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Abstract

Learning in hyperbolic spaces has attracted growing attention recently, owing
to their capabilities in capturing hierarchical structures of data. However, exist-
ing learning algorithms in the hyperbolic space tend to overfit when limited data
is given. In this paper, we propose a hyperbolic feature augmentation method
that generates diverse and discriminative features in the hyperbolic space to com-
bat overfitting. We employ a wrapped hyperbolic normal distribution to model
augmented features, and use a neural ordinary differential equation module that
benefits from meta-learning to estimate the distribution. This is to reduce the bias
of estimation caused by the scarcity of data. We also derive an upper bound of
the augmentation loss, which enables us to train a hyperbolic model by using an
infinite number of augmentations. Experiments on few-shot learning and continual
learning tasks show that our method significantly improves the performance of
hyperbolic algorithms in scarce data regimes.

1 Introduction

Several recent studies reveal that real-world data, such as images, videos, graphs, and sentences in
natural language, usually endows a hierarchical structure [1]. In contrast to the Euclidean space with
zero curvature, a hyperbolic space characterized by constant negative curvature can well capture such
hierarchical structures, since the volume of the hyperbolic space grows exponentially with respect to
the radius [2]. This property leads to rich representations and encourages successful developments
of hyperbolic algorithms for various applications. Examples include image retrieval [3], action
recognition [4], graph classification [5], and machine translation [6].

Although existing hyperbolic algorithms have achieved impressive performances, they often rely on
the availability of sufficient data for training. In many practical applications, very limited data is given,
as collecting and labeling data is costly. For example, in few-shot animal recognition [7, 8], animal
images have hierarchical structures according to their species information. With few images (say less
than five) in each class, training a model (e.g., a ResNet combined with hyperbolic geometry [9, 3])
suffers from the undesirable overfitting problem. This motivates us to study combating overfitting
with limited data in the hyperbolic space.

In this paper, we propose a hyperbolic feature augmentation (HFA) method that overcomes overfitting
by generating class-identity-preserving features in the hyperbolic space. Compared with augmentation
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in the original space of data (e.g., image space), augmentation in the feature space requires less
memory footprint [10, 11]. Moreover, feature augmentation is capable of providing useful intra-class
variants by capturing diverse and discriminative augmentation directions, enabling the model to
learn the invariance of each class [12, 13]. Therefore, feature augmentation offers a feasible way to
overcome overfitting in the hyperbolic space.

Performing feature augmentation in the hyperbolic space involves two challenges. (1) The aug-
mentation directions should be discriminative and reflect the variations of intra-class in the curved
hyperbolic space rather than a flat space. The scarce data and complicated hierarchical structures
make producing suitable augmentation directions non-trivial. (2) Augmentation in the hyperbolic
space is computationally expensive (as compared to the Euclidean space), as the process of augmenta-
tion requires complex hyperbolic operations (e.g., parallel transport and exponential map) to preserve
the non-Euclidean geometry of augmented features.

We introduce a meta-neural-ODE distribution estimation scheme to solve the first challenge. We
employ a wrapped normal distribution for augmented features, where the augmentation directions are
sampled in the tangent bundle and projected to the hyperbolic space. We estimate the distribution
by solving a continuous optimization process with neural ordinary differential equation (ODE),
and utilize meta-learning to acquire prior knowledge in a gradient flow network for the estimation.
The continuous optimization with prior knowledge leads to more reliable distribution for scarce
data and complicated structures. We derive an upper bound of the augmentation loss to solve
the second challenge, which enables us to train a hyperbolic model using an infinite number of
sampled features. As a result, our method brings enhanced diversity of data and does not need to
perform data augmentation explicitly, making an efficient augmentation algorithm without complex
hyperbolic operations. We evaluate the proposed HFA method on few-shot learning and continual
learning tasks, and results show that the proposed method significantly improves the performance
of hyperbolic algorithms when limited data is given. The code of HFA is available at https:
//github.com/ZhiGaomcislab/Hyperbolic_Feature_Augmentation.

