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Abstract

A finite set of invariants can identify many interesting transformation groups. For
example, distances, inner products and angles are preserved by Euclidean, Orthog-
onal and Conformal transformations, respectively. In an equivariant representation,
the group invariants should remain constant on the embedding as we transform
the input. This gives a procedure for learning equivariant representations without
knowing the possibly nonlinear action of the group in the input space. Rather than
enforcing such hard invariance constraints on the latent space, we show how to use
invariants for “symmetry regularization” of the latent while guaranteeing equivari-
ance through other means. We also show the feasibility of learning disentangled
representations using this approach and provide favorable qualitative and quanti-
tative results on downstream tasks, including world modeling and reinforcement
learning.

1 Introduction

Sample efficient representation learning is a critical open challenge in deep learning for AI. When
we have prior information about transformations that are relevant to a particular domain, building
representations that are aware of these transformations can lead to better sample efficiency and
generalization. One way to use such symmetry priors is to make the network invariant to the given
transformations. A generalization of this idea is called equivariance, where transforming the input
transforms the output in a specific way. An equivariant network that makes good predictions for a
particular input also generalizes to all input transformations, making symmetry a useful prior.

While recent years have witnessed a range of exciting equivariant deep models, there are several
limitations. First, most equivariant networks constrain the network architecture, often requiring
specialized implementations. Moreover, transformations considered by the existing methods are
often assumed to be linear in both input and representation space. This is the case for architectures
designed for finite permutation groups and continuous Lie groups. Approaches that go beyond linear
transformations in the input space often assume access to group information – i.e., the group member
that transforms one input to another is known. This paper introduces a simple approach that addresses
all of these limitations.

Our approach uses the invariants of a given linear representation of a transformation group. Previ-
ously invariants were used to connect different geometries, and group theory in Klein’s Erlangen
program [32]. According to this view, geometries are concerned with invariant quantities under
certain transformations. For example, Euclidean geometry is concerned with the length, angle, and
parallelism of lines, among others, because Euclidean transformations preserve these. However,
moving to the more general and less structured Affine geometry, notions of distance and angle are no
longer relevant, while parallelism remains an invariant of the geometry. The corresponding symmetry
groups are examples of Lie groups that have a subgroup relation, E(n) < Aff(n), thereby enabling
the groups to characterize a hierarchy (or lattice) of different geometries.
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From this geometric perspective, our proposal in this work is to induce a geometry on the embedding
and make it equivariant to a given group by enforcing the invariants of their defining action. For
example, distance is the invariant for Euclidean geometry, which means all distance-preserving
transformations are Euclidean. Therefore, to enforce equivariance to the Euclidean group, it is
sufficient to ensure that the embedding of any two data points has the same distance before and after
the same transformation of the inputs; see Figure 1. While this approach uses the defining action of
different groups in the embedding space, the same group can have a non-linear and unknown action
on the input space. In the pendulum example of Figure 1, the group E(3) acts on the value of each
input image pixel using an unknown and non-linear action. Moreover, this approach does not require
the pairing of group members with transformations, a piece of information that is often unavailable.

Figure 1: E(3)-equivariant embedding for the pendu-
lum. The input x consists of a pair of images that identify
both the angle and the angular velocity of a pendulum.
The equivariant embedding learns to encode both: the true
angle is shown by a change of color and angular velocity
using a change of brightness. The two circular ends (black
and white) correspond to states of maximum angular veloc-
ity in opposite directions. The SymReg objective for the
Euclidean group learns this embedding by preserving the
pairwise distance between the codes before (f(x), f(x′))
and after (f(tX(g, x)), f(tX(g, x))) transformations of
the input by tX . Therefore dashed lines have equal lengths.
For the pendulum, the transformations are in the form of
applying positive or negative torque in some range.

