scores averaged over 5 seeds across 8 downstream tasks. Note that all
intrinsic reward specifications outperform the baseline methods. Since the particle entropy estimates
a quantity proportional to the entropy, two-term intrinsic rewards need to be carefully balanced with
a hyperparameter. We believe this is the reason the various intrinsic rewards perform worse than
entropy-only one.

The importance of representation learning: To what extent does representation learning with the
state-skill CIC loss affect the agent’s exploration capability? To answer this question we train the CIC
agent with the entropy intrinsic reward with and without the representation learning auxiliary loss for
2M steps. The zero-shot reward plotted in Fig. 6 indicates that without representation learning the
policy collapses. With representation learning, the agent is able to discover diverse skills evidenced
by the non-zero reward. This result suggests that state-skill CPC representation learning is a critical
part of CIC.

Qualitative analysis of CIC behaviors: Qualitatively, we find that CIC is able to learn locomotion
behaviors in DMC without extrinsic information such as early termination as in OpenAI Gym. While
most skills are higher entropy and thus more chaotic, we show in Fig 1 that structured behaviors can
be isolated by fixing a particular skill vector. For example, in the walker and quadruped domains -
balancing, walking, and flipping skills can be isolated. For more qualitative investigations we refer
the reader to Appendix H.

Skill architecture and adaptation ablations: We find that projecting the skill to a latent space
before inputting it as the key for the contrastive loss is an important design decision (see Fig. 5a),
most likely because this reduces the diversity of the skill vector making the discriminator task simpler.

We also find empirically that the skill dimension is an important hyperparameter and that larger skills
results in better zero-shot performance (see Fig. 5b), which empirically supports the hypothesis posed
in Section 2 and Appendix G that larger skill spaces are important for internalizing diverse behaviors.
Interestingly, CIC zero-shot performance is poor in lower skill dimensions (e.g. dim(z) < 10),

8

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Env. Steps 1e6

0

100

200

300

400

500

Re
wa

rd

Zero-shot extrinsic rewards
Full CIC: Particle entropy and CIC rep. learning
Ablation 1: Particle entropy but no CIC rep. learning
Ablation 2: CIC rep. learning but no particle entropy

Figure 6: Mean zero-shot extrinsic rewards for Quadruped stand over 3 seeds with and without
state-skill representation learning. Without representation learning, the algorithm collapses. Similarly,
with CIC representation learning but no entropy term (in which case we use the discriminator as the
intrinsic reward) the policy also collapses. Note that there is no finetuning happening here. We’re
showing the task-specific extrinsic reward during reward-free pre-training as a way to sense-check
exploration policy.

suggesting that when dim(z) is small CIC performs no better than prior competence-based methods
such as DIAYN, and that scaling to larger skills enables CIC to pre-train effectively.

To measure the effect of skill finetuning described in Section 4, we sweep mean skill values along the
interval of the uniform prior [0, 1] with a budget of 4k total environment interactions and read out
the performance on the downstream task. By sweeping, we mean simply iterating over the interval
[0, 1] with fixed step size (e.g. v = 0, 0.1, . . . , 0.9, 1) and setting zi = v for all i. This is not an
optimal skill sampling strategy but works well due to the extremely limited number of samples for
skill selection. We evaluate this ablation on the Quadruped Stand and Run downstream tasks. The
results shown in Fig. 5 indicate that skill selection can substantially affect zero-shot downstream task
performance.

7 Related Work

The most closely related prior algorithms to CIC are APT [15] and APS [27]. Both CIC and
APS use the H(τ) − H(τ |z) decomposition of the mutual information and both used a particle
estimator [22] to compute the state entropy as in [15]. The main difference between CIC and APS
is the discriminator. APS uses successor features as in [31] for its discriminator while CIC uses
a noise contrastive estimator. Unlike successor features, which empirically only accommodate
low-dimensional continuous skill spaces (see Table 2), the noise contrastive discriminator is able to
leverage higher continuous dimensional skill vectors. Like APT, CIC has an intrinsic reward that
maximizes H(τ). However, CIC also does contrastive skill learning to shape the embedding space
and outputs a skill-conditioned policy.

The CIC discriminator is similar to the one used in DISCERN [36], a goal-conditioned unsupervised
RL algorithm. Both methods use a contrastive discriminator by sampling negatives and computing
an inner product between queries and keys. The main differences are (i) that DISCERN maximizes
I(τ ; g) where g are image goal embeddings while CIC maximizes I(τ ; z) where z are abstract
skill vectors; (ii) DISCERN uses the DIAYN-style decomposition I(τ ; g) = H(g)−H(g|τ) while
CIC decomposes through H(τ)−H(τ |z), and (iii) DISCERN discards the H(g) term by sampling
goals uniformly while CIC explicitly maximizes H(τ). While DISCERN and CIC share similarities,
DISCERN operates over image goals while CIC operates over abstract skill vectors so the two
methods are not directly comparable.