In summary, our contributions are threefold. (1) To the best of our knowledge, we are the first to
perform feature augmentation in the hyperbolic space. The proposed HFA method is capable of
generating diverse and discriminative hyperbolic features, addressing the overfitting problem. (2) We
introduce a meta-neural-ODE distribution estimation scheme, whose continuous optimization process
with prior knowledge leads to precise approximation of the real distribution in scarce data regimes.
(3) We derive an upper bound of the augmentation loss to train a hyperbolic model using infinite
augmentation, which creates an efficient augmentation algorithm without explicit augmentation and
hyperbolic operations.

2 Related Work

Data augmentation. Data augmentation techniques, widely used to improve generalization, can be
divided into two categories: 1. augmentation in the original space of data (e.g., image space) and
2. augmentation in the feature space. Hand designed transformations (e.g., masking and cropping)
are popular examples from the first category [14, 15]. Automatic augmentation is a promising
technique to automatically choose hand-crafted transformations [16, 17]. To produce more intra-class
variants, some methods train a generative model for augmentation in the original space [18, 19].
One drawback of generating augmentation in the original space is the computational load of the
algorithms. In contrast, feature augmentation not only brings rich intra-class variants but also involves
less computational complexity and memory footprint. The benefits of feature augmentation are
demonstrated for many applications, including but not limited to contrastive learning [20], domain
adaptation [21], few-shot learning [22], long-tailed recognition [13], and instance segmentation [11].
Feature augmentation is usually achieved by manifold mixup [23, 24], sampling from captured
distributions [25, 12, 10, 11], or utilizing a GAN model [26, 27]. Different from existing feature
augmentation, we focus on augmentation in the hyperbolic space.In doing so, we introduce a meta-
neural-ODE distribution estimation scheme, instead of directly computing distribution from given
data. In this case, our method can better adapt to complex distributions in scarce data regimes.

Hyperbolic geometry. Learning in the hyperbolic space has become an alternative to the Euclidean
space, since natural data usually exhibits hierarchical structures. Existing efforts of exploiting the
hyperbolic space can be roughly divided into two categories: learning hyperbolic embeddings and
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designing hyperbolic neural networks. Methods of the first category add several hyperbolic operations
on the top of a conventional neural network to obtain discriminative hyperbolic embeddings. This
scheme has been used in many applications, such as image retrieval [3], few-shot learning [28],
metric learning [29], and image segmentation [30]. The second category focuses on extending the
entire architecture of a neural network to the hyperbolic space, such as hyperbolic convolutional
network [6], hyperbolic graph network [31, 5], hyperbolic attention network [32], and hyperbolic
variational autoencoder [33, 34]. These methods mainly focus on the model level of hyperbolic
algorithms (i.e., designing/improving hyperbolic models). In contrast, our method studies the
data level of hyperbolic algorithms and efficiently improves the generalization of models via data
augmentation.

3 Preliminaries

A hyperbolic space is a smooth Riemannian manifold with constant negative curvature [35]. Hy-
perbolic space has five isometric models, and we use the Poincaré ball model [36] to work with. A
Poincaré ball is defined as Md,c = {x ∈ Rd,−c∥x∥ < 1}, where d is the dimension of vectors in
the space, ∥ · ∥ is the Euclidean norm, and the curvature c < 0 represents the deviation of Md,c from
a flat space. For u ∈ Md,c, its tangent space, denoted by TuMd,c, contains all tangent vectors to
Md,c at u. We will make use of the following operations in our work;

Addition. For x,y ∈ Md,c, their addition is

x⊕cy =
(1− 2c⟨x,y⟩2 − c∥y∥2)x+ (1 + c∥x∥2)y

1− 2c⟨x,y⟩2 + c2∥x∥2∥y∥2
. (1)

Distance measure. For two vectors x,y ∈ Md,c, their distance is

dc(x,y) =
1√
|c|

cosh−1

(
1− 2c

∥x− y∥2

(1 + c∥x∥2)(1 + c∥y∥2)

)
. (2)

Exponential map. The exponential map expmc
x(s) projects a vector s from the tangent space

TxMd,c to the manifold Md,c,

expmc
x(s) = x⊕c

(
tanh(

√
|c|λ

c
x∥s∥
2

)
s√
|c|∥s∥

)
, (3)

where λc
x = 2/(1 + c∥x∥2) is the conformal factor. The exponential map in the tangent space

T0Md,c at the origin is simplified to expmc
0(s) = tanh(

√
|c|∥s∥) s√

|c|∥s∥
.