In the rest of the paper, we arrive at the idea above from a different path: after reviewing related works
in Section 2 and providing a background in Section 3, Section 4 observes that equivariance, in its
general form, can be a weak inductive bias. This is because having an injective code is sufficient for
equivariance to “any” transformation group. However, in this manifestation of equivariance, the group
action on the embedding can be highly non-linear. Since the simplicity of the action on the embedding
seems essential for equivariance to become a useful learning bias, Section 5 proposes to regularize the
group action on the code to make it “simple”. This symmetry regularization (SymReg) objective is
group-dependent and the essence of our approach. Enforcing geometric invariants in the latent space
is proposed as a symmetry regularization. While we focus on equivariant representation learning
through self-supervision, in principle, supervised tasks can also benefit from the proposed SymReg.
An important benefit of a symmetry-based representation is its ability to produce disentangled
representations through group decomposition [27]. Section 6 studies disentanglement using SymReg.
Section 7 presents a range of experiments to understand its behavior and puts it in the context of
comparable baselines.

2 Related Works

Finding effective priors and objectives for deep representation learning is an integral part of the quest
for AI [3]. Among these priors, learning equivariant deep representations has been the subject of
many works over the past decade. Many recent efforts in this direction have focused on the design
of equivariant maps [57, 13, 47, 34, 15, 23, 54, 19, 6] where the “linear” action of the group on the
data is known. A particularly relevant example here is Villar et al. [54], which uses group invariants
to construct equivariant maps where the group acts using its linear defining action in the input
space. Due to this constraint, the application of these models has been focused on fixed geometric
data such as images [36], sets [60, 45], graphs [39, 33], spherical data and the (special) orthogonal
group [14, 1, 50, 22], the Euclidean group [52, 55, 24] or other physically motivated groups such as
the Lorentz [4] or Poincare group [54], among others.

In the present work, the group action is unknown and possibly non-linear. Our setup is closer to the
body of work on generative representation learning [7, 11, 40], in which the (linear) transformation
is applied to the latent space [46, 58, 35, 37, 16, 21]. Among these generative coding methods,
transforming autoencoder [29] is a closely related early work, which in addition to equivariance,
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seeks to represent the part-whole hierarchy in the data. What additionally contrasts our work with the
follow-up works on capsule networks [48, 38] is that SymReg is agnostic to the choice of architecture
and training. We only rely on our objective function to enforce equivariance.

Since we consider learning equivariant representations through self-supervision, exciting recent
progress in this area is also quite relevant [25, 42, 9, 53, 26, 61, 20, 41]. While the use of transforma-
tions is prominent in these works, in many settings, the objective encourages invariance to certain
transformations, making such models useful for invariant downstream tasks such as classification.
Similar to many of these methods, we also use transformed pairs to learn a representation, with the
distinction of learning an equivariant representation. An exception is the recent work of Dangovski
et al. [17], which learns an equivariant representation by separating the invariant embedding from the
pose, where the relative pose is learned through supervision. Therefore, in that work, in contrast to
ours, one needs to know the transformation that maps one input to another. When considering the
Euclidean group, SymReg preserves distances in the embedding space under non-linear transforma-
tions of the input. This embedding should not be confused with isometric embedding [51], where the
objective is to maintain the pairwise distances between points in the input and the embedding space.

3 Background on Symmetry Transformations

We can think of transformations as a set of bijective maps on a domain X . Since these maps are
composable, we can identify their compositional structure using an abstract group G. For this
reason, such transformations are called group actions. To formally define transformation groups,
we first define an abstract group. A group G is a set equipped with a binary operation, such that
the set is closed under the operation gg′ ∈ G ∀g, g′ ∈ G, every g ∈ G has a unique inverse such
that gg−1 = e, where e is the identity element of the group, and the group operations are associative
(gg′)g′′ = g(g′g′′).
A G-action on a set X is defined by a function t ∶ G×X →X , which can be thought of as a bijective
transformation parameterized by g ∈ G. In order to maintain the group structure, the action should
satisfy the following two properties: (1) the action of the identity is the identity transformation
t(e, x) = x; (2) the composition of two actions is equal to the action of the composition of group
elements t(g, t(g′x)) = t(gg′, x). The action t is faithful to G if transformations of X using each
g ∈ G are unique – i.e., ∀g, g′ ∃x ∈ X s.t. t(g, x) ≠ t(g′, x). If a G-action is defined on a set X , we
call X a G-set. Many groups are defined using their defining action; for example, SO(3) is the group
of rotations in 3D space. While this defining action is a linear transformation, the same group can act
non-linearly on Rn using the action t ∶ SO(3) ×Rn → Rn.

