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Figure 3: Comparison between 2-SetWL and 2-WL in their supergraph connection

A.2 Bijective k-Pebble Game for k-WL

The pebble game characterization of k-FWL appeared in [11]. We use the pebble game defined
in [28] for k-WL. Let G,G

0 be graphs and �!v 0,
�!v 0

0 be k-tuple. Then the bijective k-pebble game
BPk(G,

�!v 0, G
0
,
�!v 0

0) is defined as the follows. The game is played by two players Player I and
Player II. The game proceeds in rounds starting from initial position (�!v 0,

�!v 0
0) and continues to new

position (�!v t,
�!v 0

t) as long as after t rounds �!v t[i] 7!
�!v 0

t[i] defines an isomorphism between G[�!v t]
and G

0[�!v 0
t]. If the game has not ended after t rounds, Player II wins the t-step BPk(G,

�!v 0, G
0
,
�!v 0

0),
otherwise Player I wins.

The t-th round is played as follows.
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1. Player I picks up the i-th pair of pebbles with i 2 [k].
2. Player II chooses bijection f : V (G)! V (G0).
3. Player I chooses x 2 V (G).
4. The new position is (�!v t[x/i], �!v 0

t[f(x)/i]). If G[�!v t[x/i]] and G[�!v 0
t[f(x)/i]] are still

isomorphic, the game continues. Otherwise, the game ends and Player II loses.

The game BPk(G,
�!v 0, G

0
,
�!v 0

0) has the same expressivity as k-WL in distinguishing (G,
�!v 0) and

(G0
,
�!v 0

0).

Theorem 9. k-WL cannot distinguish (G,
�!v 0) and (G0

,
�!v 0

0) at step t, i.e. wl(t)k (G,
�!v 0) =

wl(t)k (G0
,
�!v 0

0) , if and only if Player II has a winning strategy for t-step BPk(G,
�!v 0, G

0
,
�!v 0

0).

There is an extension of the pebble game, BPk(G,G
0), without specifying the starting posi-

tion. Specifically, at the beginning of the game, Player II is first asked to provide a bijection
g : V (G)k ! V (G0)k. Then Player I chooses �!v 0 2 V (G)k. Then Player I and Player II start
to play BPk(G,

�!v 0, G
0
, g(�!v 0)).

Theorem 10. k-WL cannot distinguish G and G
0 at step t, i.e. gwl(t)k (G) = gwl(t)k (G0) , if and

only if Player II has a winning strategy for t-step BPk(G,G
0).

The proof of Theorem 9 and Theorem 10 can be found in Hella’s work [30].

A.3 Doubly Bijective k-Pebble Game for k-MultisetWL

Let G,G
0 be graphs and ṽ0, ṽ

0
0 be k-multisets. We adapt the BPk game for k-MULTISETWL and

call it doubly bijective k-pebble game, i.e. DBPk(G, ṽ0, G
0
, ṽ0

0). A similar version of the pebble
game for k-MULTISETWL was suggested by Grohe in [27].

The DBPk(G, ṽ0, G
0
, ṽ0

0) is defined as the follows. The game starts at the position (ṽ0, ṽ
0
0).

Let the current position be (ṽt, ṽ
0
t). The t-th round is played as follows.

1. Player II chooses a bijection h : ṽt ! ṽ0
t

2. Player I chooses the y 2 ṽt

3. Player II chooses bijection f : V (G)! V (G0)

4. Player I chooses x 2 V (G)

5. The new position is (ṽt[x/idxṽt(y)], ṽ
0
t[f(x)/idxṽ0

t
(h(y))]) and the game continues, if

G[ṽt[x/idxṽt(y)]] and G
0[ṽ0

t[f(x)/idxṽ0
t
(h(y))]] are isomorphic. Otherwise the game ends

and Player II loses.

To extend the game to the setting of no starting position, we define the corresponding game
DBPk(G,G

0). Simliar to BPk(G,G
0), at the beginning Player II is asked to pick up a bijec-

tion g : Multiset(V (G)k) ! Multiset(V (G0)k). Then Player I picks up a ṽ0 and the game
DBPk(G, ṽ0, G

0
, g(ṽ0)) starts.

Theorem 3. k-MULTISETWL has the same expressivity as the doubly bijective k-pebble game.

