
Table 2: Statistics of the datasets. “Pos. (%)” column indicates the ratio of positive labels (i.e. “blond
hair” for CelebA, “toxic” for Civil Comments). We use “Tr.”, “Tun.”, “Val.” and “test.” columns
to indicate the size of training set, tuning set, validation set and testing set. “Demographics” column
indicates the considered demographics in each dataset.

Dataset Task Pos. (%) Tr. Tun. Val. Test. Demographics

CelebA Hair color recognition 17.4 161143 1627 19867 19962 Gender
Civil Comments Toxicity classification 11.3 223858 45180 45180 133782 Gender, Sex orientation, Race, Religion

A Experiment Setup

A.1 Dataset Details

The dataset splitting setting and demographic information of the datasets are shown in Tab. 2.

A.2 Training Details

We specify the different � values used to generate the curves in Figs. 3 and Figs. 5 in Tab. 3.

For Civil Comments in Figs 4 and 9, we set � = 0.5 for ADVPOST, � = 50.0 for FAIRREPROGRAM
(SOFT) and � = 1000.0 for FAIRREPROGRAM (HARD) with the DP measure; we set � = 1.0 for
ADVPOST and � = 50.0 for both of our methods with the EO measure.

For CelebA in Fig. 4 and Fig. 9, we set � = 1.0 for FAIRREPROGRAM (BORDER) and FAIRRE-
PROGRAM (PATCH) with DP and we set � = 10.0 for both with EO. By default, the trigger size
of FAIRREPROGRAM (BORDER) is set to 20, which corresponds to the width of the trigger frame.
The trigger size of FAIRREPROGRAM (PATCH) is fixed to 80, namely the width of the trigger block
attached to the original input image. For ADVIN and ADVPOST, the � is set to 0.1 in the setting with
DP and � is fixed to 0.5 for training with EO. The value of � is selected so that different methods
achieve comparable bias scores.
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B Additional Experiment Results

B.1 Experiments with Additional Post-processing Baselines

Table 3: Numerical results with standard derivation on Civil Comments and CelebA shown in Fig. 3. All
reported results are the average of three different random runs. We report the negative DP and the negative
EO scores correspondingly for the “Fairness” column. Note that the best models are also selected based on
corresponding fairness measures.

Method
Civil Comments CelebA

Demographic parity Equalized odds Demographic parity Equalized odds
� Accuracy Fairness � Accuracy Fairness � Accuracy Fairness � Accuracy Fairness

ERM - 0.922±0.004 −0.036±0.005 - 0.923±0.004 −0.054±0.025 - 0.961±0.004 −0.094±0.002 - 0.961±0.004 −0.231±0.008

ADVIN

0.0 0.926±0.004 −0.036±0.025 0.0 0.919±0.004 −0.033±0.005 0.01 0.944±0.007 −0.084±0.004 0.1 0.952±0.005 −0.181±0.009
0.1 0.899±0.014 −0.016±0.004 0.1 0.899±0.006 −0.016±0.009 0.05 0.938±0.005 −0.085±0.007 0.3 0.941±0.002 −0.177±0.014
0.5 0.905±0.003 −0.018±0.035 1.0 0.919±0.006 −0.023±0.002 0.1 0.932±0.006 −0.072±0.005 0.5 0.936±0.005 −0.175±0.012
5.0 0.889±0.007 −0.001±0.039 5.0 0.889±0.005 −0.001±0.007 0.2 0.911±0.003 −0.071±0.009 1.0 0.913±0.007 −0.168±0.009

20.0 0.888±0.023 −0.000±0.039 20.0 0.888±0.009 −0.000±0.006 0.3 0.897±0.002 −0.064±0.002 2.0 0.901±0.004 −0.153±0.007

ADVPOST

0.0 0.923±0.003 −0.035±0.019 0.0 0.921±0.005 −0.055±0.004 0.01 0.959±0.004 −0.097±0.004 0.1 0.947±0.003 −0209.±0.007
0.1 0.925±0.002 −0.043±0.011 0.2 0.925±0.002 −0.045±0.002 0.05 0.947±0.009 −0.083±0.005 0.3 0.931±0.005 −0.201±0.011
0.5 0.909±0.011 −0.007±0.032 0.4 0.925±0.002 −0.041±0.004 0.1 0.931±0.009 −0.074±0.007 0.5 0.918±0.004 −0.168±0.015
1.0 0.888±0.022 −0.000±0.033 0.7 0.924±0.002 −0.042±0.005 0.2 0.917±0.003 −0.069±0.005 1.0 0.911±0.008 −0.165±0.011
5.0 0.888±0.022 −0.000±0.033 1.0 0.888±0.022 −0.000±0.028 0.3 0.873±0.002 −0.058±0.002 2.0 0.899±0.002 −0.141±0.013

