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1 Proofs

1.1 Generalities

A lot of our work will be devoted to analyzing cumulative distribution functions and associated
quantile functions. There are several properties and identities that we will use that can be found in
any standard textbook on the topic. Here is an incomplete list. Let F (t), t ∈ [0, 1] be a cumulative
distribution and let F−1(v) = inf{t : F (t) ≥ v} be the associated quantile function. Then the
following holds.

1. F is non-decreasing and right-continuous
2. F (0−) = 0 and F (1) = 1

3. 0 ≤ F (t) ≤ 1, t ∈ [0, 1].
4. F−1 is non-decreasing and left-continuous.
5. 0 ≤ F−1(v) ≤ 1, v ∈ [0, 1]

6. F−1(F (t)) ≤ t and F (F−1(v)) ≥ v.
7. F−1(v) ≤ t if and only if F (t) ≤ v.
8. if U is a uniform random variable over [0, 1], then F−1(U) has the cumulative distribution

function F

1.2 Proof of Lemma 1

Proof. Our proof consist of two parts. In the first part, we show that the class of maximizers to

sup
s∈Sv

∫
Ω

s(ω)m(ω)λ(dω) (1)

is given by Sm,v . In the second part, we show that if s∗ ∈ Sm,v , then∫
Ω

s∗(ω)m(ω)λ(dω) =

∫ v

0

(1− F−1
m (u))du. (2)

This together shows the statement.

Part 1, optimality. Let s∗ ∈ Sm,v and s ∈ Sv. Then s∗ and s are feasible. By construction, we
have that there must exist some non-negative numbers ε1, ε2 ≥ 0 such that∫

Ω

(s∗(ω)− s(ω))I{m(ω) < 1− F−1
m (v)}λ(dω) = −ε1, (3)∫

Ω

(s∗(ω)− s(ω))I{m(ω) = 1− F−1
m (v)}λ(dω) = ε1 − ε2, (4)∫

Ω

(s∗(ω)− s(ω))I{m(ω) > 1− F−1
m (v)}λ(dω) = ε2. (5)

If s ∈ Sm,v , then ε1 = ε2 = 0 and consequently∫
Ω

(s∗(ω)− s(ω))m(ω)λ(dω) = 0. (6)

Otherwise, if s ∈ Sv \ Sm,v , then at least one of the inequaities ε1 > 0 and ε2 > 0 hold. If ε1 > 0, it
follows that∫

Ω

(s∗(ω)− s(ω))I{m(ω) < 1− F−1
m (v)}m(ω)λ(dω) > −ε1(1− F−1

m (v)) (7)∫
Ω

(s∗(ω)− s(ω))I{m(ω) = 1− F−1
m (v)}m(ω)λ(dω) = (ε1 − ε2)(1− F−1

m (v)) (8)∫
Ω

(s∗(ω)− s(ω))I{m(ω) > 1− F−1
m (v)}m(ω)λ(dω) ≥ ε2(1− F−1

m (v)) (9)
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and similarly, if ε2 > 0, then∫
Ω

(s∗(ω)− s(ω))I{m(ω) < 1− F−1
m }m(ω)λ(dω) ≥ −ε1(1− F−1

m (v)) (10)∫
Ω

(s∗(ω)− s(ω))I{m(ω) = 1− F−1
m }m(ω)λ(dω) = (ε1 − ε2)(1− F−1

m (v)) (11)∫
Ω

(s∗(ω)− s(ω))I{m(ω) > 1− F−1
m }m(ω)λ(dω) > ε2(1− F−1

m (v)). (12)

In either case, at least one inequality is strict and it follows that∫
Ω

(s∗(ω)− s(ω))m(ω)λ(dω) > 0. (13)

We conclude that Sm,v is the set of optimal segmentations where the supremum is attained.

Part 2, equality. Let s∗ ∈ Sm,v and introduce

C1
.
=

∫
Ω

m̄(ω)I{m̄(ω) ≤ F−1
m (v)}λ(dω). (14)

and

C2
.
= F−1

m (v)(Fm(F−1
m (v))− v) (15)

We now interpret m̄ as a random variable on (Ω, λ) with cdf given by Fm and then note by the
quantile transform, that F−1

m (U) also has cdf given by Fm, where U is uniformly distributed random
variable on [0, 1]. It follows for C1 that

C1 = E[F−1
m (U)I{F−1

m (U) ≤ F−1
m (v)}] = E[F−1

m (U)I{U ≤ Fm(F−1
m (v))}] (16)

and for C2 that

C2 = E[F−1
m (v)I{v < U ≤ Fm(F−1

m (v))}] = E[F−1
m (U)I{v < U ≤ Fm(F−1

m (v))}] (17)

Together with the definition of Sm,v this yields∫
Ω

s∗(ω)m̄(ω)λ(dω) = C1 − C2 = E[F−1
m (U)I{U ≤ v}] =

∫ v

0

F−1(u)du (18)

Consequently,∫
Ω

s∗(ω)m(ω)λ(dω) = v −
(∫

Ω

s∗(ω)λ(dω)−
∫

Ω

s(ω)m(ω)λ(dω)

)
(19)

= v −
∫

Ω

s∗(ω)m̄(ω)λ(dω) (20)

= v −
∫ v

0

F−1(u)du (21)

=

∫ v

0

(1− F−1(u))du (22)

This completes the proof.