Finally, another similar algorithm to CIC is DADS [20] which also decomposes through H(τ) −
H(τ |z). While CIC uses a contrastive density estimate for the discriminator, DADS uses a maximum
likelihood estimator similar to DIAYN. DADS maximizes I(s′|s, z) and estimates entropy H(s′|s)
by marginalizing over z such that H(s′|s) = − log

∑
i q(s

′|s, zi) while CIC uses a particle estimator.

9

Table 2: Competence-based Unsupervised Skill Discovery Algorithms

Algorithm Intrinsic Reward Decomposition Explicit maxH(τ) Skill Dim. Skill Space

SSN4HRL [42] log qψ(z|st) H(z)−H(z|τ) No 6 discrete one-hot
VIC [18] log qψ(z|sH)) H(z)−H(z|τ) No 60 discrete one-hot
VALOR [25] log qψ(z|s1:H) H(z)−H(z|τ) No 64 discrete one-hot
DIAYN [17] log qψ(z|st) H(z)−H(z|τ) No 128 discrete one-hot
DADS [20] qψ(s

′|z, s)−
∑
i log q(s

′|zi, s) H(τ)−H(τ |z) Yes 5 continuous
VISR [31] log qψ(z|st) H(z)−H(z|τ) No 10 continuous
APS [27] FSuccessor(s|z) +Hparticle(s) H(τ)−H(τ |z) Yes 10 continuous
CIC FCIC(s, s

′|z) +Hparticle(s, s
′) H(τ)−H(τ |z) Yes 64 continuous

Table 3: A list of competence-based algorithms. We describe the intrinsic reward optimized by each method
and the decomposition of the mutual information utilized by the method. We also note whether the method
explicitly maximizes state transition entropy. Finally, we note the maximal dimension used in each work and
whether the skills are discrete or continuous. All methods prior to CIC only support small skill spaces, either
because they are discrete or continuous but low-dimensional.

8 Limitations and Impact

While CIC achieves leading results on state-based URLB, we would also like to address its limitations.
First, in this paper we only consider MDPs (and not partially observed MDPs) where the full state is
observable. We focus on MDPs because generating diverse behaviors in environments with large
state spaces has been the primary bottleneck for competence-based exploration. Combining CIC
with visual representation learning to scale this method to pixel-based inputs is a promising future
direction for research not considered in this work.

One issue with unsupervised RL algorithms (and hence CIC) in terms of potentially negative societal
impact is that self-supervised exploration can be dangerous. Since self-supervised agents maximize
intrinsic rewards, this can lead to destructive behavior. For example, when deploying CIC on a Walker
or Quadruped robot it learns chaotic exploration behaviors 6 that would most likely break the robot
in real-world settings. Alignment of exploration agents to prevent them from learning dangerous
policies is a promising direction for future work.

9 Conclusion
We have introduced a new competence-based algorithm – Contrastive Intrinsic Control (CIC) – which
enables more effective exploration than prior unsupervised skill discovery algorithms by explicitly
encouraging diverse behavior while distilling predictable behaviors into skills with a contrastive
discriminator. We showed that CIC is the first competence-based approach to achieve leading
performance on URLB. We hope that this encourages further research in developing RL agents
capable of generalization.

10 Acknowledgements

We would like to thank Ademi Adeniji, Xinyang Geng, Fangchen Liu for helpful discussions. We
would also like to thank Phil Bachman for useful feedback. This work was partially supported by
Berkeley DeepDrive, NSF AI4OPT AI Institute for Advances in Optimization under NSF 2112533,
and the Office of Naval Research grant N00014-21-1-2769.

References

[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015.

6See https://sites.google.com/view/cicneurips2022/home

10

https://sites.google.com/view/cicneurips2022/home

[2] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
go without human knowledge. Nature, 550(7676):354, 2017.

[3] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Artfhur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general
reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science,
362(6419):1140–1144, 2018.

[4] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In International
Conference on Learning Representations, 2016.

[5] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[6] Xue Bin Peng, P. Abbeel, Sergey Levine, and Michiel van de Panne. Deepmimic: Example-
guided deep reinforcement learning of physics-based character skills. ACM Trans. Graph.,
37:143:1–143:14, 2018.

[7] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. In Proceedings of Robotics: Science and Systems (RSS), 2018.

[8] OpenAI. Learning dexterous in-hand manipulation. CoRR, abs/1808.00177, 2018.

[9] OpenAI. Solving rubik’s cube with a robot hand. ArXiv, abs/1910.07113, 2019.

[10] Aravind Srinivas and Pieter Abbeel. Unsupervised learning for reinforcement learning, 2021.

[11] Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic motivation systems for
autonomous mental development. IEEE transactions on evolutionary computation, 11(2):265–
286, 2007.