EQODDS - 0.913±0.005 −0.032±0.020 - 0.915±0.003 −0.031±0.005 - 0.919±0.009 −0.047±0.005 - 0.919±0.009 −0.172±0.009
CALIEQODDS - 0.922±0.003 −0.044±0.023 - 0.922±0.004 −0.057±0.011 - 0.927±0.007 −0.053±0.005 - 0.927±0.007 −0.169±0.018

REJECTOPTION - 0.886±0.028 −0.152±0.052 - 0.874±0.017 −0.101±0.002 - 0.934±0.003 −0.089±0.004 - 0.934±0.003 −0.189±0.015
DIREMOVER - 0.917±0.008 −0.017±0.017 - 0.922±0.003 −0.034±0.003 - 0.959±0.004 −0.086±0.003 - 0.959±0.004 −0.183±0.014

FAIRREPROGRAM
(SOFT / BORDER)

0.0 0.919±0.005 −0.018±0.021 0.0 0.920±0.004 −0.040±0.002 0.1 0.961±0.002 −0.093±0.005 2.0 0.961±0.005 −0.171±0.005
0.5 0.911±0.007 −0.012±0.018 0.1 0.916±0.007 −0.026±0.007 0.5 0.959±0.005 −0.087±0.006 5.0 0.951±0.007 −0.167±0.004
5.0 0.913±0.008 −0.009±0.011 10.0 0.918±0.005 −0.042±0.006 1.0 0.952±0.007 −0.078±0.005 10.0 0.933±0.003 −0.163±0.003

20.0 0.901±0.014 −0.005±0.023 20.0 0.917±0.006 −0.025±0.012 2.0 0.929±0.003 −0.075±0.004 20.0 0.926±0.004 −0.162±0.005
100.0 0.907±0.011 −0.001±0.003 50.0 0.917±0.004 −0.011±0.010 5.0 0.911±0.002 −0.072±0.002 30.0 0.918±0.002 −0.161±0.003

FAIRREPROGRAM
(HARD / PATCH)

0.0 0.908±0.008 −0.010±0.016 0.0 0.920±0.007 −0.039±0.001 0.1 0.955±0.004 −0.088±0.004 2.0 0.955±0.004 −0.178±0.011
0.1 0.908±0.011 −0.008±0.022 20.0 0.918±0.005 −0.034±0.002 0.5 0.950±0.005 −0.078±0.007 5.0 0.946±0.008 −0.161±0.009

10.0 0.906±0.012 −0.007±0.019 200.0 0.907±0.015 −0.023±0.017 1.0 0.934±0.005 −0.060±0.003 10.0 0.934±0.004 −0.152±0.007
30.0 0.894±0.017 −0.003±0.021 600.0 0.902±0.013 −0.016±0.014 2.0 0.917±0.003 −0.040±0.008 20.0 0.917±0.002 −0.139±0.012

100.0 0.893±0.015 −0.002±0.017 1200.0 0.901±0.017 −0.014±0.011 5.0 0.890±0.001 −0.019±0.002 30.0 0.890±0.001 −0.121±0.005

We further compare our method with four extra post-processing fairness-promoting baselines.

● EQODDS [22]: Method that alters model predictions to meet equalized odds by solving a linear
program.

● CALIEQODDS [71]: Method that optimizes the model outputs to achieve a relaxed equalized odds
objective together with calibration with information withholding.

● REJECTOPTION [27]: Method that tunes model outputs with more favorable labels to minority
groups (vice versa) in the low confidence region of classifiers to achieve better demographic parity.

● DIREMOVER [72]: Disparate impact remover is proposed as a pre-processing fairness promoting
method, which modifies input features with rank-ordering preserving operations. We simply apply
the method to modify model predictions as a post-processing method to promote demographic parity.

EQODDS, CALIEQODDS and REJECTOPTION are trained on the tuning set and then applied on
testing set while DIREMOVER directly tune the model predictions on the testing set. We use the
implementation [73] for all four baselines.