Logarithmic map. The logarithmic map logmc
x(y) maps a vector y from the manifold to the tangent

space TxMd,c,

logmc
x(y) =

2√
|c|λc

x

tanh−1(
√
|c|∥ − x⊕cy∥)

−x⊕cy

∥ − x⊕cy∥
. (4)

The exponential map logmc
0 in T0Md,c is simplified to logmc

0(y) = tanh−1(
√

|c|∥y∥) y√
|c|∥y∥

.

Parallel transport The parallel transport operation PTc
x→y(s) : TxMd,c → TyMd,c moves a

vector from the tangent space TxMd,c to another one TyMd,c along the geodesic,

PTc
x→y(s) =

λc
x

λc
y

gyr[y,−x]s , (5)

where gyr[y,−x]s = −(x⊕cy)⊕c(x⊕c(y⊕cs)). This operation in T0Md,c is PTc
0→y(s) =

2
λc
y
s.

4 Method

4.1 Formulation

In this paper, we propose the hyperbolic feature augmentation (HFA) method. We employ a wrapped
normal distribution P(c,p,µ,Σ) to model features in scarce data regimes, and meta-learn a neural
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Figure 1: A conceptual diagram of HFA. GFN denotes the proposed gradient flow network.

ODE to estimate a distribution for each class. Then, we derive an upper bound L∞ of the loss
function with infinite augmentation to train the classifier. An illustration of main components of HFA
is provided in Figure 1.

4.2 Wrapped Normal Distribution in Scarce Data Regime

The wrapped normal distribution has been successfully used in various studies to model distributions
in Riemannian manifolds [37, 38, 39]. The underlying idea is to model a Riemannian distribution
as a projection of a normal distribution on a tangent space to the manifold. Here, we introduce it to
scarce data regimes. The density of a wrapped normal distribution is given by

P(z|c,p,µ,Σ) = N (λc
plogm

c
p(z)|µ,Σ)

( √
|c|dc(p, z)

sinh(
√
|c|dc(p, z))

)
, (6)

where c is the curvature of the underlying space, p ∈ Md,c is the prototype of given data, and µ and
Σ ∈ Rd×d are the mean and the covariance matrix of augmentation directions, respectively. Since
few data is given in scarce data regimes, the prototype p may be biased.

Algorithm 1 Sampling process in HFA.

Input: A wrapped normal distribution P(c,p,µ,Σ),
where Σ is decomposed by LL⊤ = Σ.

Output: z ∈ Md,c sampled from P
1: Sample ϵ from a standard normal distribution

N (0, I).
2: Use the reparameterization trick to obtain v̂ = µ+

Lϵ.
3: Transport v̂ from T0Mc,d to TpMc,d by v =

PTc
0→p(v̂).

4: Map v to the manifold by z = expmc
p(v).

Generating a feature from P(c,p,µ,Σ) in-
cludes three steps. (1) Sample a vector v̂
from the normal distribution N (µ,Σ) in the
tangent space T0Mc,d. (2) Transport v̂ from
T0Mc,d to v in the tangent space TpMc,d,
v = PTc

0→p(v̂). (3) Map v to the manifold
by z = expmc

p(v). In the step (1), sampling
v̂ from N (µ,Σ) is not a differentiable process,
and we can not back propagate gradients to µ
and Σ. We use a reparameterization trick to
solve this issue. We sample a vector ϵ from the
standard normal distribution N (0, I) and trans-
form ϵ to v̂ by v̂ = µ+Lϵ, where LL⊤ = Σ.
The sampling process is summarized in Algo-
rithm 1.

We apply one wrapped normal distribution to each class. For the distribution P(c,pj ,µj ,Σj) of
the j-th class, its has its own prototype pj , mean µj , and covariance matrix Σj . All classes share a
common curvature c.