4 Equivariance is Cheap, Actions Matter

A symmetry-based representation or embedding is a function f ∶X → Z such that both X and Z are
G-sets, and furthermore, f “knows about” G-actions, in the sense that transformations of the input
using tX have the same effect as transformations of the output using some action tZ :

f(tX(g, x)) = tZ(g, f(x)) ∀g, x ∈ G ×X (1)

The following claim shows that despite many efforts in designing equivariant networks, simply
asking for the representation to be equivariant is not a strong inductive bias, and we argue that the
action matters. Put another way, the strong performance of existing equivariant networks should be
attributed to the fact that the group action on the embedding space is simple (linear).
Proposition 4.1. Given a transformation group tX ∶ G ×X → X , the function f ∶ X → Z is an
equivariant representation if ∀g ∈ G,x, x′ ∈X

f(x) = f(x′)⇔ f(tX(g, x)) = f(tX(g, x′)). (2)
That is, two embeddings are identical iff they are identical for all transformations.

The proof is in the appendix. The condition above is satisfied by all injective functions, indicating
that many functions are equivariant to any group.
Corollary 4.2. Any injective function f ∶ X → Z is equivariant to any transformation group
tX ∶ G ×X →X , if we define G action on the embedding space as

tZ(g, z) ≐ f(tX(g, f−1(z))) ∀g, z ∈ G ×Z (3)
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The ramification of the results above in what follows is two-fold:
1. While injectivity ensures equivariance, the group action on the embedding, as shown in Equation (3),
can become highly non-linear. Intuitively, this action recovers x = f−1(z), applies the group action
x′ = tX(x) in the input domains and maps back to the embedding space f(x′) to ensure equivariance.
In the following, we push tZ towards a simple linear G-action through optimization of f . This
objective can be interpreted as a symmetry regularization or a symmetry prior (SymReg).

2. Although Corollary 4.2 uses injectivity of f for the entire X , we only need this for the data
manifold. In practice, one could enforce injectivity on the training dataset D using a decoder,
architectural choices such as momentum encoder [26], or loss functions defined on the training data,
such as a hinge loss [25] Lhinge(f,D) = ∑x,x′≠x∈D max (ϵ − ∥f(x) − f(x′)∥ ,0) or other losses that
monotonically decrease with distance, such as 1

∥f(x)−f(x′)∥ , or its logarithm − log(∥f(x) − f(x′)∥).
In experiments, we use the logarithmic barrier function.

5 Symmetry Regularization Objectives

In learning equivariant representations, we often do not know the abstract group G and how it
transforms our data, tX . We assume that one can pick a reasonable abstract group G that “contains”
the ground truth abstract group acting on the data – i.e., G action on the input may not be faithful.
Our goal is to learn an f ∶X → Z that is equivariant w.r.t. the actions tX , tZ , where tX ∶ G×X →X
is unknown and tZ is some (simple) G-action on Z of our choosing.

More Informed but Less Practical Setting. In the most informed case, the dataset also contains
information about which group member g ∈ G can be used to transform x to x′ – that is, the dataset
consists of triples (x, g, xt = tX(g, x)). By having access to this information, we can regularize the
embedding using the following loss function: Linformed

G (f,D) = ∑(x,g,xt)∈D ℓ(f(xt) − tZ(g, f(x))),
where ℓ is an appropriate loss function, such as the square loss. At its minimum, we have
f(xt) = tZ(g, f(x)) or f(tX(g, x)) = tZ(g, f(x)), enforcing equivariance condition of Equa-
tion (1). However, even if the optimal value is not reached, due to its injectivity, f is still G-
equivariant, and the the objective above is regularizing the G action on the code. This informed setup
is used in equivariant contrastive learning of [17]. The assumption of having access to g is realistic
when we know the action tX , so that we can generate (x, g, xt) triplets. Fortunately, using group
invariants, we may still learn an equivariant embedding, even if we do not have the group information
tied to the dataset.