The results can be seen in Table 3. We see that our method consistently outperforms these baselines
with improved fairness-accuracy trade-off. For example, we see that FAIRREPROGRAM (BORDER)
can achieve -0.167 negative EO and 0.951 accuracy in CelebA with � = 5.0. By contrast, the best-
performing post-processing baseline achieves much worse accuracy (0.927). Similar comparisons
can also be seen in Civil Comments, where the best post-processing baseline can achieve -0.031
negative EO score and 0.915 accuracy, while our method FAIRREPROGRAM (SOFT) can achieve
-0.011 negative EO with 0.917 accuracy with � = 50.0.

B.2 Experiments with Additional MMD Baselines

To partial out the instability of the adversarial training, we further compare our method with MMD
method, where the adversarial loss Lfair in Eq. (3) is replaced with the Maximum Mean Discrepancy
regularization [70]. Specifically, we consider MMDIN and MMDPOST, where model parameters
are trained from scratch in an in-processing manner and fine-tuned in a post-processing manner,
respectively, following the settings for adversarial training in Section 4.1. The experiment results
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on the Civil Comments dataset are presented in Fig. 10. As we can see, our proposed method
FAIRREPROGRAM outperforms the MMD baselines, which can alleviate the concern that fairness
reprogramming has a better performance simply because of the instability of adversarial training of
the baselines.

(a) (b)
Figure 10: Results on Civil Comments with the new MMD baseline. We report the negative DP (left) and
the negative EO (right) scores. For each method, we vary the trade-off parameter � (as shown in (3)) to record
the performance. The closer a dot to the upper-right corner, the better the model is. We consider four different
�s for each method. The solid curve is the fitted polynomial with order 30.

B.3 Black-box FAIRREPROGRAM Generation

Previous experiments are all based on the white-box setting, which assumes access to the complete
model information, such as model architectures and parameters. This precludes the use case of
reprogramming a well-trained but access-limited model, e.g., a commercial APIs or other query-based
software [9]. Thus, we further explore the feasibility of our method in the black-box setup [9, 74],
where the gradients of the pre-trained model are estimated using only function queries. We follow
the general black-box setting in [9] and adopt a query number of 30. The results are summarized
in Fig. 11. As we can see, out algorithm can still improve the fairness without the knowledge of
the model information. However, in such a case, the gain in fairness would sacrifice the accuracy
largely when compared to our baselines. While in the future work, we will try to mitigate such
degradation using more query numbers[9] and coordinate gradient estimation (CGE) [74] to achieve
more accurate gradient estimation.

Figure 11: Performance of FAIRREPROGRAM in the black-box setting. The left Performance of the triggers
trained in the black-box setting. Both the reprogrammer and the adversary are trained with query-based estimated
gradients. Different data samples represent different

B.4 Results with Standard Derivation

The numerical results in Figs. 3, 4 and 9 with standard derivation are correspondingly presented in
Tabs 3, 4 and 5.

B.5 Transfer experiments with different tasks and model architectures

We further test the transferability of reprogramming to different tasks and model architectures as
shown in Fig. 12. Specifically, for transfer setting, the reprogram is optimized on the (ResNet-18,
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Table 4: Numerical results with standard derivation on Civil Comments and CelebA with different tuning
data ratio, corresponding to Fig. 4. All reported results are the average of three different random runs. We report
the negative DP and the negative EO scores correspondingly for the “Fairness” column. We consider a fixed
BASE model trained with the training set, whose negative bias scores are presented as a black dashed line. Then
we train other methods with different tuning data ratios to promote fairness of the BASE model.

Method Tuning Data Ratio
Civil Comments CelebA

Demographic parity Equalized odds Demographic parity Equalized odds
Accuracy Fairness Accuracy Fairness Accuracy Fairness Accuracy Fairness

ERM - 0.922±0.004 −0.036±0.025 0.923±0.004 −0.054±0.005 0.961±0.004 −0.094±0.002 0.961±0.004 −0.231±0.008

ADVPOST

1.0 0.909±0.011 −0.007±0.032 0.888±0.022 −0.000±0.028 0.908±0.005 −0.067±0.005 0.905±0.004 −0.150±0.007
0.5 0.923±0.005 −0.044±0.009 0.919±0.005 −0.053±0.008 0.915±0.007 −0.069±0.007 0.911±0.006 −0.162±0.013
0.2 0.923±0.004 −0.038±0.017 0.919±0.006 −0.061±0.004 0.939±0.002 −0.075±0.006 0.929±0.005 −0.171±0.010
0.1 0.917±0.007 −0.038±0.015 0.918±0.011 −0.056±0.013 0.943±0.003 −0.083±0.004 0.933±0.007 −0.178±0.008