4.3 Distribution Estimation by Neural ODE

Neural ODE. For the wrap distribution P(c,pj ,µj ,Σj), the prototype pj can be computed by
averaging given samples (e.g., the Einstein midpoint [40]). We use a neural ODE to estimate c, µj ,
and Lj , by viewing an iteration process as an Euler discretization of an ODE [41, 42, 43]. Σj is
computed by Σj = LjL

⊤
j . Concretely, we denote the distribution parameter as ξ (it can be c, µj , or
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Lj) and the estimation of ξ can be cast as an iterative optimization process using given data (e.g.,
maximizing the likelihood), ξt+1 = ξt +∇ξt, where ∇ξt is the gradient at step t. We regard the
iterative optimization process as a continues-time process of an ODE, and propose a gradient flow
network F to estimate the gradient flow dξt

dt at time t, ∇ξt = dξt

dt = F (ξt, t). Thus, given the initial
value ξ0 and F , the distribution parameter is obtained by solving the ODE at the last time T with an
integral term: ξT = ξ0 +

∫ T

t=0
F (ξt, t)dt.

Here, we utilize the Runge-Kutta method [44] denoted by ODESolve(·) to solve the integral term,

ξT = ODESolve(ξ0, F, T ). (7)
In implementation, we use three gradient flow networks F1, F2, and F3 to produce the gradient flow
for c, µj , and Lj , respectively. ξ0 for µj and Lj is obtained by computing the mean of given data
and subtracting the mean from given data, and ξ0 for c is set as a fixed value.

Embedding 
multi-head attention

Interaction 
fully-connected layer

Output 
fully-connected layer

Figure 2: Architecture of the
gradient flow network.

Gradient flow network. This network takes the distribution param-
eter ξt and features of a set of samples as inputs, and generates the
gradient dξt

dt via three layers, as shown in Figure 2. We first build an es-
timation representation ej for each class, where ξt and the mean xj of
features belonging to the j-th class are concatenated as ej = [ξt,xj ].

We use a fully-connected layer fe to embed ej as
e′j = fe(ej). (8)

Then, we use a self-attention layer ft to perform interaction among
different classes,

e′′j = ft
(
{e′j}nj=1

)
. (9)

where the query, key, and value of the self-attention layer are all
{e′j}nj=1 of classes, with n classes in total. Finally, we use a fully-
connected layer fo to create the gradient,

dξt

dt
= fo({e′′j }). (10)

Note that, we employ a common curvature c for all classes using F1, instead of producing class-
specific curvatures and unifying them. We send all data of the n classes together to the gradient flow
network F1, concatenate the representation of all classes {e′′j }nj=1, and use the output fully-connected
layer fo to produce the gradient flow for the common curvature c.

4.4 Learning with Infinite Data Augmentation

We use a distance-based classifier in the hyperbolic space, and a feature is classified by assigning it
to the closest weight of classes. We represent the weight of the j-th class as wj ∈ Md,c, and the
classifier is denoted by W = [w1, · · · ,wn]. The probability that a hyperbolic feature x belongs to
the j-th class is

p(ŷ = j|x) =
exp

(
− dc(x,wj)

)∑n
j′=1 exp

(
− dc(x,wj′)

) , (11)

where ŷ is the prediction of the classifier.

We sample features from the estimated distribution to train the classifier. We denote the augmented
features for the j-th class by {zj,i}mi=1, where zj,i ∼ P(c,pj ,µj ,Σj) (a total of m samples are
generated per class). The classifier is trained by minimizing the following cross-entropy loss function,

L(W ) =
1

n

n∑
j=1

1

m

m∑
i=1

− log
exp

(
− dc(zj,i,wj)

)∑n
j′=1 exp

(
− dc(zj,i,wj′)

) . (12)

A large value of m brings more diversity to the model, promising the model to learn the invariance of
each class. Considering m grows to infinity, the loss function is defined by the expectation of the
cross-entropy,

L∞(W ) =
1

n

n∑
j=1

Ei

[
− log

exp
(
− dc(zj,i,wj)

)∑n
j′=1 exp

(
− dc(zj,i,wj′)

)]. (13)
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Computing Eq. (13) is difficult and the computational load of if MCMC methods are used for a
large value of m. Alternatively, we derive an upper bound L∞(W ) of L∞(W ), which is easy to
compute, as shown in Proposition 1. In this case, we train the classifier by minimizing the upper
bound L∞(W ), rather than the original loss function L∞(W ).
Proposition 1. Given infinite data zj,i ∼ P(c,pj ,µj ,Σj), an upper bound of the loss function L∞
in Eq. (13) is given by

L∞(W ) =
1

n

∑n

j=1
− log

exp
(
w⊤

j (p̂j + µi)
)∑n

j′=1 exp
(
w⊤

j′(p̂j + µi) + (w⊤
j′wj′ −w⊤

j wj) +
1
2 (wj′ −wj)⊤Σj(wj′ −wj)

) ,
(14)

where pj = expmc
0(p̂j), and p̂j can be directly computed in the tangent space at the origin.