Here, we introduce our method for several well-known groups first and then elaborate on the more
general treatment.
Example 1 (Euclidean Group). The defining action of the Euclidean group E(n) is the set of transfor-
mations that preserve the Euclidean distance between any two points in Rn, a.k.a. isometries. These
transformations are compositions of translations, rotations, and reflections. Since, for the real domain,
all Euclidean isometries are linear and belong to E(n), we can enforce the group structure on the em-
bedding by ensuring that distances between the embeddings before and after any transformation match.
For this, we need the dataset D to be a set of pairs of pairs ((x,xt = tX(g, x)), (x′, x′t = tX(g, x′))),
where x,x′ are transformed using the same unknown group member g. Distance-preservation loss
below combined with injection loss are sufficient to produce an E(n)-regularized embedding:

LE(n)(f,D) =∑
((x,xt),(x′,x′t))∈D

ℓ(

distance before the
transformation³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∥f(x) − f(x′)∥−

distance after the
transformation³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∥f(xt) − f(x′t)∥ ) (4)

For example, in the standard RL setup, where we have access to triplets (s, a, s′), we can easily form
D by unrolling an episode and collecting two different state transitions corresponding to a particular
action. In practice, with a finite number of actions, we can efficiently generate this dataset by keeping
a separate buffer for each action where we store state transitions for that action and sample from that
buffer to train the embedding function f . We provide the algorithm in Appendix C.
Example 2 (Orthogonal and Unitary Groups). The defining action of the orthogonal group O(n)
preserves the inner product between two vectors. The analogous group in the complex domain is the
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unitary group, which preserves the complex inner product. Our symmetry-regularization objective
enforces this invariant: LO(n)(f,D) = ∑

((x,xt),(x′,x′t))∈D
ℓ ( f(x)⊺f(x′) − f(xt)⊺f(x′t) ).

For the unitary group, one additionally needs to embed to complex domain Z = Cn, where the only
difference is in the definition of the inner product.
Example 3 (Conformal Group). The invariant of conformal geometry is the angle. In a Euclidean
embedding, conformal transformations include a combination of translation, rotation, dilation, and
inversion with respect to an n − 1-sphere. To enforce this group structure, we need triplets of inputs
before and after a transformation ((x,xt), (x′, x′t), (x′′, x′′t )), so that we can calculate the angle in
the embedding. Conformal SymReg objective, which preserves angles, imposes a weaker constraint
on the embedding than the distance preservation of the Euclidean group – since the latter implies the
former. Moreover, it has an additional benefit that, compared to LE(n), the loss cannot be minimized
by simply shrinking the embedding. Therefore in practice, the injection enforcing losses of Section 4
is not as crucial when using conformal symmetry regularization.

5.1 General Setting

Given a group G acting linearly on a vector space Z, invariant polynomials associated with this
action are those polynomials satisfying P (tZ(z, g)) = P (z) ∀g ∈ G. These polynomials form an
algebra studied in the field of invariant theory [56, 44]. In particular, a relevant problem is the
question of whether there exists a finite set of bases for invariant polynomials for a given group
representation. This question was one of Hilbert’s 23 problems, and it was answered affirmatively by
Hilbert himself for linear reductive groups, which includes classical Lie groups [28]. Our proposal,
in its most general form is to ensure invariance of polynomial bases within the orbits of the latent
space before-after transformation of the input.

Some examples of classical Lie groups and their invariants are: volume and orientation preservation
by the Special Linear group, where the corresponding invariant polynomial is the determinant; Lorentz
and Poincare groups are the analogs of the Orthogonal and Euclidean groups in the Minkowski space
respectively, therefore equipped with similar invariants; the Symplectic group preserves another
bilinear form. Finite groups also possess invariants. We show this use of invariants for SymReg
through the important example of the symmetric group.
Example 4 (Symmetric Group). Symmetric polynomials P (z1, . . . , zn) that are invariant under all
permutations of variables have a finite set of elementary bases:

e1(z) = ∑
1≤j≤n

zj , e2(z) = ∑
1≤j<k≤n

zjzk, . . . , en(z) = z1z2 . . . zn.