0.01 0.922±0.002 −0.041±0.014 0.920±0.010 −0.060±0.014 0.948±0.005 −0.089±0.005 0.948±0.003 −0.202±0.012
0.001 0.917±0.005 −0.083±0.018 0.921±0.006 −0.060±0.009 0.951±0.007 −0.091±0.005 0.955±0.002 −0.229±0.005

FAIRREPROGRAM
(SOFT/BORDER)

1.0 0.917±0.003 −0.002±0.001 0.917±0.004 −0.011±0.010 0.935±0.003 −0.066±0.003 0.907±0.004 −0.153±0.009
0.5 0.905±0.009 −0.002±0.004 0.922±0.005 −0.018±0.013 0.941±0.003 −0.070±0.003 0.937±0.003 −0.162±0.008
0.2 0.911±0.013 −0.002±0.006 0.917±0.008 −0.017±0.011 0.947±0.003 −0.074±0.005 0.935±0.005 −0.162±0.011
0.1 0.905±0.010 −0.001±0.005 0.917±0.000 −0.025±0.007 0.951±0.005 −0.079±0.004 0.951±0.006 −0.177±0.009

0.01 0.911±0.007 −0.003±0.004 0.918±0.005 −0.033±0.017 0.958±0.003 −0.087±0.002 0.959±0.003 −0.197±0.003
0.001 0.908±0.176 −0.009±0.042 0.921±0.181 −0.044±0.013 0.957±0.008 −0.091±0.003 0.959±0.002 −0.221±0.008

FAIRREPROGRAM
(HARD/PATCH)

1.0 0.897±0.012 −0.005±0.004 0.905±0.006 −0.009±0.007 0.938±0.005 −0.065±0.014 0.931±0.002 −0.154±0.004
0.5 0.905±0.014 −0.006±0.026 0.917±0.006 −0.028±0.007 0.932±0.002 −0.062±0.002 0.937±0.004 −0.164±0.006
0.2 0.902±0.013 −0.006±0.017 0.909±0.020 −0.025±0.020 0.941±0.003 −0.073±0.005 0.945±0.005 −0.166±0.013
0.1 0.900±0.014 −0.005±0.016 0.909±0.008 −0.024±0.011 0.948±0.006 −0.079±0.003 0.951±0.002 −0.183±0.008

0.01 0.896±0.013 −0.004±0.010 0.918±0.003 −0.035±0.005 0.967±0.007 −0.087±0.004 0.955±0.004 −0.192±0.010
0.001 0.907±0.007 −0.008±0.012 0.921±0.000 −0.042±0.001 0.955±0.004 −0.089±0.005 0.958±0.005 −0.228±0.013

Table 5: Numerical results with standard derivation on Civil Comments and CelebA with different trigger size,
corresponding to Fig. 9. We evaluate the bias scores with different trigger word numbers (Civil Comments)
and different trigger size (CelebA) with fixed adversary weight �. All reported results are the average of three
random runs. We report the negative DP and the negative EO scores correspondingly for the “Fairness” column.

Method Trigger Size
Civil Comments

Trigger Size
CelebA

Demographic parity Equalized odds Demographic parity Equalized odds
Accuracy Fairness Accuracy Fairness Accuracy Fairness Accuracy Fairness

ERM - 0.922±0.004 −0.036±0.025 0.923±0.004 −0.054±0.005 - 0.961±0.004 −0.094±0.002 0.961±0.004 −0.231±0.008

FAIRREPROGRAM
(SOFT/BORDER)

20 0.890±0.011 −0.001±0.000 0.910±0.005 −0.004±0.001 30 0.914±0.002 −0.054±0.008 0.903±0.005 −0.155±0.005
10 0.906±0.004 −0.002±0.001 0.906±0.004 −0.009±0.010 25 0.933±0.003 −0.061±0.006 0.917±0.003 −0.162±0.009
5 0.917±0.003 −0.002±0.001 0.917±0.004 −0.011±0.010 20 0.939±0.006 −0.070±0.009 0.923±0.007 −0.170±0.008
2 0.912±0.002 −0.007±0.001 0.921±0.002 −0.038±0.009 15 0.943±0.004 −0.074±0.06 0.951±0.004 −0.189±0.011
1 0.917±0.001 −0.011±0.000 0.920±0.000 −0.051±0.002 10 0.951±0.004 −0.081±0.008 0.958±0.008 −0.222±0.012