Proof. We rewrite the loss function of the infinite data augmentation in Eq. (13) as

L∞(W ) =
1

n

n∑
j=1

Ei

− log

( exp
(
− dc(zj,i,wj)

)
∑n

j′=1 exp
(
− dc(zj,i,wj′)

))


=
1

n

n∑
j=1

Ei

log( n∑
j′=1

exp
(
dc(zj,i,wj)− dc(zj,i,wj′)

))
≤ 1

n

n∑
j=1

log
( n∑

j′=1

Ei

[
exp

(
dc(zj,i,wj)− dc(zj,i,wj′)

)] )
(15a)

≤ 1

n

n∑
j=1

log
( n∑

j′=1

Ei

[
exp

(
∥zj,i −wj∥2 − ∥zj,i −wj′∥2

)] )
(15b)

=
1

n

n∑
j=1

log
( n∑

j′=1

Ei

[
exp

(
2(wj′ −wj)

⊤zj,i + (w⊤
j′wj′ −w⊤

j wj)
)] )

≤ 1

n

n∑
j=1

log

 n∑
j′=1

Ei

[
exp

(
(wj′ −wj)

⊤(p̂j + v̂j,i) + (w⊤
j′wj′ −w⊤

j wj)
)] (15c)

=
1

n

n∑
j=1

log

 n∑
j′=1

exp
(
(wj′ −wj)

⊤(p̂j + µj) + (w⊤
j′wj′ −w⊤

j wj) +
1

2
(wj′ −wj)

⊤Σj(wj′ −wj)
)

(15d)

=
1

n

n∑
j=1

− log
exp

(
wj(p̂j + µj)

)
exp

(
wj′(p̂j + µj) + (w⊤

j′wj′ −w⊤
j wj) +

1
2 (wj′ −wj)⊤Σj(wj′ −wj)

)
=L∞(W ).

Eq. (15a) follows from the Jensen’s inequality E[log(x)] ≤ logE[x]. For Eq. (15b), we define a
function f = dc(x,y)− ∥x− y∥2 and compute the derivative of f . We find f is an increasing function

when ∥x− y∥2 <

√
1+|c|−

√
|c|√

|c|
. In this case, if we have ∥zj,i −wj∥2 < ∥zj,i −wj′∥2 <

√
1+|c|−

√
|c|√

|c|
,

we can derive dc(zj,i,wj)− ∥zj,i,wj∥2 < dc(zj,i,wj′)− ∥zj,i,wj′∥2 and
∥zj,i,wj∥2 − ∥zj,i,wj′∥2 > dc(zj,i,wj)− dc(zj,i,wj′). Eq. (15c) is obtained by replac-
ing zj,i with the augmentation process using the parallel transport and exponential map, i.e.,
zj,i = expmc

pj
(PTc

0→pj
(v̂j,i)), and adding scale constraints on c, ∥v̂j,i∥, and ∥p̂j∥. Eq. (15d) is

obtained by using the moment-generating function: E[exp(x)] = exp(µ+ 1
2Σ), x ∼ N (µ,Σ). In

our derivation, (wj′ −wj)
⊤(p̂j + v̂j,i) + (w⊤

j′wj′ −w⊤
j wj) is a Gaussian vector.

Detailed derivation and implementation can be found in the supplementary materials. From this
derivation, we replace a non-Euclidean loss function with a Euclidean upper bound by adding suitable
constraints. The upper bound is easy to compute without explicit augmentation and time-consumption
hyperbolic operations, and our experimental results show that it achieves good performance (see
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Section 5). This provides an interesting research direction and feasible way for Riemannian algorithms
whose loss functions are difficult or high-cost to compute.