Assuming an n-dimensional embedding (i.e., zj ∈ R), the corresponding SymReg objective penalizes
change in these elementary basis before-after a transformation. At its minimum value, this penalty
ensures that transformations of the input lead to permutations of the latent dimensions – however,
with SymReg, this loss is used only to regularize the embedding. An alternative approach to SymReg
for finite groups and, in particular, the Symmetric group is discussed in Appendix B.

Choice of Lie group Deciding on a Lie group for each application and in particular working with
the corresponding invariants can be cumbersome. A simple alternative is to use an E(n)-equivariant
embedding for sufficiently large n. This is because Lie groups have isometric Euclidean embedding
for sufficiently large n. We demonstrate this in the experiments with SO(3) group in Section 7.1.

6 Decomposing the Representation

Higgins et al. [27] suggested a notion of disentangled representation based on decomposition of the
abstract group into a direct product form G = G1 × . . . ×Gk. There are two approaches to learning
such decomposed representation using SymReg, depending on whether or not we can perform certain
types of transformations in isolation. For example, an RL agent may transform its environment
through actions like moving a single limb that can be performed in isolation. In this case, we call the
decomposition active to contrast it with the passive case, where the action of different subgroups is
always mixed in our dataset.
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Figure 2: Visualization of SymReg’s latent pro-
jection for the rotating Chair dataset. The chair
is rotated in three orthogonal axes from 0 to 2π.
The latent embedding for each chair pose is pro-
jected from a 16D embedding space to a 2D space
for visualization. The colors of the representations
are mapped to the chair’s angle of rotation. We
notice that the mapping function f learned is con-
tinuous with respect to the transformations of the
object, and it maps the rotations along an axis to a
circular manifold. This is true for each orthogonal
axis of rotation. We observe a similar result for
any other initial pose for the chair. A qualitative
comparison with an existing method [25] is pro-
vided in Appendix D.1.

Active Decomposition. Let G = {(g1, . . . , gk) ∈ G1 × . . . ×Gk} be a product group, where Gi ≅
{(e, . . . , e, gi, e, . . . , e) ∈ G} can be identified with a normal subgroup of G. In active decomposition,
sub-groups can act in isolation, and therefore we have k types of tuples in our dataset D1, . . . ,Dk ⊂D.
Each subset Di is associated with actions of a subgroup Gi using tX((e, . . . , e,gi, e . . . , e), ⋅)),
gi ∈ Gi. In this setting, the representation f ∶X → Z = Z1 × . . . ×Zk can be thought of as k separate
functions where fi ∶ X → Zi is equivariant to Gi-action and invariant to all Gj , j ≠ i actions. This
gives the following objective

Lactive
G (f,D) =

k

∑
i=1

LGi(fi,Di)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

equivariance to Gi

+Linv.
G/Gi
(fi,D/Di)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
invariance to Gj for j≠i

, (5)

where Linv.
G (f,D) enforces invariance of f to G-transformations in D – e.g., by penalizing

∥f(x) − f(tX(g, x))∥.

Passive Decomposition. When we have no control over transformations, and we are simply
given the data, it is still possible to use an abstract group that has a product form. Here again,
f ∶ X → Z = Z1 × . . . × Zk, but the loss function is simply enforced on each block separately –
i.e., Lpassive

G (f,D) = ∑k
i=1LGi(fi,D), where LGi(fi,D) is a SymReg objective from Section 5.

7 Experiments

We conducted many experiments to qualitatively study the representation learned by SymReg and
its ability to produce a disentangled representation, and quantitatively compare it against simple
baselines in representation learning and downstream RL tasks. For details on architecture and training,
see Appendix G.