FAIRREPROGRAM
(HARD/PATCH)

20 0.890±0.002 −0.001±0.001 0.892±0.001 −0.005±0.005 70 0.912±0.005 −0.048±0.005 0.932±0.003 −0.151±0.006
10 0.891±0.009 −0.001±0.003 0.901±0.002 −0.016±0.005 60 0.937±0.008 −0.056±0.004 0.947±0.004 −0.160±0.011
5 0.897±0.012 −0.005±0.004 0.905±0.006 −0.009±0.007 50 0.935±0.002 −0.061±0.008 0.954±0.004 −0.172±0.012
2 0.905±0.007 −0.006±0.005 0.911±0.002 −0.030±0.007 40 0.944±0.006 −0.074±0.010 0.959±0.008 −0.191±0.009
1 0.913±0.002 −0.012±0.001 0.921±0.003 −0.051±0.001 30 0.958±0.004 −0.091±0.007 0.958±0.002 −0.204±0.013

CelebA) with the task of predicting the hair color, and evaluated on (ResNet-20, CelebA) with
the task of predicting smiling. For both tasks, the attribute gender is chosen as the demographic
information throughout the experiments. We can see that the trigger still has good transferability with
different model architectures. Meanwhile, we find that the triggers are able to boost the fairness of
the model in the task-transfer setting, but the accuracy is traded off more than the original setting.

B.6 Experiments on Reprogramming Tabular Data

We show that FAIRREPROGRAM could also be applied to tabular data. For reprogramming, there
are many ways to design triggers according to different tasks and requirements. Unlike NLP, where
we append the trigger to the input or embeddings, the model for tabular data is sensitive to the input
size. As the tabular data have a fixed input size, we can directly apply the additive trigger to the
input data to keep the input dimension unchanged (i.e., adding a perturbation on the original input),
just as we adopted in image domains in Fig. 1.b. To verify our argument, we conducted additional
experiments on the UCI Adult dataset [75] with a two-layer MLP model, and the results are shown in
Fig. 13. Our method achieves comparable debiasing performance with the post-processing adversarial
training method without modifying any model parameters. The results suggest that our method could
effectively improve model fairness for tabular data.
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(a) (b)
Figure 12: Results of the transferability experiment on CelebA dataset with different tasks and model architec-
tures. In each figure, we compare the reprogramming in the transferred setting (curves denoted with ‘transfer’)
with the reprogram directly trained on the target task. For transfer setting, the reprogram is optimized on the
(ResNet-18, CelebA) with the task of predicting the hair color, and evaluated on (ResNet-20, CelebA) with
the task of predicting smiling. For both tasks, the attribute gender is chosen as the demographic information
throughout the experiments.

(a) (b)
Figure 13: Results on Adult. We report the negative DP (left) and the negative EO (right) scores. For each
method, we vary the trade-off parameter � (as shown in (3)) to record the performance. The closer a dot to the
upper-right corner, the better the model is. We consider six different �s for each method. The solid curve is the
fitted polynomial with order 30.

C Theoretical Proofs

In this section, we will provide formal proofs to the claims and theorem in the main paper.

C.1 Sufficient Statistics

We will show that pY (⋅�X(y)) and pZ(⋅�X(z)) are the sufficient statistics of X(y) and X(z) respectively
for inferring Y . Formally, what we need to show is

p(Y �X(y)) = p(Y �pY (⋅�X(y))) (9)

and
p(Y �X(z)) = p(Y �pZ(⋅�X(z))) (10)

Eq. (9) is an identity. To show Eq. (10):

p(Y �X(z)) = EZ∼pZ(⋅�X(z))[p(Y �Z,X(z))]
= EZ∼pZ(⋅�X(z))[p(Y �Z, pZ(⋅�X(z)))]
= EZ∼pZ(⋅�pZ(⋅�X(z)))[p(Y �Z, pZ(⋅�X(z)))]
= p(Y �pZ(⋅�X(z))).