1.3 Proof of Theorem 1

Proof. Consider the function

am(v)
.
= v + 1− ‖m‖1 − 2

∫ v

0

F−1
m (u)du, v ∈ [0, 1]. (23)
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and note that by Lemma 1

sup
s∈S

Am(s) = sup
s∈S

∫
Ω

[s(ω)m(ω) + s̄(ω)m̄(ω)]λ(dω) (24)

= sup
v∈[0,1]

sup
s∈Sv

∫
Ω

[2s(ω)m(ω) + 1− s(ω)−m(ω)]λ(dω) (25)

= sup
v∈[0,1]

[
1− ‖m‖1 − v + 2 sup

s∈Sv

∫
Ω

s(ω)m(ω)λ(dω)

]
(26)

= sup
v∈[0,1]

[
1− ‖m‖1 − v + 2

∫ v

0

(1− F−1
m (u))du

]
(27)

= sup
v∈[0,1]

[
v + 1− ‖m‖1 − 2

∫ v

0

F−1
m (u)du

]
(28)

= sup
v∈[0,1]

am(v) (29)

= am(v∗), v∗ ∈ V∗ (30)

where the supremum of Am is attained for segmentations in ∪v∗∈V∗Sm,v∗ . Moreover, the function
am is differentiable a.e., with derivative given by

∂vam(v) = 1− 2F−1
m (v).

Part 1, characterization. Since F−1
m is non-decreasing it follows that ∂vam is positive for

F−1
m (v) < 1

2 and negative for F−1
m (v) > 1

2 . Therefore, the maximum of am is attained for v
such that F−1

m (v) = 1
2 . That is, the maximum is attained for v ∈ (Fm( 1

2−), Fm( 1
2 )]. For v in this

set,

am(v) = v + 1− ‖m‖1 − 2

(
(v − Fm(

1

2
−))

1

2
+

∫ Fm( 1
2−)

0

F−1
m (u)du

)
(31)

= Fm(
1

2
−) + 1− ‖m‖1 −

∫ Fm( 1
2−)

0

F−1
m (u)du. (32)

Part 2, bounds. We now prove the lower bound for Fm( 1
2−) and the upper bound for Fm( 1

2 ). For
this, first note that if we interpret m̄ as a random variable on (Ω, λ), with cdf given by Fm, and
then note by the quantile transform, that F−1

m (U) also has cdf given by Fm where U is a uniformly
distributed random variable on [0, 1], then∫ 1

0

(1− F−1
m (u))du = 1− E[F−1(U)] = 1−

∫
Ω

m̄(ω)λ(dω) = ‖m‖1. (33)

Now, for the lower bound, note that, for v ∈ [0, 1],

1− ‖m‖1 =

∫ 1

0

F−1
m (u)du ≥ (1− v)F−1

m (v), (34)

which implies that

F−1
m (v) ≤ 1− ‖m‖1

1− v
. (35)

Consequently, for ‖m‖1 ≥ 1/2,

F−1
m (v) ≤ 1− ‖m‖1

1− v
<

1

2
, 0 ≤ v < 2‖m‖1 − 1 (36)

and

Fm(
1

2
−) ≥ lim

v↑1−2(1−‖m‖1)
Fm(F−1

m (v)) ≥ 1− 2(1− ‖m‖1) = 2‖m‖1 − 1. (37)
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For ‖m‖1 < 1/2, clearly Fm( 1
2−) ≥ 0. The cases ‖m‖1 ≥ 1/2 and ‖m‖1 < 1/2 together means

that

F (1/2−) ≥ max{2‖m‖1 − 1, 0}. (38)

For the upper bound, note that, for v ∈ [0, 1],

1− ‖m‖1 =

∫ 1

0

F−1
m (u)du ≤ vF−1

m (v) + 1− v, (39)

which implies that

F−1
m (v) ≥ 1− ‖m‖1

v
. (40)

Consequently, with v = Fm( 1
2 )

1− ‖m‖1
Fm( 1

2 )
≤ F−1

m (F (
1

2
)) ≤ 1

2
, (41)

and it follows that Fm( 1
2 ) ≤ 2‖m‖1. For ‖m‖1 ≥ 1

2 we clearly have that Fm( 1
2 ) ≤ 1. The cases

‖m‖1 < 1/2 and ‖m‖1 ≥ 1/2 together means that

F (1/2) ≤ min{2‖m‖1, 1}. (42)

Part 3, sharpness. Recall that the domain Ω = [0, 1]n for some n ≥ 1. We use (ω1, . . . , ωn) =
ω ∈ Ω to denote the components.