Proof. Specifically, given graph G with k-multiset ṽ and graph G
0 with k-multiset ṽ0, we are going

to prove that mwl(t)k (G, ṽ) = mwl(t)k (G0
, ṽ0)() Player II has a winning strategy for t-step game

DBPk(G, ṽ, G0
, ṽ0).

We now prove it by induction on t. When t = 0, it’s obvious that the statement is correct, as
mwl(0)k (G, ṽ) = mwl(0)k (G0

, ṽ0) is equivalent to G[ṽ] and G
0[ṽ0] being isomorphic, which implies

that Player II can start the game without losing. Now assume that for t  l the statement is correct.
For step t = l + 1, let’s first prove left =) right.

mwl(l+1)
k (G, ṽ) = mwl(l+1)

k (G0
, ṽ0). By Eq.(3) we know this is equivalent to

(1) mwl(l)k (G, ṽ) = mwl(l)k (G0
, ṽ0)

(2) 9 bijective h : ṽ ! ṽ0, 8y 2 ṽ, {{mwl(l)k (G, ṽ[x/idxṽ(y)])
�� x 2 V (G)}} =

{{mwl(l)k (G0
, ṽ0[x/idxṽ0(h(y))])

�� x 2 V (G0)}}.
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Now let’s start the DBPk game at position (ṽ, ṽ0). By (2) we know that there exist a h satisfy-
ing (2). Then at the first round, we as Player II pick the h as the bijection. Next Player I will
choose a y 2 ṽ. According to (2), for the h and y we have {{mwl(l)k (G, ṽ[x/idxṽ(y)])

�� x 2
V (G)}} = {{mwl(l)k (G0

, ṽ0[x/idxṽ0(h(y))])
�� x 2 V (G0)}}. This implies that there ex-

ists a bijection f : V (G) ! V (G0) such that 8x 2 V (G),mwl(l)k (G, ṽ[x/idxṽ(y)]) =

mwl(l)k (G, ṽ0[f(x)/idxṽ0(h(y))]). Hence let Player II pick the f . Now player I will choose
a x 2 V (G). Then mwl(l)k (G, ṽ[x/idxṽ(y)]) = mwl(l)k (G, ṽ0[f(x)/idxṽ0(h(y))]) im-
plies mwl(0)k (G, ṽ[x/idxṽ(y)]) = mwl(0)k (G, ṽ0[f(x)/idxṽ0(h(y))]), hence G[ṽt[x/idxṽt(y)]]
and G

0[ṽ0
t[f(x)/idxṽ0

t
(h(y))]] are isomorphic. So the game doesn’t end. At the next

round, the game starts at the position (ṽ[x/idxṽ(y)], ṽ0[f(x)/idxṽ0(h(y))]), and we know
mwl(l)k (G, ṽ[x/idxṽ(y)]) = mwl(l)k (G, ṽ0[f(x)/idxṽ0(h(y))]). By the inductive hypothesis,
Player II has a strategy to play DBPk at the new position for l rounds. Hence Player II has a
winning strategy to play DBPk at original position (ṽ, ṽ0) for l + 1 rounds.

Next we prove right =) left by showing that mwl(l+1)
k (G, ṽ) 6= mwl(l+1)

k (G0
, ṽ0) =) Player I

has a winning strategy for l + 1-step game DBPk(G, ṽ, G0
, ṽ0).

mwl(l+1)
k (G, ṽ) 6= mwl(l+1)

k (G0
, ṽ0) implies:

(1) mwl(l)k (G, ṽ) 6= mwl(l)k (G0
, ṽ0)

or (2) for any bijection h : ṽ ! ṽ0, 9y 2 ṽ, such that {{mwl(l)k (G, ṽ[x/idxṽ(y)])
�� x 2 V (G)}} 6=

{{mwl(l)k (G0
, ṽ0[x/idxṽ0(h(y))])

�� x 2 V (G0)}}

If (1) holds, then by induction we know that Player I has a winning strategy within l-steps
hence Player I also has a winning strategy within l + 1 steps. If (2) holds, then at the first
round after Player II picks up a bijection h, Player I can choose the specific y 2 ṽ with
{{mwl(l)k (G, ṽ[x/idxṽ(y)])

�� x 2 V (G)}} 6= {{mwl(l)k (G0
, ṽ0[x/idxṽ0(h(y))])

�� x 2 V (G0)}}.
Then no matter which bijection f : V (G) ! V (G0) Player II chooses, Player I can always
choose a x 2 V (G) such that mwl(l)k (G, ṽ[x/idxṽ(y)]) 6= mwl(l)k (G0

, ṽ0[x/idxṽ0(h(y))]).
Then by induction, Player I has a winning strategy within l-steps for the DBPk starts at position
(ṽ[x/idxṽ(y)], ṽ0[x/idxṽ0(h(y))]). Hence even if Player I doesn’t win in the first round, he/she can
still win in l + 1 rounds.