The second equality is because Y and X(z) are independent conditional on Z, so replacing X(z) with
any functions of X(z) would not change the conditional probability. The third equality is implied
from the identity p(Z �X(z)) = p(Z �pZ(⋅�X(z))).
Using the sufficient statistics, it is very easy to show that p(Y �X) is a special case of Eq. (6):

p(Y �X) = p(Y �X(y)
,X(z)) = p(Y �pY (⋅�X(y)), pZ(⋅�X(z))).

21



C.2 Proof to Thm. 1

We first provide the regularity conditions as stated in Thm. 1.

1. Conditional Independence. The features in X(y) and X(z) are independent and identically
distributed conditional on Y and Z respectively.

p
tr(X(y)�Y ) =�

t

p
tr(X(y)

t �Y ), p
tr(X(z)�Z) =�

t

p
tr(X(z)

t �Z). (11)

2. Infrequent Strong Demographic Features. The probability of occurrence of features that are
very strongly indicative against a certain demographic group is low. Formally ∀z, ∀" > 0,∃� > 0, such that define

S(�) = {x(z) ∈ X (z) ∶ p(Z = z�X(z) = x(z)) ≤ �}, (12)

we have
p(X(z) ∈ S(�)) ≤ ". (13)

3. Continuous Classifier. h(⋅, ⋅) is continuous with respect to both arguments.

With these assumptions, we will state the following lemma.
Lemma 1.1. Consider the case where Z takes on K different values, i.e., there are K demographic
groups. Then

lim
ptr(Z=z�X(z)

0 =�)→1

H(Z �h(ptrY (⋅�X(y)), ptrZ (⋅�X(z) = X̃(z))), Y ) =H(Z �h(ptrY (⋅�X(y)), c), Y ), (14)

where c is a K-dimensional one-hot vector with the z-th dimension equal to 1 and 0 elsewhere.

Proof. According to Assumption 2 (Eq. (13)),

∀" > 0, ∃0 < � < 1, p(X(z) ∈ S(�)) ≤ "

4H(Z) , (15)

where S(�) is defined in Eq. (12). On the other hand, consider the following composite function

H(Z �h(ptrY (⋅�X(y)), ptrZ (⋅�X(z) = [�,x(z)])), Y ). (16)

Note that this is different from H(Z �h(ptrY (⋅�X(y)), ptrZ (⋅�X(z) = X̃(z))), Y ), which is essentially the
expectation of Eq. (16) over different values of x(z).
Since the conditional entropy is continuous and bounded, and h(⋅, ⋅) is continuous over both of
its arguments with finite support, Eq. (16) is uniformly continuous with respect to p

tr
Z (⋅�X(z))).

Therefore, given the aforementioned ",

∃0 < ⌘ < 1, ∀�,x(z) s.t. �pZ(⋅�X(z) = [�,x(z)]) − c�1 ≤ ⌘
⇒ �H(Z �h(ptrY (⋅�X(y)), ptrZ (⋅�X(z) = [�,x(z)])), Y ) −H(Z �h(ptrY (⋅�X(y)), c), Y )� ≤ "

2
.

(17)

Now, divide the support of X(z) into two disjoint sets. For notational conciseness, define

r(x(z)) =max
z′≠z

p
tr(Z = z′)ptr(X(z) = x(z)�Z = z′)
ptr(Z = z)ptr(X(z) = x(z)�Z = z) . (18)

Then the two sets, denoted as A and B respectively, are divided according to whether r(x(z)) exceeds
a threshold, i.e.

A = {x(z) ∈ X (z) ∶ r(x(z)) ≤ �−1 − 1}, B = {x(z) ∈ X (z) ∶ r(x(z)) > �−1 − 1}. (19)

∀x(z) ∈ A, define

⇣ = 1 − � (1 − ⌘�2)−1 − 1(K − 1)(�−1 − 1)G + 1�
−1

, where G =max
z′≠z

p(Z = z)
p(Z = z′) . (20)

Then we will show that
∀x(z) ∈ A,∀� s.t. ptr(Z = z�X(z)

0 = �) ≥ 1 − ⇣ ⇒ �ptrZ (⋅�X(z) = [�,x(z)]) − c�1 ≤ ⌘, (21)
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and hence Eq. (17) holds. This is because, according to the Bayesian rule,

p
tr(Z = z�X(z)

0 = �) = p
tr(Z = z)ptr(X(z)

0 = ��Z = z)
∑z′≠z ptr(Z = z′)ptr(X(z)