[12] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International Conference on Machine Learning, 2017.

[13] Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagree-
ment. In International Conference on Machine Learning, 2019.

[14] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation. In International Conference on Learning Representations, 2019.

[15] Hao Liu and Pieter Abbeel. Behavior from the void: Unsupervised active pre-training. arXiv
preprint arXiv:2103.04551, 2021.

[16] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Reinforcement learning with
prototypical representations. In International Conference on Machine Learning, 2021.

[17] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. In International Conference on Learning
Representations, 2019.

[18] Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. In
International Conference on Learning Representations, 2017.

[19] Taehwan Kwon. Variational intrinsic control revisited. In International Conference on Learning
Representations, 2021.

[20] Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-
aware unsupervised discovery of skills. In International Conference on Learning Representa-
tions, 2020.

[21] Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine Cang,
Lerrel Pinto, and Pieter Abbeel. Urlb: Unsupervised reinforcement learning benchmark, 2021.

11

[22] Harshinder Singh, Neeraj Misra, Vladimir Hnizdo, Adam Fedorowicz, and Eugene Demchuk.
Nearest neighbor estimates of entropy. American Journal of Mathematical and Management
Sciences, 23(3-4):301–321, 2003.

[23] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. In Yee Whye Teh and Mike Titterington, editors,
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics,
volume 9 of Proceedings of Machine Learning Research, pages 297–304, Chia Laguna Resort,
Sardinia, Italy, 13–15 May 2010. PMLR.

[24] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT Press,
2018.

[25] Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational option
discovery algorithms. arXiv preprint arXiv:1807.10299, 2018.

[26] Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric P. Xing, Sergey Levine, and Ruslan
Salakhutdinov. Efficient exploration via state marginal matching. CoRR, abs/1906.05274, 2019.

[27] Hao Liu and Pieter Abbeel. APS: active pretraining with successor features. In International
Conference on Machine Learning, 2021.

[28] David Barber and Felix V. Agakov. The im algorithm: A variational approach to information
maximization. In Advances in neural information processing systems, 2003.

[29] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
In International Conference on Learning Representations, 2016.

[30] André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado Van Hasselt,
and David Silver. Successor features for transfer in reinforcement learning. arXiv preprint
arXiv:1606.05312, 2016.

[31] Steven Hansen, Will Dabney, André Barreto, David Warde-Farley, Tom Van de Wiele, and
Volodymyr Mnih. Fast task inference with variational intrinsic successor features. In Interna-
tional Conference on Learning Representations, 2020.

[32] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[33] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[34] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework
for contrastive learning of visual representations. In International conference on machine
learning, 2020.

[35] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G. Belle-
mare. Deep reinforcement learning at the edge of the statistical precipice, 2021.

[36] David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni, Catalin Ionescu, Steven Hansen, and
Volodymyr Mnih. Unsupervised control through non-parametric discriminative rewards, 2018.

[37] DJ Strouse, Kate Baumli, David Warde-Farley, Vlad Mnih, and Steven Hansen. Learning more
skills through optimistic exploration. CoRR, abs/2107.14226, 2021.

[38] J Beirlant. Nonparametric entropy estimation: An overview. International Journal of the
Mathematical Statistics Sciences, 6:17–39, 1997.

[39] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous
control: Improved data-augmented reinforcement learning, 2021.

[40] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite.
arXiv preprint arXiv:1801.00690, 2018.

12

[41] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
Conference on Machine Learning, 2018.

[42] Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic neural networks for hierarchical
reinforcement learning. In International Conference on Learning Representations, 2018.

[43] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. In Advances in
Neural Information Processing Systems, 2020.

[44] Tom Zahavy, Andre Barreto, Daniel J Mankowitz, Shaobo Hou, Brendan O’Donoghue, Iurii
Kemaev, and Satinder Baveja Singh. Discovering a set of policies for the worst case reward,
2021.

[45] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised rep-
resentations for reinforcement learning. In International Conference on Machine Learning,
2020.

[46] Ben Poole, Sherjil Ozair, Aäron van den Oord, Alex Alemi, and George Tucker. On variational
bounds of mutual information. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research,
pages 5171–5180. PMLR, 2019.

[47] Michael Tschannen, Josip Djolonga, Paul K. Rubenstein, Sylvain Gelly, and Mario Lucic.
On mutual information maximization for representation learning. In 8th International Con-
ference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Abstract, summary of contributions in introduction,
and results in Section 6.

(b) Did you describe the limitations of your work? [Yes] See Section 8.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 8.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main

experimental results (either in the supplemental material or as a URL)? [Yes]
https://anonymous.4open.science/r/cicneurips2022/README.md

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Section 6.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix L.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 5.
(b) Did you mention the license of the assets? [Yes] See Section 5.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

We use previous assets.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

https://anonymous.4open.science/r/cicneurips2022/README.md