To see that the lower bound is sharp, take v ≥ 1
2 and m0 ∈M given by

m0(ω) = I[0,2v−1](ω1) +
1

2
I(2v−1,1](ω1), ω ∈ Ω. (43)

Note that

‖m0‖1 = (2v − 1) +
1

2
(1− (2v − 1)) = v. (44)

Consequently,

Fm0(t) = (2v − 1)I[0, 12 )(t) + I[ 12 ,1](t), t ∈ [0, 1], (45)

which means that Fm0
( 1

2−) = 2v − 1. Now instead take v < 1/2 and m0 ∈M given by

m0(ω) = vI[0,1](ω1), ω ∈ Ω. (46)

Note that

‖m0‖1 = v(1− 0) = v. (47)

Furthermore,

Fm0
(t) = I[1−v,1](t), t ∈ [0, 1], (48)

which means that Fm0
( 1

2−) = 0. Together, these cases say that for any v ∈ [0, 1], the m0 formed by
taking

m0(ω) =

{
I[0,2v−1](ω1) + 1

2I(2v−1,1](ω1), if v ≥ 1/2,

vI[0,1](ω1), if v < 1/2,
ω ∈ Ω, (49)

satisfies ‖m0‖1 = v and

Fm0
(
1

2
−) = max{2‖m0‖1 − 1, 0}. (50)

To see that the upper bound is sharp, take v < 1
2 and m1 ∈M such that

m1(ω) =
1

2
I[0,2v](ω1), ω ∈ Ω. (51)
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Note that

‖m1‖1 =
1

2
(2v − 0) = v. (52)

Furthermore,

Fm1
(t) = 2vI[ 12 ,1)(t) + I{1}(t), t ∈ [0, 1], (53)

which means that Fm1
( 1

2 ) = 2v. Now instead take v ≥ 1/2 and m1 ∈M given by

m1(ω) = v, ω ∈ Ω. (54)

Note that

‖m1‖1 = v. (55)

Furthermore

Fm1(t) = I[1−v,1](t), t ∈ [0, 1], (56)

which means that Fm1( 1
2 ) = 1. Together, these cases say that for any v ∈ [0, 1], the m1 formed by

taking

m1(ω) =

{
1
2I[0,2v](ω1), if v < 1/2

v, if v ≥ 1/2,
ω ∈ Ω, (57)

satisfies ‖m1‖1 = v and

Fm1

(
1

2

)
= min{2‖m1‖1, 1}. (58)

This completes the proof.

1.4 Proof of Theorem 2

Proof. Consider the function

dm(v)
.
=

2
∫ v

0
1− F−1

m (u)du

‖m‖1 + v
, v ∈ [0, 1]. (59)

and note that by Lemma 1

sup
s∈S

D(s) = sup
v∈[0,1]

sups∈Sv 2
∫

Ω
s(ω)m(ω)λ(dω)

‖m‖1 + v
(60)

= sup
v∈[0,1]

2
∫ v

0
1− F−1

m (u)du

‖m‖1 + v
(61)

= sup
v∈[0,1]

dm(v) (62)

= dm(v∗), v∗ ∈ V∗, (63)

where the supremum of Dm is attained for segmentations in∪v∗∈V∗Sm,v∗ . Note that dm is continuous
and hence attains its maximum on the compact set [0, 1]. By continuity, the set V∗ ⊂ [0, 1] where
the maximum is attained is closed and therefore compact. Moreover, dm is differentiable a.e. with
derivative given by

∂vdm(v) =
2(1− F−1

m (v))− dm(v)

‖m‖1 + v
. (64)

Consider the function δ given by

δ(v) = ‖m‖1 +

∫ v

0

F−1
m (u)du− (‖m‖1 + v)F−1

m (v), v ∈ [0, 1]. (65)

The interest in the function δ comes from the fact that it has the same sign as ∂vdm but is somewhat
easier to work with. Indeed, note that δ(v) = (‖m‖1+v)2

2 ∂vdm(v) and hence, ∂vdm(v) > 0 if and
only if δ(v) > 0, and similarly, ∂vdm(v) < 0 if and only if δ(v) < 0.
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Part 1, characterization. Note first that δ is left-continuous and non-increasing on [0, 1]. That δ is
left-continuous follows by construction since F−1

m is left continuous. That δ is non-increasing on
[0, 1] follows since F−1

m is non-decreasing and consequently that for 0 ≤ v0 < v1 ≤ 1

δ(v1)− δ(v0) = ‖m‖1(F−1
m (v0)− F−1

m (v1)) + (v0F
−1
m (v0)− v1F

−1
m (v1))−

∫ v1

v0

F−1
m (u)du

(66)
≤ ‖m‖1 · 0 + 0 + 0 (67)
≤ 0. (68)

Using these properties, it follows that there are three possibilities.