Combining both sides we know that the equivalence between t-step DBPk and t-step k-
MULTISETWL holds for any t and any k-multisets.

Theorem 11. k-MULTISETWL cannot distinguish G and G
0 at step t, i.e. gmwl(t)k (G) =

gmwl(t)k (G0) , if and only if Player II has a winning strategy for t-step DBPk(G,G
0).

Proof. The proof is strict forward with using the proof inside Theorem 3. We just need to show
that the pooling of all k-multisets representations is equivalent to Player II finding a bijection
g : Multiset(V (G)k) ! Multiset(V (G0)k) at the first step of the game. We omit that given its
simplicity.

A.4 Proofs of Theorems

A.4.1 Bound of Summation of Binomial Coefficients

Derivation of:
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A.4.2 Proof of Theorem 1

Theorem 1. Let k � 1 and wl(t)k (G, ṽ) := {{wl(t)k (G, p(ṽ))|p 2 perm[k]}}. For all t 2 N and
all graphs G,G

0: k-MULTISETWL is upper bounded by k-WL in distinguishing multisets G, ṽ and
G

0
, ṽ0 at t-th iteration, i.e. wl(t)k (G, ṽ) = wl(t)k (G0

, ṽ0) =)mwl(t)k (G, ṽ) = mwl(t)k (G0
, ṽ0).

Proof. By induction on t. It’s obvious that when t = 0 the above statement hold, as both side
are equivalent to G[ṽ] and G

0[ṽ0] being isomorphic to each other. Assume  t the above state-
ment is true. For t + 1 case, by definition the left side is equivalent to {{wl(t+1)

k (G, p(ṽ))|p 2

perm[k]}} = {{wl(t+1)
k (G0

, p(ṽ0))|p 2 perm[k]}}. Let �!v be the ordered version of ṽ follow-
ing canonical ordering over G, then there exists a bijective mapping f between ṽ and ṽ0, such
that wl(t+1)

k (G,
�!v ) = wl(t+1)

k (G0
, f(�!v )), where f(�!v ) := (f(�!v 1), ..., f(

�!v k)). By [11]’s The-
orem 5.2, for any t, wl(t)k (G,

�!v ) = wl(t)k (G0
, f(�!v )) is equivalent to that player II has a win-

ner strategy for t-step pebble game with initial configuration G,
�!v and G

0
, f(�!v ) (please refer

to [11] for the description of pebble game). Notice that applying any permutation to the pebble
game’s initial configuration won’t change having winner strategy for player II, hence we know that
8p 2 perm[k], wl(t+1)

k (G, p(�!v )) = wl(t+1)
k (G0

, p(f(�!v ))). Now applying Eq.(1), we know that
(1) wl(t)k (G, p(�!v )) = wl(t)k (G0

, p(f(�!v ))), and (2)8i 2 [k], {{wl(t)k (G, p(�!v [x/i])) | x 2 V (G)}}

= {{wl(t)k (G0
, p(f(�!v )[x/i])) | x 2 V (G0)}}. We rewrite (2) as, 8i 2 [k], 9 bijective hi :

V (G) ! V (G0), 8x 2 V (G), wl(t)k (G, p(�!v [x/i])) = wl(t)k (G0
, p(f(�!v )[hi(x)/i])). As (1)

and (2) hold for any p 2 perm[k] , now applying induction hypothesis to both (1) and (2), we
can get (a) mwl(t)k (G, ṽ) = mwl(t)k (G0

, ṽ0), and (b) 8i 2 [k], 9 bijective hi : V (G) ! V (G0),
8x 2 V (G), mwl(t)k (G, ṽ[x/i]) = mwl(t)k (G0

, ṽ0[hi(x)/g(i)]), where g : [k] ! [k] is the in-
dex mapping function corresponding to f . Now we rewrite (b) as 9g : [k] ! [k], 8i 2 [k],
{{mwl(t)k (G, ṽ[x/i]) | x 2 V (G)}} = {{mwl(t)k (G0

, ṽ0[x/g(i)]) | x 2 V (G0)}}. Combining (a)
and (b), using Eq.(3) we can get mwl(t+1)

k (G, ṽ) = mwl(t+1)
k (G0

, ṽ0). Thus for any t the above
statement is correct.