The classifier W is updated by the Riemannian gradient descent algorithm [45] in the process of
minimizing L∞(W ). After several iterations, we obtain the updated classifier W ∗ = [w∗

1, · · · ,w∗
n],

and test data is classified by Eq. (11).

4.5 Training

The goal of this work is to learn the gradient flow networks F1, F2, and F3. In doing so, we train
them in a meta-learning framework that simulates the practical setting by using some base data D.
In the training stage, we randomly select few data from D as the training data Dt, and the rest is
used as the validation data Dv . F1, F2, and F3 are updated via a bi-level optimization manner. In the
inner-loop, we estimate the distribution of Dt by using F1, F2, and F3, iteratively train the classifier
W by minimizing the loss function L∞, and obtain the updated classifier W ∗ = [w∗

1, · · · ,w∗
n]. We

update F1, F2, and F3 in the outer-loop by minimizing the following objective that is the loss of W ∗

on the validation data Dv ,

min
F1,F2,F3

L(W ∗) =Ex∼Dv

− n∑
j=1

1y=j log
exp

(
− dc(x,w∗

j )
)∑n

j′=1 exp
(
− dc(x,w∗

j′)
)
 ,

s.t.W ∗ = argmin
W

L∞(W )

(16)

where 1y=j is the indicator function, meaning that if the label y of x is equal to j, 1y=j = 1, and 0
otherwise. The pseudo code of training is summarized in Algorithm 2.

Algorithm 2 Training process of HFA.
Input: Base data D.
Output: Updated gradient flow networks F1, F2, F3.
1: while Not converged do
2: Randomly select few training data Dt from D,

and the rest of D is used as validation data Dv .
3: Estimate the distribution for each class in Dt by

using F1, F2, and F3 via Eq. (7).
4: while Not converged do
5: Train the classifier W using the estimated dis-

tribution via the loss function in Eq. (14).
6: end while
7: Compute the loss of the updated classifier W ∗

using the validation data Dv , and update F1, F2,
and F3 via minimizing Eq. (16).

8: end while

In the inference stage, given a task with limited
data, our method first estimates the distribution
for each class by using the learned F1, F2, and
F3, and then trains the model by using L∞.

5 Experiments

We evaluate the proposed method HFA on few-
shot learning and continual learning tasks. In
few-shot learning, data augmentation is a natu-
ral idea to overcome the deficiency of training
data [25, 26]. In continual learning, reply-based
methods have shown effectiveness in continual
learning by storing data [46, 47], yet they cannot
store much data due to the memory limitation.
We use HFA to perform augmentation for stored
limited data to solve this issue. We use common backbone networks with exponential map as the
feature extractor in the two tasks. More experiments (e.g., evaluation on graph data, visualization,
and ablation) and experimental details can be found in the supplementary materials.

5.1 Few-shot Learning

We conducted experiments on four few-shot learning datasets: mini-ImageNet [48], tiered-
ImageNet [49], CUB [7], and CIFAR-FS [50] datasets. The four datasets have hyperbolic structures,
and are commonly used to evaluate hyperbolic algorithms [3, 9, 29, 28]. We use ResNet12 and
ResNet18 as the backbone networks, and perform augmentation for the support data.

5.1.1 Main Results

We compare HFA with augmentation-based few-shot learning methods [22, 51, 25, 26, 52, 53, 54,
55, 27] on the mini-ImageNet, CUB, and CIFAR-FS datasets. These methods all augment data in
Euclidean space, while HFA performs data augmentation in the hyperbolic space. Our method brings
improvements on them, as shown in Table 1. In particular, VFSL [54] and V1-Net [25] study data
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Table 1: Accuracy (%) comparisons with Euclidean augmentation-based few-shot learning methods
on the mini-ImageNet, CUB, and CIFAR-FS datasets.