(i) δ(v) > 0 for all v ∈ [0, 1), in which case dm is strictly increasing on [0, 1) and attains its
maximum at v∗ = 1. In this case V∗ = {1}.

(ii) There is a half-open interval (a, b] ⊂ [0, 1] where δ = 0. By continuity dm is constant on the
closed interval V∗ = [a, b] and attains its maximum on V∗.

(iii) There is a unique point v∗ ∈ [0, 1] such that δ(v) > 0 for v < v∗ and δ(v) < 0, for v > v∗. In
this case V∗ = {v∗} and d attains its maximum at v∗.

In each case V∗ is a closed subinterval of [0, 1]. Now we prove that it is exactly the interval V∗ =
[Fm((1 − d∗m/2)−), Fm(1 − d∗m/2)] where d∗m = dm(v∗) for v∗ ∈ V∗ and Fm((1 − d∗m/2)−) =
limt↑1−d∗m/2 Fm(t) denotes the left limit. To this end, consider the three cases (i), (ii), and (iii)
separately.

In case (i) V∗ = {1}, so it is sufficient to show that Fm((1− d∗m
2 )−) = 1. Recall that δ(v) > 0 for

v < 1 and δ is left-continuous it follows that δ(1) ≥ 0 and by definition of δ that

F−1
m (1) ≤ 1− dm(1)

2
= 1− d∗m

2
. (69)

There are two cases to consider. If F−1
m (1) = 1− d∗m

2 , then δ(1) = 0 and we claim that F−1
m (v) <

F−1
m (1), for v < 1. Indeed, otherwise F−1

m (v0) = F−1
m (1) for some v0 < 1, which implies

that F−1
m (v) = F−1

m (1) for all v ∈ [v0, 1] and, by (66), δ(v) is constant on [v0, 1]. But since by
assumption δ(v) > 1 for v ∈ [v0, 1), this means that δ(1) > 0 which is a contradiction. In the other
case, if F−1

m (1) < 1− d∗m
2 , then F−1

m (v) < 1− d∗m
2 , since F−1

m is non-decreasing. In both cases it
holds that F−1

m (v) < 1− d∗m
2 , for v < 1, and consequently,

1 = lim
v↑1

v ≤ lim
v↑1

Fm(F−1
m (v)) ≤ Fm((1− d∗m

2
)−). (70)

This completes the proof in case (i).

In case (ii), with V∗ = [a, b], a < b, we show first that a = Fm((1 − d∗m
2 )−) by showing the

inequalities a ≤ Fm((1 − d∗m
2 )−) and a ≥ Fm((1 − d∗m

2 )−). The first inequality is similar to the
proof of case (i) above. For v < a, δ(v) > 0, and left-continuity of δ implies that δ(a) ≥ 0 and it
follows that

F−1
m (a) ≤ 1− dm(a)

2
= 1− d∗m

2
. (71)

There are two cases to consider. If F−1
m (a) = 1− d∗m

2 , then δ(a) = 0 and we claim that F−1
m (v) <

F−1
m (a), for v < a. Indeed, otherwise F−1

m (v0) = F−1
m (a) for some v0 < a, which implies

that F−1
m (v) = F−1

m (a) for all v ∈ [v0, a] and, by (66), δ(v) is constant on [v0, a]. But since by
assumption δ(v) > 0 for v ∈ [v0, a), this means that δ(a) > 0 which is a contradiction. In the other
case, if F−1

m (a) < 1− d∗m
2 , then F−1

m (v) < 1− d∗m
2 , since F−1

m is non-decreasing. In both cases it
holds that F−1

m (v) < 1− d∗m
2 , for v < a, and consequently,

a = lim
v↑a

v ≤ lim
v↑a

Fm(F−1
m (v)) ≤ Fm((1− d∗m

2
)−). (72)
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To show the reverse inequality a ≥ Fm((1 − d∗m
2 )−), note that for t < 1 − d∗m

2 and v < Fm(t), it
holds that

F−1
m (v) ≤ t < 1− d∗m

2
≤ 1− dm(v)

2
, (73)

which implies that δ(v) > 0. Consequently, v ≤ a and we conclude that Fm((1− d∗m
2 )−) ≤ a.