A.4.3 Proof of Theorem 2

CFI Graphs and Their Properties
Cai, Furer and Immerman [11] designed a construction of a series of pairs of graphs CFI(k) such
that for any k, k-WL cannot distinguish the pair of graphs CFI(k). We will use the CFI graph
construction to prove the theorem. Here we use a variant of CFI construction that is proposed in
Grohe et al.’s work [28]. Let K he a complete graph with k nodes. We first construct an enlarged
graph X (K) from the base graph K by mapping each node and edge to a group of vertices and
connecting all (|V (K)| + |E(K)|) groups of vertices following certain rules. Notice that we use
node for base graph and use vertex for the enlarged graph for a distinction. Let vw denotes the edge
connecting node v and node w. For a node v 2 V (K), let E(v) :=

�
vw|vw 2 E(K)

 
denotes the

set of all adjacent edges of v in the graph K.
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Figure 4: CFI(k) construction visualization for k = 3

For every node v 2 V (K), we map node v to a group of vertices Sv := {v
X
|X ✓ E(v)} with

size |Sv| = 2deg(v) = 2k�1. For every edge e 2 E(K), the construction maps e to two vertices
Se := {e

0
, e

1
}. Hence there are 2⇤|E(K)|+|V (K)|⇤2k�1 = k(k�1)+k(2k�1) number of vertices

in the enlarged graph X (K) with V (X (K)) = ([v2V (K)Sv)[([e2E(K)Se). Let V ⇤ := [v2V (K)Sv

and E
⇤ := [e2E(K)Se.

Now edges inside X (K) are defined as follows

E(X (K)) :={v
X
e
1
| v 2 V (K), X ✓ E(v), and e 2 X} [ (20)

{v
X
e
0
| v 2 V (K), X ✓ E(v), and e 62 X} [ {e

0
e
1
| e 2 E(K)} (21)

What’s more, we also color the vertices such that all vertices inside Sv have color v for every
v 2 V (K) and all vertices inside Se have color e for every e 2 E(K). See Figure.4 top right for the
visualization of transforming from base graph K to X (K) with k = 3.

There are several important properties about the automorphisms of X (K). Let h 2 Aut(X (K)) be
an automorphism, then

1. h(Sv) = Sv and h(Se) = Se for all v 2 V (K) and e 2 E(K).
2. For every subset F ✓ E(K), there is exactly one automorphism hF that flips precisely all

edges in F, i.e. hF (e0) = e
1 and hF (e1) = e

0 if and only if e 2 F . More specifically,
• hF (ei) = e

1�i
, 8e 2 F

• hF (ei) = e
i
, 8e 62 F

• hF (vX) = v
Y , 8v 2 E(K), X ✓ E(v)

where Y := X4
�
F \ E(v)

�
=
⇣
X \

�
F \ E(v)

�⌘
[

⇣�
F \ E(v)

�
\X

⌘
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Proof. These properties are not hard to prove. First for property 1, it is true based on the coloring
rules of vertices in X (K). Now for the second property. As hF flips precisely all edges in F , we have
hF (ei) = e

1�i
, 8e 2 F and hF (ei) = e

i
, 8e 62 F . Now let hF (vX) = v

Y
8v 2 E(K), X ✓ E(v),

we need to figure out Y ’s formulation. Let’s focus on node v without losing generality, and we can
partition the set E(v) to two parts: E(v) \ F and E(v) \ F . Then for any e 2 E(v) \ F , we know
that hF (ei) = e

1�i. Let v $ w denote that v and w are connected in X (K). Then 8X ✓ E(v),
e 2 X () e

0
$ v

X
() hF (e0)$ hF (vX)() e

1
$ v

Y
() e 62 Y . And similarly we have

8X ✓ E(v), e 62 X () e 2 Y . Hence 8e 2 E(v) \ F, 8X ✓ E(v), e 2 X4Y . This implies
that E(v) \ F ✓ X4Y . Following the same logic we can also get 8e 2 E(v) \ F, 8X ✓ E(v),
e 2 E(v) \ (X4Y ), which is equivalent to E(v) \F ✓ E(v) \ (X4Y ), which further implies that
E(v) \ F ◆ X4Y as X4Y ✓ E(v). Then combining both side we know that 8v 2 E(K), 8X ✓
E(v), E(v) \ F = X4Y . Hence we get Y = X4(X4Y ) = X4

�
F \ E(v)

�
.