7.1 Qualitative Analysis

In this section, we visualize the representation learned for two examples from the Gym environment
[5], including the pendulum and the mountain car (see Appendix D.2), followed by an experiment
involving a rotating object where we know the ideal embedding is the SO(3) manifold. Finally,
Figure 3 visualizes a conformal embedding for double-bump world. In most cases, we also visualize
a Variational AutoEncoder (VAE) [30] embedding for comparison. Our objective here is to visually
demonstrate the behavior of SymReg and its remarkable ability to learn an embedding informed by
the non-linear transformation of the input.

The Pendulum. For this experiment, the input x is two consecutive frames of the pendulum that
have been grayscaled and downsampled to 32 × 32 pixels. The action space is a range of torques
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that can be applied to the base of the pendulum. We use the action to transform the data. We use the
objective of Equation (4) to learn an E(3)-equivariant representation. To efficiently estimate LE(n),
we use a mini-batch that consists of 64 randomly sampled observations from the environment and
their transformations via three randomly sampled actions (4 × 64 samples in total). The model learns
to parameterize the embedding using the angle and the angular momentum of the pendulum from the
input data; see Figure 1. In order to compare, we visualize the learned latent of VAE and run similar
experiments on the Mountain Car Environment in Appendix D.2).

Rotating Chair. We consider a 3D chair from ModelNet40 [59] and transform it through the action
of the group SO(3). The group action on the input is the 2D projection into a 48× 48 image after the
3D rotation of the chair. While the group of interest is SO(3), we use SymReg loss of Equation (4)
following Section 5.1. We embed the chair in R16 using SymReg and visualize the latent by rotating
the chair along three orthogonal axes and projecting the latent codes into a 2D space. Figure 2
shows three circular latent traversals of SymReg embedding corresponding to rotation around each
axis, which is consistent with the structure of the SO(3) manifold. The process of learning the
SO(3) manifold is a challenging task (see Appendix D.1), and previous works assumed that the
group member corresponding to each transformation is given [46, 2]. In contrast, we only use the
observations corresponding to similar actions during training and not the group members themselves.
As we see later, this is critical in settings such as RL, where group information is unavailable.

Figure 3: (left) SimCLR (middle) VAE (right) SymReg embed-
dings of double-bump world.

Conformal Embedding for Double-
Bump World. Double-bump world
consists of a rectangular bump sig-
nal and a triangular bump signal, both
cyclically shifted and superimposed.
These transformations are given by a
pair (∆1,∆2) which cyclically shifts
the rectangular bump by ∆1 and the
triangular bump by ∆2. In our experi-
ments, the signal length is 64, and the
length of the bump is 16. SymReg em-
beds to a 4-dimensional conformal space in this example. Figure 3(right) shows the random projection
of the embedding, where the colors change as the triangle bump moves. The figure suggests that
SymReg can learn to represent a data point using the location of two bumps. For comparison, we
show the embedding found by VAE and SimCLR [9].

7.2 Experiments on Active and Passive Decomposition

In this section, we first contrast active and passive decomposition in their ability to disentangle the
two bumps in the double bump world. We observe that while both can decompose the embedding
into a product form SO(2) × SO(2), only active decomposition leads to disentanglement. Finally,
we apply active decomposition to the more complex setting of ego-motion, where SymReg can
decompose the representation of the agent’s state into location and orientation.

Decomposition of the Double-Bump World. Here, we compare the active and passive decompo-
sition for the same double-bump world. While the ground truth is SO(2) × SO(2), SymReg uses
the larger group E(2) ×E(2). In the active case, each subgroup moves one of the bumps, and the
loss of Equation (5) is used to learn an embedding for each subgroup. In the passive case, both
bumps move randomly. Figure 4 compares the decomposed embedding found in each case. While in
both cases, the SO(2) × SO(2) torus is decomposed into a product of circles, only the active case
successfully disentangles the two bumps. Note that the color of each point is based on the location
of the triangle bump. Our results agree with Caselles-Dupré et al. [8], who claim that learning a
disentangled representation requires interaction with the environment; see also [43, 40]. However,
we note that while the disentangling of the bump movements does not happen in the passive case, we
can still successfully “decompose” the embedding.