To complete the proof in case (ii) it remains to show that Fm((1− d∗m
2 )) = b. For v ∈ (a, b] it holds

that δ(v) = 0 and it follows that F−1
m (v) = 1− d∗m

2 . Therefore,

Fm(1− d∗m
2

) = Fm(F−1
m (v)) ≥ v. (74)

By taking the limit as v ↑ b we conclude that b ≤ Fm(1− d∗m
2 ). For the reverse inequality, since

F−1
m (Fm(1− d∗m

2
)) ≤ 1− d∗m

2
, (75)

it follows that δ(Fm(1− d∗m
2 )) ≥ 0 and we conclude that Fm(1− d∗m

2 ) ≤ b.
In case (iii), with V∗ = {v∗}, it is sufficient to prove that

v∗ ≤ Fm((1− d∗m
2

)−) ≤ Fm(1− d∗m
2

) ≤ v∗. (76)

The proof of v∗ ≤ Fm((1 − d∗m
2 )−) is identical to the proof of a ≤ Fm((1 − d∗m

2 )−) in (ii) and is
therefore omitted. To prove v∗ ≥ Fm((1 − d∗m

2 )), recall that δ(v) > 0 for v < v∗, δ(v∗) ≥ 0, by
left-continuity of δ, and δ(v) < 0, v > v∗. Since

F−1
m (Fm(1− d∗m

2
)) ≤ 1− d∗m

2
, (77)

it follows that δ(Fm(1− d∗m
2 )) ≥ 0 and we conclude that Fm(1− d∗m

2 ) ≤ v∗.
This completes the proof of V∗ = [Fm((1− d∗m/2)−), Fm(1− d∗m/2)].

Part 2, bounds. We now show that V∗ ∈ [‖m‖21, 1]. Note that the upper bound is the upper bound
of the feasibility set v ∈ [0, 1] so it is already done. For the lower bound, note that

1− ‖m‖1 =

∫ 1

0

F−1
m (u)du ≥

∫ 1

1−v
F−1
m (u)du ≥ (1− v)F−1

m (v), (78)

which implies that

F−1
m (v) ≤ 1− ‖m‖1

1− v
, v ∈ [0, 1]. (79)

Therefore,

δ(v) ≥ ‖m‖1(1− F−1
m (v))− vF−1

m (v) ≥ ‖m‖1 − (‖m‖1 + v)
1− ‖m‖1

1− v
=
‖m‖21 − v

1− v
. (80)

We conclude that δ(v) > 0 for v < ‖m‖21, which completes the proof.

Part 3, sharpness. Recall that the domain Ω = [0, 1]n for some n ≥ 1. We use (ω1, . . . , ωn) =
ω ∈ Ω to denote the components.

To prove that the bounds are sharp, it is enough to consider one example. Take v′ ∈ (0, 1] and
m ∈M such that

m(ω) = I[0,v′2](ω1) +
v′

1 + v′
I(v′2,1](ω1), ω ∈ Ω. (81)

Note that

‖m‖1 = (v′2 − 0) +
v′

1 + v′
(1− v′2) = v′. (82)
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Furthermore,

Fm(t) = v′2I[0, 1
1+v′ )

(t) + I[ 1
1+v′ ,1](t), t ∈ [0, 1], (83)

or equivelently,

Fm(t) = ‖m‖21I[0, 1
1+‖m‖1

)(t) + I[ 1
1+‖m‖1

,1](t), t ∈ [0, 1], (84)

which means that

F−1
m (v) =

1

1 + ‖m‖1
I(‖m‖21,1](v), v ∈ [0, 1]. (85)

Then for v ∈ [0, 1]

δ(v) = ‖m‖1 +

∫ v

0

F−1
m (u)du− (‖m‖1 + v)F−1

m (v) (86)

= ‖m‖1 +

∫ v

0

1

1 + ‖m‖1
I(‖m‖21,1](u)du− (‖m‖1 + v)

1

1 +m
I(‖m‖21,1](v) (87)

= ‖m‖1 +
1

1 + ‖m‖1
(v − ‖m‖21)I(‖m‖21,1](v)− ‖m‖1 + v

1 + ‖m‖1
I(‖m‖21,1](v) (88)

= ‖m‖1 − ‖m‖1I(‖m‖21,1] (89)

= ‖m‖1I[0,‖m‖21] (90)

Hence, δ(v) = 0 for v > ‖m‖21 and d attains its maximum on V∗ = [‖m‖21, 1]. Since we we can
choose any v′ ∈ (0, 1] so that ‖m‖1 = v′, this completes the proof.

1.5 Proof of Theorem 3

Proof. If we interpret m̄ as a random variable on (Ω, λ), with cdf given by Fm, and then note by
the quantile transform, that F−1

m (U) also has cdf given by Fm where U is a uniformly distributed
random variable on [0, 1], it follows that∫ 1

0

(1− F−1
m (u))du = 1− E[F−1(U)] = 1−

∫
Ω

m̄(ω)λ(dω) = ‖m‖1. (91)

Now, as in Theorem 2, consider the function

dm(v) =
2
∫ v

0
(1− F−1

m (u))du

‖m‖1 + v
, v ∈ [0, 1]. (92)

and note that by Lemma 1

sup
s∈S

Dm(s) = sup
v∈[0,1]

sups∈Sv 2
∫

Ω
s(ω)m(ω)λ(dω)

‖m‖1 + v
(93)

= sup
v∈[0,1]

2
∫ v

0
(1− F−1

m (u))du

‖m‖1 + v
(94)