In the proof we can also know another important property. That is 8v,X ✓ E(v), X4hF (X) =
E(v) \ F is constant for any input X 2 E(v).

Now we are ready to construct variants of graphs that are not isomorphic from the enlarged graph
X (K). Now let T be a subset of V (K). Now we define an induced subgraph XT (K) of the enlarged
graph X (K). Specifically, we define the new node group as follows

S
T
v :=

⇢
{v

X
2 Sv | |X| ⌘ 0 mod 2} if v 62 T

{v
X
2 Sv | |X| ⌘ 1 mod 2} if v 2 T

(22)

Then the induced subgraph is defined as XT (K) := X (K)[([v2V (K)S
T
v ) [ E

⇤]. In Figure 4 we
show X;(K) in bottom left (labeled with X0(K)) and X{v1}(K) in the bottom right (labeled with
X1(K)).
Lemma 1. For all T, U ✓ V (K), XT (K) ⇠= XU (K) if and only if |T | ⌘ |U | mod 2. And if they
are isomorphic, one isomorphism between XT (K) and XU (K) is hF with F = E(K[T4U ]), where
E(K[T4U ]) denotes the set of all edges {vi, vj} ✓ T4U .

Notice that hF is an automorphism for X (K), but with restricting its domain to ([v2V (K)S
T
v )[E

⇤

it becomes the isomorphism between XT (K) and XU (K).

The proof of the lemma can be found in [11] and [28]. With this lemma we know that X{v1}(K) and
X;(K) are not isomorphic. In next part we show that X;(K) and X{v1}(K) cannot be distinguished
by (k � 1)-WL but can be distinguished by k-MULTISETWL, thus proving Theorem 2.

Main Proof
Theorem 2. k-MULTISETWL is no less powerful than (k-1)-WL in distinguishing graphs: for
k � 3 there is a pair of graphs that can be distinguished by k-MULTISETWL but not by (k-1)-WL.

Proof. To prove the theorem, we show that for any k � 3, X{v1}(K) and X;(K), defined previously,
are two nonisomorphic graphs that can be distinguished by k-MULTISETWL but not by (k � 1)-
WL. It’s well known that these two graphs cannot be distinguished by (k � 1)-WL, and one can
refer to Theorem 5.17 in [28] for its proof. Now to prove these two graphs can be distinguished by
k-MULTISETWL, using Theorem 11 we know it’s equivalent to show that Player I has a winning
strategy for the doubly bijective k-pebble game DBPk(X;(K),X{v1}(K)).

At the start of the pebble game DBPk(X;(K),X{v1}(K)), Player II is asked to provide a bijec-
tion between all k-multisets of X;(K) to all k-multisets of X{v1}(K). For any bijection the Player
II chosen, the Player I can pickup ṽ0 = {{v

;
1 , v

;
2 , ..., v

;
k}}, with corresponding position ṽ0

0 =

{{v
X1
1 , v

X2
2 , ..., v

Xk
k }}. Notice that for a position (x̃, ỹ) := ({{x1, ..., xk}}, {{y1, ..., yk}}), the posi-

tion is called consistent if there exists a F ✓ E(K), such that hF (x̃) = {{hF (x1), ..., hF (xk)}} = ỹ.
One can show that Player I can easily win the game DBPk(X;(K),X{v1}(K)) after one additional
step if the current position (x̃, ỹ) is not consistent, even if X;(K)[x̃] and X{v1}(K)[ỹ] are isomor-
phic [28].