Active Decomposition for Ego-Motion. We used a modified version of the single-room envi-
ronment of MiniWorld [12] for this experiment. The agent is standing in a 3D room containing
eight differently colored boxes around the walls. A map of the room can be seen in Figure 5. An
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Figure 4: Active versus passive decomposition for the double-bump world. Four images at the bottom
show a pair of inputs (x,x′) and their transformations (xt, x

′

t). The figure shows the embedding for two inputs
before, (x,x′) in blue, and after, (xt, x

′

t) in red, the same transformation. This transformation cyclically shifts
both the triangle and the square to the left, but the amount of translation is larger for the square. In both passive
and active decomposition, the Euclidean distance is preserved by the transformation – the red points have the
same distance from each other as the blue points on every manifold. In the active decomposition (right), one of
the manifolds encodes the circular translation of the triangle bump, while the second one represents the location
of the square bump. Various colors indicate the location of the triangle. In the case of passive decomposition
(left), since the transformation of individual shapes does not guide the decomposition, the manifolds jointly
encode the location of each bump type.

Figure 5: Decomposition of the ego-motion. The dataset
contains a first-person view of a room. Transformations in-
clude right-left rotation and forward-backward movement.
The equivariant embedding is produced by active decomposi-
tion using these two transformations, where the ring-structured
manifold corresponds to the rotation action, and the smaller
manifold corresponds to translations. Color coding shows the
ground truth angle of the image. The black square markers
show the traversal of the embedding as the agent rotates while
standing in the middle of the room. Note that black squares
are concentrated in the center of the second manifold.

observation consists of a first-person view of the room, downsampled to 32 × 32 pixels. The agent
can rotate left/right or move forward/backward. We learn an E(2) ×E(2) equivariant embedding
using the active decomposition objective of Equation (5). Each mini-batch consists of 64 random
observations and the result of applying all four actions in those states (4 × 64 samples in total).

Figure 5 visualizes the embedding of the input in two sub-figures, where the more prominent figure
shows the embedding corresponding to the rotation action, and the more petite figure (bottom right)
shows the embedding corresponding to forward-backward movement. The first figure also shows the
first-person view when the agent rotates while standing in the middle of the room. The corresponding
markers collapse around the center of the second embedding, demonstrating an intuitive embedding
parameterized by rotation angle and location. Walking straight across the room also produces the
expected behavior of traversing the second manifold while the rotation angle, for the most part,
remains fixed (not shown).

7.3 Quantitative Evaluation in Downstream Tasks

7.3.1 World Modelling

We select the Atari games Pong and Space Invaders as our environments for the world modeling
experiments. These environments were previously used by Kipf et al. [31] to evaluate the Contrastive
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ENVIRONMENT METHOD H@1 MRR

ATARI PONG

WORLD MODEL(AE) 23.8± 3.3 44.7± 2.4

WORLD MODEL(VAE) 1.0± 0.0 5.1± 0.1

C-SWM 36.5± 5.6 56.2± 6.2

OURS 45.2± 3.4 60.2± 3.9

SPACE INVADERS

WORLD MODEL(AE) 40.2± 3.3 59.6± 3.5

WORLD MODEL(VAE) 1.0±5.3 5.3± 0.1

C-SWM 48.5± 7.0 66.1± 6.6

OURS 54.2± 6.3 68.7± 5.1

Table 1: Hits at Rank 1 (H@1) and Mean Reciprocal Rank (MRR) of different methods.

METHODS INVERTED PENDULUM REACHER SWIMMER

VANILLA 500± 150 -11± 2.5 25.6± 3.4

AE-DECOUPLED 30± 15 -13± 3.0 16± 3.9

AE-FINETUNED 580± 130 -11.5± 3.2 26± 4.3

IN-SSL-DECOUPLED 100± 17 -15± 2.6 12 ± 2.5

IN-SSL-FINETUNED 550± 21 -12± 4.1 25.9 ± 4.8

EQ-SSL-DECOUPLED 456± 190 -14.8± 3.1 18 ± 4.5

EQ-SSL-FINETUNED 710 ± 120 -10± 2.6 27 ± 3.5

SYMREG-DECOUPLED 800± 180 -14.5± 3.1 21± 4.1

DEC-SYMREG-DECOUPLED 600± 200 -12.8± 2.7 19± 5.6

SYMREG-FINETUNED 950± 50 -10± 3.4 31.5± 3.9

Table 2: Average reward collected over 10 episodes for various models in Inverted Pendulum, Reacher
and Swimmer. We provide the standard errors using 5 random seeds.