= sup
v∈[0,1]

dm(v) (95)

.
= d∗m. (96)

This means

dm(v) =
2
∫ v

0
(1− F−1

m (u)dv)

‖m‖1 + v
≤
∫ 1

0
(1− F−1

m (u)dv) +
∫ v

0
1dv

‖m‖1 + v
= 1, v ∈ [0, 1], (97)

and consequently that d∗m ≤ 1. We now show that

supVAm = Fm(1/2) ≤ Fm((1− d∗m/2)−) = inf VDm (98)
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separately for the cases d∗m < 1 and d∗m = 1. First, assume that d∗m < 1. Then there exist some
ε > 0 such that d∗m < 1− 2ε, hence

1− d∗m/2 > 1− (1− 2ε)/2 = 1/2 + ε, (99)

and since Fm is non-decreasing

Fm((1− d∗m/2)−) ≥ Fm((1/2 + ε)−) ≥ Fm(1/2). (100)

Secondly, assume that d∗m = 1. Then there must exist some v such that dm(v) = 1, or equivalently∫ v

0

(1− F−1
m (u))du =

1

2
(‖m‖1 + v). (101)

If v < ‖m‖1, then

v =

∫ v

0

1dv ≥
∫ v

0

(1− F−1
m (u))du =

1

2
(‖m‖1 + v) > v (102)

which is a contradiction and if v > |m| then

‖m‖1 =

∫ 1

0

(1− F−1
m (u))du ≥

∫ v

0

(1− F−1
m (u))du =

1

2
(‖m‖1 + v) > ‖m‖1 (103)

which also is a contradiction. Consequently, we must have that v = ‖m‖1. This in turn means that
F−1
m needs to satisfy ∫ ‖m‖1

0

(1− F−1
m (u))du = ‖m‖1. (104)

which can only be the case if

F−1
m (v) = I(‖m‖1,1](v), v ∈ [0, 1]. (105)

This means that

Fm(t) = ‖m‖1I[0,1)(t) + I{1}(t). (106)

and finally that

Fm((1− d∗m/2)−) = Fm(1/2) = ‖m‖1. (107)

This completes the proof.

1.6 Proof of Theorem 4

Proof. By Lemma 1, the maximizers to

sup
s∈Sv

Am(s) = sup
s∈Sv

∫
Ω

[s(ω)m(ω) + s̄(ω)m̄(ω)]λ(dω) (108)

= 1− ‖m‖1 − v + 2 sup
s∈Sv

∫
Ω

s(ω)m(ω)λ(dω) (109)

are given by Sm,v , and the maximizers to

sup
s∈Sv

Dm(s) =
2
∫

Ω
s(ω)m(ω)λ(dω)

‖m‖1 + ‖s‖1
(110)

=
2

‖m‖1 + v
sup
s∈Sv

∫
Ω

s(ω)m(ω)λ(dω) (111)

are given by Sm,v . This completes the proof.

1.7 Proof of Theorem 5

Proof. First note that ‖s0‖1 =
∫

Ω
I{m̄(ω) < t}λ(dω) = Fm(t−) and ‖s1‖1 =

∫
Ω
I{m̄(ω) ≤

t}λ(dω) = Fm(t). We now prove the if and only if cases separately.
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Part 1,⇒. Take any s ∈ ∪v∈[F (t−),F (t)]Sm,v . To prove the upper bound s(ω) ≤ s1(ω), λ-a.e., let
A = {ω : s(ω) > s1(ω)}. Since both s and s1 are binary it follows that

I{ω ∈ A} = s(ω)s̄1(ω), ω ∈ Ω. (112)

By definition of Sm,v and, since v ≤ Fm(t) implies that F−1
m (v) ≤ F−1

m (Fm(t)) ≤ t, it follows that

0 =

∫
Ω

s(ω)I{m̄(ω) > F−1
m (v)}λ(dω) ≥

∫
Ω

s(ω)I{m̄(ω) > t}λ(dω) ≥ 0. (113)

That is, ∫
Ω

s(ω)I{m̄(ω) > t}λ(dω) = 0. (114)

Consequently,

λ(A) =

∫
Ω

s(ω)s̄1(ω)λ(dω) =

∫
Ω

s(ω)I{m̄(ω) > t}λ(dω) = 0. (115)

To prove the lower bound s0(ω) ≤ s(ω), λ-a.e., let B = {ω : s0(ω) > s(ω)}. Since s0 and s are
binary, it follows that

I{ω ∈ B} = s0(ω)s̄(ω) = s̄(ω)I{m̄(ω) < t}, ω ∈ Ω. (116)
Therefore, it is sufficient to show that∫

Ω

s̄(ω)I{m̄(ω) < t}λ(dω) = 0. (117)

We know from the definition of Sm,v that∫
Ω

s̄(ω)I{m̄(ω) < F−1
m (v)}λ(dω) = 0. (118)