We claim that for any k-multiset ṽ0
0 = {{v

X1
1 , v

X2
2 , ..., v

Xk
k }} the position (ṽ0, ṽ

0
0) cannot be con-

sistent, and thus Player II loses DBPk(X;(K),X{v1}(K)) after the first round. Assume that there
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exists a subset F ✓ E(K), such that hF (ṽ0) = ṽ0
0. By property 1 of automorphisms of X (K) we

have that hF (Sv1) = Sv1 , and since ṽ0 contains exactly one vertex of each color, it also holds that
hF (v

;
1) = v

X1
1 . It follows from property 2 that X1 = ;4

�
F \ E(v1)

�
= F \ E(v1). Based on

the definition of X{v1}(K), we know that |X1| ⌘ 1 mod 2, and thus F flips an odd number of
neighbors of v1, i.e. |F \E(v1)| ⌘ 1 mod 2. Similarly, we have that hF (Svi) = Svi and |Xi| ⌘ 0
mod 2, 8i � 2, hence |F \ E(vi)| ⌘ 0 mod 2. It follows from a simple handshake argument that
there exists an m � 0 such that

2m =
X

v2V

|(F \ E)(v)| =
X

i2[k]\{1}

|F \ E(vi)|+ |F \ E(v1)| ⌘ 1 mod 2,

which is a contradiction. Hence Player I has a winning strategy for DBPk(X;(K),X{v1}(K)).

A.4.4 Proof of Theorem 3

See Appendix.A.3.

A.4.5 Proof of Theorem 4

Theorem 4. Let k � 1, then 8t 2 N and all graphs G,G
0: mwl(t)k (G, v̂) = mwl(t)k (G0

, v̂0) =)

swl(t)k (G, v̂) = swl(t)k (G0
, v̂0).

Proof. Notation: Let s(·) transform a multiset to set by removing repeats, and let r(·) return a tuple
with the number of repeats for each distinct element in a multiset. Let f be the inverse mapping
such that ṽ = f(s(ṽ), r(ṽ)).

Define F
(t+1)(G,G

0
, ṽ, ṽ0) := { injective f : ṽ ! ṽ0

| f 2 F
(t)(G,G

0
, ṽ, ṽ0), AND , 8y 2

ṽ, 9hy : V (G) ! V (G0), 8x, f 2 F
(t)(G,G

0
, ṽ[x/idxṽ(y)], ṽ0[hy(x)/idxṽ0(f(y))])}. Let

F
(0)(G,G

0
, ṽ, ṽ0) := {f | f is an isomorphism from G[ṽ] to G

0[ṽ0]}.

Lemma 2. 8t, mwl(t)k (G, ṽ) = mwl(t)k (G0
, ṽ0) () 8h 2 F

(t)(G,G
0
, ṽ, ṽ0),

8n̂ with (
Pm

i=1 n̂i = k, 8i n̂i � 1), mwl(t)k (G, f(s(ṽ), n̂)) = mwl(t)k (G0
, f(h(s(ṽ)), n̂)).

When t = 0, by the definition of swl(0)k , the statement is true. Now hypothesize that the statement
is true for  t case. For t + 1 case, the left side implies that existing a ṽ with s(ṽ) = v̂ and a
ṽ0 with s(ṽ0) = v̂0, such that mwl(t+1)

k (G, ṽ) = mwl(t+1)
k (G0

, ṽ0). And for a mapping h 2

F
(t+1)(G,G

0
, ṽ, ṽ0), we have 8n̂ with (

Pm
i=1 n̂i = k, 8i n̂i � 1), mwl(t+1)

k (G, f(s(ṽ), n̂)) =

mwl(t+1)
k (G0

, f(h(s(ṽ)), n̂)).

For a specific n̂, define ũ = f(s(ṽ), n̂) and ũ0 = f(h(s(ṽ)), n̂) = h(ũ). By Eq.(3):
(1) mwl(t)k (G, ũ) = mwl(t)k (G0

, ũ0);
(2) 8f 2 F

(t+1)(G,G
0
, ũ, ũ0), 8y 2 ũ, {{mwl(t)k (G, ũ[x/idxṽ(y)])

��x 2 V (G)}} =

{{mwl(t)k (G0
, ũ0[x/idxṽ0(f(y))])

��x 2 V (G0)}}.