Method Backbone mini-ImageNet CUB CIFAR-FS
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

VFSL [54] ResNet12 61.23± 0.26 77.69± 0.17 - - - -
DTN [55] ResNet12 63.45± 0.86 77.91± 0.62 72.00 85.10 71.50 82.80

Ours ResNet12 66.87± 0.44 82.08± 0.31 76.75± 0.43 89.19± 0.26 72.52± 0.46 85.33± 0.33
Delta-encoder [52] VGG-16 59.9 69.7 69.80± 0.46 82.60± 0.35 66.70 79.80

SalNet [53] ResNet101 62.22± 0.87 77.95± 0.65 - - - -
Dual TriNet [22] ResNet18 58.12± 1.37 76.92± 0.69 69.61 84.10 63.41± 0.64 78.43± 0.64
IDeMe-Net [51] ResNet18 59.14± 0.86 74.63± 0.74 - - - -

V1-Net [25] ResNet18 61.05 78.60 74.76 86.84 - -
AFHN [26] ResNet18 62.38± 0.72 78.16± 0.56 70.53± 1.01 83.95± 0.63 68.32± 0.93 81.45± 0.87
TFH [27] ResNet18 65.07± 0.82 80.81± 0.61 75.76± 0.83 88.60± 0.47 74.77± 0.90 86.88± 0.59

HFA (Ours) ResNet18 68.26± 0.46 83.53± 0.28 77.25± 0.45 90.77± 0.26 75.08± 0.47 87.24± 0.33

Table 2: Accuracy (%) comparisons with popular few-shot learning methods on the mini-ImageNet
and tiered-ImageNet datasets. ‘Optim’, ‘Metric’, and ‘Aug’ denote the optimization-based, metric-
based, and augmentation-based few-shot learning methods, respectively. ‘Euclidean’ and ‘Hyperbolic’
denote the algorithm is in Euclidean space and hyperbolic space, respectively. ⋆ means that Hyper-
Proto uses ResNet18 as the backbone, while the others use ResNet12.

Method Category mini-ImageNet tiered-ImageNet
1-shot 5-shot 1-shot 5-shot

MAML [56] Euclidean Optim 51.03± 0.50 68.26± 0.47 58.58± 0.49 71.24± 0.43
L2F [57] Euclidean Optim 57.48± 0.49 74.68± 0.43 63.94± 0.84 77.61± 0.41

ALFA [58] Euclidean Optim 60.06± 0.49 77.42± 0.42 64.43± 0.49 81.77± 0.39
MeTAL [59] Euclidean Optim 59.64± 0.38 76.20± 0.19 63.89± 0.43 80.14± 0.40
CurAML [9] Hyperbolic Optim 63.13± 0.41 81.04± 0.39 68.46± 0.56 83.84± 0.40
ProtoNet [60] Euclidean Metric 56.52± 0.45 74.28± 0.20 53.51± 0.89 72.69± 0.74

MetaOptNet [61] Euclidean Metric 62.64± 0.61 78.63± 0.46 65.99± 0.72 81.56± 0.53
DSN [62] Euclidean Metric 62.64± 0.66 78.83± 0.45 66.22± 0.75 82.79± 0.48
FEAT [8] Euclidean Metric 66.78± 0.20 82.05± 0.14 70.80± 0.23 84.79± 0.16

HyperProto⋆ [3] Hyperbolic Metric 59.47± 0.20 76.84± 0.14 - -
w/o Aug Hyperbolic - 64.75± 0.35 79.84± 0.20 68.57± 0.49 82.22± 0.39
Inf Aug Hyperbolic Aug 65.12± 0.45 80.78± 0.32 70.22± 0.50 84.51± 0.37

Neural ODE + Aug 5 samples Hyperbolic Aug 65.54± 0.46 80.96± 0.31 69.32± 0.53 83.21± 0.35
HFA (Ours) (Neural ODE + Inf Aug) Hyperbolic Aug 66.87± 0.44 82.08± 0.31 71.62± 0.49 85.47± 0.35

augmentation in the Euclidean feature space, while our method has better performance. For example,
on the mini-ImageNet dataset using ResNet12, our method improves VFSL by 5.64% and 4.39%
in the 1-shot and 5-shot tasks, respectively. The main reason is that augmentation in the hyperbolic
space preserves the hierarchical structures of data and avoids the undesirable data distortion. Results
on Resnet18 indicate the superiority of our method again, demonstrating the significance of data
augmentation in the hyperbolic space.