Consequently, with v ∈ [Fm(t−), Fm(t)] it follows that F−1
m (v) ≤ t and

0 ≤
∫

Ω

s̄(ω)I{m̄(ω) < t}λ(dω) (119)

=

∫
Ω

s̄(ω)I{m̄(ω) < F−1
m (v)}λ(dω)︸ ︷︷ ︸

=0

+

∫
Ω

s̄(ω)I{F−1
m (v) ≤ m̄(ω) < t}λ(dω) (120)

≤
∫

Ω

I{F−1
m (v) ≤ m̄(ω) < t}λ(dω) (121)

= Fm(t−)− Fm(F−1
m (v)) (122)

≤ Fm(t−)− v (123)
≤ 0. (124)

We conclude that (117) holds.

Part 2,⇐. Take any s ∈ S such that s0(ω) ≤ s(ω) ≤ s1(ω)λ-a.e. Since,
Fm(t−) = ‖s0‖1 ≤ ‖s‖1 ≤ ‖s1‖1 = F (t), (125)

it follows that s ∈ Sv , with v ∈ [Fm(t−), Fm(t)]. Furthermore, with v = ‖s‖1,

0 ≤
∫

Ω

s(ω)I{m(ω) < 1− F−1
m (v)}λ(dω) (126)

=

∫
Ω

s(ω)I{m̄(ω) > F−1
m (v)}λ(dω) (127)

≤
∫

Ω

s(ω)I{m̄(ω) > F−1
m (Fm(t−))}λ(dω) (128)

≤
∫

Ω

s1(ω)I{m̄(ω) > F−1
m (Fm(t−))}λ(dω) (129)

=

∫
Ω

I{F−1
m (Fm(t−)) < m̄(ω) ≤ t}λ(dω) (130)

= Fm(t)− Fm(F−1
m (Fm(t−))) = 0, (131)
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where the last equality follows since Fm is a cumulative distribution function. Similarly,

0 ≤
∫

Ω

s̄(ω)I{m(ω) > 1− F−1
m (v)}λ(dω) (132)

=

∫
Ω

(1− s(ω))I{m̄(ω) < F−1
m (v)}λ(dω) (133)

≤
∫

Ω

(1− s(ω))I{m̄(ω) < F−1
m (Fm(t))}λ(dω) (134)

≤
∫

Ω

(1− s0(ω))I{m̄(ω) < F−1
m (Fm(t))}λ(dω) (135)

=

∫
Ω

I{t ≤ m̄(ω) < F−1
m (Fm(t))}λ(dω) (136)

= Fm(F−1
m (Fm(t))−)− Fm(t−) ≤ 0. (137)

We conclude that any segmentation s ∈ S satisfying s0(ω) ≤ s(ω) ≤ s1(ω)λ-a.e. belongs to Sm,v

with v ∈ [Fm(t−), Fm(t)].

This completes the proof.

2 Experiments

This section contains information about the conducted experiments. However, the code and details of
how to reproduce the results are found in the GitHub repository:

https://github.com/marcus-nordstrom/optimal-solutions-to-accuracy-and-dice

2.1 Experiment G

2.1.1 Details on experiment

The data consist of 19 patients with 9 ROIs (region of interest) where each ROI has been delineate
by 5 separate practitioners. This leads to a total of 855 segmentations. Let 1 ≤ r ≤ 9 be an index
of the ROIs, and 1 ≤ p ≤ 19 be an index of the patients. We then think of each ROI for each
patient as a random segmentation Lp,r taking values in S. For each such random segmentation,
we have access to 5 observations 1 ≤ i ≤ 5, and denote each observation with l(i)p,r. The marginal
function for patient p and ROI r is denoted by mp,r and formed by taking the point-wise average,
that is mp,r(ω) = 1

5

∑5
i=1 l

(i)
p,r(ω), ω ∈ Ω. In Figure 1, two marginal functions formed this way are

illustrated. The experiment we run computes the following list of points:

{(‖sAmp,r ‖1/‖mp,r‖1, ‖sDmp,r‖1/‖mp,r‖1)}1≤p≤19,1≤r≤9. (138)

In Figure 5 theses points are illustrated as scatter plots and in Table 1 aggregated statistics of these
points are listed.

2.1.2 Comments on license, identifiability and consent

From what we can gather, there is no licence specified by the creators. However, it is specified in the
article and in the download link (see below) that the data is free to use for non-commercial purposes.
As always is the case with medical image data, identifiable of the patients may be an issue. Different
experts and legislators have various opinions as to what lengths researchers has to go in order for the
data to be considered anonymized. However, in this case this is not an issue since all of the patients
signed informed consent to be part of the data.

2.1.3 Setup instructions

1. Path: Before executing any code, make sure to set the file path to Exierments_G. This folder
will contain the code together with the data.
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Figure 1: Example of a slice from two marginal functions. The number on the axis are indices
associated with the pixels. To the left, an Urinary bladder and to the right Neurovascular bundles.
Note that there is almost no disagreement in the first case where as there is lots of disagreement in
the second case.