0 = ��Z = z′) . (22)

Therefore

p
tr(Z = z�X(z)

0 = �) ≥ 1 − ⇣ ⇒ 1 + �
z′≠z

p
tr(Z = z′)ptr(X(z)

0 = ��Z = z′)
ptr(Z = z)ptr(X(z)

0 = ��Z = z) ≤ (1 − ⇣)
−1

⇒ p
tr(Z = z′)ptr(X(z)

0 = ��Z = z′)
ptr(Z = z)ptr(X(z)

0 = ��Z = z) ≤ (1 − ⇣)
−1 − 1,∀z′ ≠ z

⇒ p
tr(X(z)

0 = ��Z = z′)
ptr(X(z)

0 = ��Z = z) ≤ G[(1 − ⇣)
−1 − 1],∀z′ ≠ z.

(23)

As a result,

p
tr(Z = z�X(z) = [�,x(z)])−1 = 1 + �

z′≠z
p
tr(Z = z′)ptr(X(z) = x(z)�Z = z′)ptr(X(z)

0 = ��Z = z′)
ptr(Z = z)ptr(X(z) = x(z)�Z = z)ptr(X(z)

0 = ��Z = z)
≤ 1 + r(xz) �

z′≠z
p
tr(X(z)

0 = ��Z = z′)
ptr(X(z)

0 = ��Z = z)
≤ 1 + (�−1 − 1) �

z′≠z
p
tr(X(z)

0 = ��Z = z′)
ptr(X(z)

0 = ��Z = z)
≤ 1 + (�−1 − 1)(K − 1)G[(1 − ⇣)−1 − 1] = (1 − ⌘�2)−1,

(24)

where the first line is implied from the Bayesian rule and assumption 1 (similar to Eq. (22)); the
second line is implied from the definition of r(xz) as in Eq. (18); the third line is due to the definition
of set A as in Eq. (19) (note that the scope of Eq. (21) is confined to ∀x(z) ∈ A); the last line is
implied from Eq. (23) and the definition of ⇣ as in Eq. (20).

It then follows that

�ptrZ (⋅�X(z) = [�,x(z)]) − c�1 = 1 − ptr(Z = z�X(z)) + �
z′≠′

p
tr(Z = z′�X(z))

= 2(1 − ptr(Z = z�X(z)))
≤ ⌘,

(25)

where the first line is implied from the definition of the one-hot vector c as well as the fact that the
probability mass function is alwasy between 0 and 1; the second line is given by the fact that any
probability mass functions sum to 1; and the last line is given by Eq. (24). This concludes the proof
to Eq. (21).

Next, notice that

H(Z �h(ptrY (⋅�X(y)), ptrZ (⋅�X(z) = X̃(z))), Y )
= �

x(z)∈X (z)
H(Z �h(ptrY (⋅�X(y)), ptrZ (⋅�X(z) = [�,x(z)])), Y )p(X(z) = x(z))

= �
x(z)∈A

H(Z �h(ptrY (⋅�X(y)), ptrZ (⋅�X(z) = [�,x(z)])), Y )p(X(z) = x(z))
+ �

x(z)∈B
H(Z �h(ptrY (⋅�X(y)), ptrZ (⋅�X(z) = [�,x(z)])), Y )p(X(z) = x(z)).

(26)

Thus

�H(Z �h(ptrY (⋅�X(y)), ptrZ (⋅�X(z) − X̃(z))), Y ) −H(Z �h(ptrY (⋅�X(y)), c), Y )�
= �

x(z)∈A
�H(Z �h(ptrY (⋅�X(y)), ptrZ (⋅�X(z) = [�,x(z)])), Y ) −H(Z �h(ptrY (⋅�X(y)), c), Y )�p(X(z) = x(z))

+ �
x(z)∈B

�H(Z �h(ptrY (⋅�X(y)), ptrZ (⋅�X(z) = [�,x(z)])), Y ) −H(Z �h(ptrY (⋅�X(y)), c), Y )�p(X(z) = x(z))
(27)
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In the following, we will bound the two terms respectively. For the first term in Eq. (27), Eq. (21)
applies because x(z) ∈ A. Therefore, according to Eq. (21) and (17), when p

tr(Z = z�X(z)
0 = �) ≥ 1−⇣,

we have

�
x(z)∈A

�H(Z �h(ptrY (⋅�X(y)), ptrZ (⋅�X(z) = [�,x(z)])), Y ) −H(Z �h(ptrY (⋅�X(y)), c), Y )�p(X(z) = x(z))
≤ �

x(z)∈A
"

2
p(X(z) = x(z)) ≤ "

2
.