Structured World Model (C-SWM). We train the encoder using Euclidean SymReg of Equation (4),
freeze it, and then learn a Multi-Layer Perceptron (MLP) based transition function in the latent space.
Following Kipf et al. [31], we report Hits at Rank 1 (H@1) and Mean Reciprocal Rank (MRR),
which are invariant to the embedding scale. These evaluation metrics measure the relative closeness
of the following state’s representation predicted by the transition model and the representation of the
observed next state. We use a set of reference state representations to measure the relative closeness
(embedding random observations from the experience buffer). Section 7.3.2 reports these measures
and shows that a simple transition model learned on top of our embedding outperforms C-SWM in
both games. Other reported baselines use an AutoEncodcer (AE) and a Variational AutoEncoder
(VAE) to learn embeddings.

7.3.2 Reinforcement Learning

Next, we consider three Mujoco environments: InvertedPendulum, Reacher, and Swimmer from
OpenAI Gym [5] and learn directly from the image observations. We compare our model with Auto-
Encoder (AE) and Self-supervised Learning (SSL) based baselines. While AE learns to reconstruct
the image observations of the states, SSL learns to inject invariance (IN-SSL) or equivariance (EQ-
SSL) to agent actions. Given a triplet (s, a, s), IN-SSL maximizes the likelihood of f(s) and f(s′)
being similar (SimCLR [10]). EQ-SSL of Dangovski et al. [18], in this context, additionally predicts
the action that leads to the state transition. We introduce two variations of each model. In the first
variation, the low-dimensional embedding is used as a substitute for the high-dimensional input
data without further adjustment (-decoupled). The second variation allows for fine-tuning during
the reinforcement learning stage (-fine-tuned). We use random policy to collect trajectories for the
pre-training and use Proximal Policy Optimization (PPO) [49] algorithm for the downstream RL
task. To evaluate the data efficiency of these models, we report the average reward collected over 10
episodes in the first 100,000 steps for Reacher and Swimmer and 30,000 steps for Inverted Pendulum
in Section 7.3.2 (since Inverted Pendulum generally learns faster, we took a fewer number of steps.)
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We see that out of all the representation learning methods, learned representations of SymReg most
adequately capture the structure of the environment in Inverted Pendulum since the RL agent just
trained on the fixed representation (SymReg-decoupled) outperforms all of them, including vanilla
PPO. In Reacher, SymReg, along with other non-generative models, performs poorly compared to
the AE. We believe that this is because the representation is focused on transformations caused by
the agent’s actions while details that can be valuable from the reward’s perspective — in this case,
the small object that the Reacher should reach - are ignored. This observation points to a limitation
of all non-generative approaches that fine-tuning can resolve. To further verify this, we combined
SymReg with a Decoder (Dec-SymReg) and noticed a significant improvement in the performance
of the decoupled variation. In Swimmer, again, we see that learning the agent’s transformations is
not enough to get all the reward information as the background movement decides how far the agent
has swum. Indeed, allowing the encoder to fine-tune allows the representations to reflect the reward
information and improve performance.

Conclusion

We proposed to learn equivariant representations by learning an injective embedding that is regularized
towards a simple linear action using group invariants. We demonstrate this to be a simple, intuitive,
and yet effective approach for representation learning. In the future, we would like to understand
data characteristics that motivate the choice of one Lie group over others. We would also like to
explore SymReg for the symmetric group and its combination with Euclidean groups as a way to
represent various objects in Euclidean space. We would also like to investigate further the best choice
of objectives or mechanism for preventing a representation collapse in conjunction with SymReg.
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