2. Data: The data used (Version 1, May 24 2017) can be acquired from the following link.

https://doi.org/10.5281/zenodo.583096

Scroll down to the box labeled Files, click on button labeled Request access... and follow the
instructions.

Access will be granted provided your fulfill the criteria of requesting the data for academic or
educational purposes. When granted, an email will be sent to you with a link. Follow this link and
scroll down to the box labeled Files again. A list of files, each with a button labeled "Download"
should now be visible. Download all of the files to the Experiments_G/dicom folder and rename
3_03_P(1).zip to 3_03_P.zip. When done Experiments_G/dicom, should be populated with
the following 19 files: 1_01_P.zip, 1_02_P.zip, 1_03_P.zip, 1_04_P.zip, 1_05_P.zip, 1_
06_P.zip, 1_07_P.zip, 1_08_P.zip, 2_03_P.zip, 2_04_P.zip, 2_05_P.zip, 2_06_P.zip,
2_09_P.zip, 2_10_P.zip, 2_11_P.zip, 3_01_P.zip, 3_02_P.zip, 3_03_P.zip, 3_04_P.zip.

3. Plastimatch: For the computations, it is necessary to convert the segmentations from the
rtstruct format to the binary mask format nrrd. In this work, Plastimatch version 1.9.3 for Windows
64 which has a BSD-style license is used. Both the installer and license can be found at the following
address.

http://plastimatch.org/

For Ubuntu users, the Plastimatch software is available in the apt-repository. There should be no
reason as to why running it on this platform should be a problem, but it has not been tested.

4. Python: In this work, Python 3.10.4 is used. It can be downloaded from the following address.

https://www.python.org/downloads/

Once in the right python environment, the necessary packages can be installed by using the provided
requirements file.

pip install -r requirements.txt

5. Running the code: In the main.py file, edit the variable plastimatch_match so that it is
compatible with the install path of Plastimatch. The code is then simply executed with the following.

python main.py
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It will take approximately 30 min on a descent desktop computer and should be no problems running
on a laptop. No GPU computations are done. The code will start by unzipping all of the downloaded
files to a temporary folder that will be deleted after the run. It will then run Plastimatch to extract
a mask for every available segmentation and put the results in Experiments_G/masks. Once this
is done, the discrete versions of the marginal functions are computed and used to compute the
relative volumes. When complete, the results of the experiment can be found under Experiments_
G/results.

2.2 Experiment L

2.2.1 Details on experiment

The data consist of 1018 patients with lung nodules which have been delineated by 4 separate
practitioners. This leads to a total of 4072 segmentations. Let 1 ≤ p ≤ 1018 be an index of the
patients. We then think of the ROI for each patient as a random segmentation Lp taking values in S .
For each such random segmentation, we have access to 4 observations 1 ≤ i ≤ 4, and denote each
observation with l(i)p . The marginal function for patient p is denoted by mp and formed by taking
the point-wise average, that is mp(ω) = 1

4

∑4
i=1 l

(i)
p (ω), ω ∈ Ω. In Figure 2, a marginal functions

formed this way is illustrated. The experiment we run computes the following list of points:
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Figure 2: Example of a slice from a marginal function where two lung nodules are visible.

{(‖sAmp‖1/‖mp‖1, ‖sDmp‖1/‖mp‖1)}1≤p≤1018. (139)

In Figure 6 these points are illustrated with scatter plots and in Table 1 aggregated statistics of these
points are listed.

2.2.2 Comments on license, identifiability and consent

The data is licensed under Creative Commons Attribution 3.0 Unported License.

https://creativecommons.org/licenses/by/3.0/.

Measures have been taken to anonymize the patient data.

2.2.3 Setup instructions

1. Path: Before executing any code, make sure to set the file path to Experiments_L. This folder
will contain the code together with the data when downloaded and processed.

2. Data: To get the data set, follow this link

https://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX
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and download the Radiologist Annotations/Segmentations (XML) file. In our experiments, version 3
is used, which at the time of writing is the current version. Extract the zip file to the Experiments_
L/xml folder. Note that the DICOM files are not necessary in order to run the experiments.

3. Python: In this work, Python 3.10.4 is used. It can be downloaded from the following address.

https://www.python.org/downloads/

Once in the right python environment, the necessary packages can be installed by using the provided
requirements file.

pip install -r requirements.txt

4. Running the code: When the previous steps are completed, the code is executed by simply
running the following.

python main.py

It will take approximately 30min on a descent desktop computer and should be no problems running
on a laptop. No GPU computations are done. The code will use the pilidc library to query annotation
data and generate masks. The masks are used to compute the discrete versions of the marginal
functions and used to compute the relative volumes. When complete, the results of the experiment
can be found under Experiments_L/results.
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