(28)
For the second term, notice that when x(z) ∈ B, r(x(z)) > �−1−1 (according to Eq. (19)). So it follows
that

p(Z = z�X(z) = x(z))(−1) = 1 + �
z′≠z

p
tr(Z = z′)ptr(X(z)

0 = ��Z = z′)
ptr(Z = z)ptr(X(z)

0 = ��Z = z)
≥ 1 + r(x(z)) ≥ �−1

(29)

According to (15), this implies

p(X(z) ∈ B) ≤ p(X(z) ∈ S(�)) ≤ "

4H(Z) , (30)

and further

�
x(z)∈B

�H(Z �h(ptrY (⋅�X(y)), ptrZ (⋅�X(z) = [�,x(z)])), Y ) −H(Z �h(ptrY (⋅�X(y)), c), Y )�p(X(z) = x(z))
≤�H(Z �h(ptrY (⋅�X(y)), ptrZ (⋅�X(z) = [�,x(z)])), Y ) +H(Z �h(ptrY (⋅�X(y)), c), Y )�p(X(z) = x(z))
≤2H(Z)p(X(z) = x(z)) ≤ "

2
.

(31)
Plugging Eqs. (28) and (31) into Eq. (27), we can finally establish that ∀" > 0, ∃⇣ > 0 (one possible ⇣

as defined in Eq. (20)), when p
tr(Z = z�X(z)

0 = �) ≥ 1 − ⇣, we have

�H(Z �h(ptrY (⋅�X(y)), ptrZ (⋅�X(z) − X̃(z))), Y ) −H(Z �h(ptrY (⋅�X(y)), c), Y )� ≤ ". (32)

Hence this concludes the proof to Lemma 1.1.

With Lemma 1.1, we are ready to prove Thm 1.

Proof. Note that

H(Z �h(ptrY (⋅�X(y)), c), Y ) ≥H(Z �ptrY (⋅�X(y)), Y ) =H(Z �Y ). (33)

The inequality sign is given by the data processing inequality; the equality is given by the fact that Z
and X(y) are independent conditional on Y . On the other hand,

H(Z �h(ptrY (⋅�X(y)), c), Y ) ≤H(Z �Y ). (34)

Combining Eqs. (33) and (34), we have

H(Z �h(ptrY (⋅�X(y)), c), Y ) =H(Z �Y ). (35)

According to Lemma 1.1, when p
tr(Z = z�X(z)

0 = �)→ 1,

H(Z �h(ptrY (⋅�X(y)), ptrZ (⋅�X(z) = X̃(z))), Y )→H(Z �h(ptrY (⋅�X(y)), c), Y ) =H(Z �Y ). (36)

C.3 Discussion on Feature Disentanglement Assumption

In Section 3.4, we made a simplifying assumption that all features could be divided into two
disentangled groups, i.e., X = [Xy,Xz], which are governed by the output label Y and demographic
information Z, respectively. The corresponding data generation process could be seen in Figure 2.
On the other hand, however, if features are entangled in practice, we show that FAIRREPROGRAM
can still provide false demographic information to overshadow the true demographics in Table 1.
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D Broader Impact

Although there has been a proliferation of works in promoting ML fairness, most methods require
training or finetuning the existing models to meet certain fairness notions. However, this could
bring large computational and storage costs, low data efficiency, and model privacy issues with those
large-scaled trained models.

Inspired by recent advances in model reprogramming techniques, we propose a new generic post-
processing fairness learning framework. Specifically, we consider a fixed ML model and optimize a
fairness trigger that is appended to the inputs with a min-max formulation. The proposed method
enjoys a better fairness-accuracy trade-off compared with vast fairness promoting baselines with far
less training costs.

Despite the effectiveness of our method, we note that our method still has some limitations. As a
future research remark, our method still requires demographic annotations to remove biases, which
could be hard to acquire in practice. It remains an open problem to develop a fairness-promoting
technique without the use of demographics annotations.

We do not observe any potential negative societal impacts of our method. Instead, we believe that
the outcome of our work could help enhance fairness of AI systems in a computationally-efficient
and constraint-least manner. It can also provide broad positive impacts on diverse areas where AI
techniques are applied.
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