We then compare HFA with popular optimization-based and metric-based few-shot learning methods
on the mini-ImageNet and tiered-ImageNet datasets. Results are shown in Table 2. L2F [57],
ALFA [58], MeTAL [59], and CurAML [9] are state-of-the-art optimization-based methods. Similar
to them, the adaptation to new tasks of HFA is also achieved by an optimization process. Our
method improves them by 3% on the 1-shot task and 1%− 2% on the 5-shot task. Compared with
metric-based methods, including HyperProto [3], MetaOptNet [61], DSN [62], and FEAT [8], Our
method performs competitively or even exceeds some methods. Note that CurAML and HyperProto
are both few-shot learning methods in the hyperbolic space, and our better performance suggests that
our data augmentation can actually improve the model in scarce data regimes.

5.1.2 Ablation

We conduct ablation experiments to show effectiveness of our neural ODE and the derived upper
bound of the augmentation loss. We first denote ‘not performing any augmentation’ as ‘w/o aug’,
where we directly use the given data to train the classifier. Then, we perform infinite augmentation,
where the curvature is tuned manually, and the mean and covariance matrix are directly computed
from the given data, denoted by ‘Inf Aug’. Next, we use the neural ODE to estimate the distribution,
and generate 5 samples for each class, denoted by ‘Neural ODE + Aug 5 samples’. Finally, based
on the estimated distribution, we perform infinite augmentation, denoted by ‘Neural ODE + Inf
Aug’. Results are shown in Table 2. We find that ‘Inf Aug’ has better performance than ‘w/o aug’,
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Figure 3: Visualization of augmentation data.
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Figure 4: Top-1 accuracy on CIFAR-100 in continual learning.

showing that the infinite augmentation improves the generalization ability in the hyperbolic space.
Using neural ODE further improves the performance on the two datasets. The reason is that directly
computing the mean and covariance matrix from limited data results in imprecise distributions. In
contrast, our neural ODE makes a better approximation to the real distribution.

5.1.3 Visualization

We first plot the estimated distribution in mini-ImageNet by sampling augmented features, where
the MDS and t-SNE dimensionality reduction methods are used. Then, we use a reverse mapping
algorithm [12] to search images corresponding to the augmented features for intuitive visualization.
Results are shown in Figure 3. In the left panel, when training data is biased, our method well
approximates the real distribution, building a robust decision boundary for classification. In the right
panel, generated data has much diversities (e.g., background and object posture) while preserving the
class-identity.

5.2 Continual Learning

We use the CIFAR-100 dataset [50] with 100 classes. We evaluate HFA on two settings: 50 + 5× 10
and 50 + 10× 5. For example, 50 + 5× 10 means that the first task contains 50 classes, and there
are 10 following tasks with each one having 5 classes. We use ResNet18 as the backbone, and the
model is updated by a cross-entropy loss on current data, an infinite augmentation loss on stored
data, and a distillation loss. HFA stores 20 samples for each class, which is the same as replay-based
methods [63, 64, 65]. Comparisons with MAS [66], LwF-MC [63], LwM [67], MUC [68], IL2A [69],
iCaRL [63], EEIL [64], and LUCIR [65] are shown in Figure 4. Meanwhile, an ablation experiment
where augmentation is not performed is denoted by ‘H w/o aug’. Our method has better performance
than replay based methods [63, 64, 65]. The reason is that our method is capable of estimating the
distribution from few data, and thus leads to diverse and discriminative augmentation for stored data,
making the model more reliable. In addition, our method performs better than the augmentation-based
method IL2A [69]. This suggests that modeling data in the hyperbolic space is more discriminative,
and performing augmentation in the hyperbolic space can further leads to a robust model.
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6 Conclusions

In this paper, we have presented a hyperbolic feature augmentation (HFA) method that generates
diverse and discriminative features to overcome overfitting in the hyperbolic space. The introduced
meta-neural-ODE distribution estimation scheme can precisely approximate the real distribution
in scarce data regimes. The derived upper bound of the augmentation loss makes an efficient
augmentation algorithm in the hyperbolic space, which not only leads to much diversity of data but
also reduces much computational load. Experiments in few-shot learning and continual learning tasks
show that our method can improve the generalization of hyperbolic algorithms in scarce data regimes.
In this work, we assume that data has a uniform hierarchical structure and use a single hyperbolic
space for each task. Actually, real-world data may have complex hierarchical structures with varying
local structures. In the future, we will study data augmentation in product manifolds to tackle such
complex data.
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