As h 2 F
(t+1)(G,G

0
, ṽ, ṽ0) = F

(t+1)(G,G
0
, ũ, ũ0), we can change (2) by choosing f as h. Hence

we update it as:
(2) 8y 2 ũ, {{mwl(t)k (G, ũ[x/idxṽ(y)])

��x 2 V (G)}} = {{mwl(t)k (G0
, h(ũ)[x/idxṽ0(h(y))])

��x 2
V (G0)}}
And (2) can be split into two parts:
(2) 8y 2 ũ, {{mwl(t)k (G, ũ[x/idxṽ(y)])

��x 2 s(ũ)}} = {{mwl(t)k (G0
, h(ũ)[x/idxṽ0(h(y))])

��x 2
s(h(ũ))}} and
{{mwl(t)k (G, ũ[x/idxṽ(y)])

��x 2 V (G) \ s(ũ)}} = {{mwl(t)k (G0
, h(ũ)[x/idxṽ0(h(y))])

��x 2
V (G0) \ s(h(ũ))}}
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Combining the Lemma.2 and induction hypothesis, also knowing that s(ũ) = v̂ and s(ũ0) = v̂0,
we get:
(a) swl(t)k (G, v̂) = swl(t)k (G0

, v̂0);
(b) 8y 2 v̂, {{swl(t)k (G, v̂ \ y)

��x 2 v̂}} = {{swl(t)k (G0
, v̂0

\ h(y))
��x 2 v̂0

}} , this is derived with
picking n̂ with n̂[y] = 1, such that ũ only has 1 y and ũ0 only has 1 h(y).
(c) 8y 2 v̂, {{swl(t)k (G, v̂ [ {x})

��x 2 V (G) \ v̂}} = {{swl(t)k (G0
, v̂0
[ {x})

��x 2 V (G0) \ v̂0
}}, this

is derived with picking n̂ with n̂[y] > 1.
(d) 8y 2 v̂, {{swl(t)k (G, v̂ \ y [ {x})

��x 2 V (G) \ v̂}} = {{swl(t)k (G0
, v̂0

\ h(y) [ {x})
��x 2

V (G0) \ v̂0
}} , this is derived with picking n̂ with n̂[y] = 1, such that ũ only has 1 y and ũ0 only

has 1 h(y).

Now combining (a) (b) (c) (d) and using Eq.(5), we can get that swl(t+1)
k (G, v̂) = swl(t+1)

k (G0
, v̂0),

and we proved the statement.

A.4.6 Proof of Theorem 5

Theorem 5. Let k � 1, then 8t 2 N and all graphs G,G
0:

(1) when 1  c1 < c2  k, if G,G
0 cannot be distinguished by (k, c2)()-SETWL, they

cannot be distinguished by (k, c1)()-SETWL
(2) when k1 < k2, 8c  k1, if G,G

0 cannot be distinguished by (k2, c)()-SETWL, they
cannot be distinguished by (k1, c)()-SETWL

Proof. We will prove (2) first, and the proof for (1) follows the same argument. To help understand,
we present the formulation for (k, c)()-SETWL first.

swl
(t+ 1

2 )
k,c (G, v̂) = {{swl(t)k,c(G, û) | û 2 N

G
k,c,right(v̂)}} (23)

swl(t+1)
k,c (G, v̂) =

✓
swl(t)k,c(G, v̂), swl

(t+ 1
2 )

k,c (G, v̂), {{swl(t)k,c(G, û) | û 2 N
G
k,c,left(v̂)}}, (24)

{{swl
(t+ 1

2 )
k,c (G, û) | û 2 N

G
k,c,left(v̂)}}

◆
(25)

Lemma 3. For k1 < k2, for any t, for any v̂ and v̂0 with  k1 nodes inside, swl(t)k2,c
(G, v̂) =

swl(t)k2,c
(G0

, v̂0) =) swl(t)k1,c
(G, v̂) = swl(t)k1,c

(G0
, v̂0).

Proof of Lemma.3:

Proof. We prove it by induction. As the color initialization stage of (k1, c)()-SETWL and
(k2, c)()-SETWL are the same, when t = 0 the statement of the Lemma is correct. Assume it
holds correct for  t. When t+ 1, swl(t+1)

k2,c
(G, v̂) = swl(t+1)

k2,c
(G0

, v̂0) implies:

(1) swl(t)k2,c
(G, v̂) = swl(t)k2,c

(G0
, v̂0)

(2) swl(t+1/2)
k2,c

(G, v̂) = swl(t+1/2)
k2,c

(G0
, v̂0)

(3) {{swl(t)k2,c
(G, û) | û 2 N

G
k2,c,left(v̂)}} = {{swl(t)k2,c

(G0
, û0) | û0

2 N
G0

k2,c,left(v̂
0)}}

(4) {{swl(t+1/2)
k2,c

(G, û) | û 2 N
G
k2,c,left(v̂)}} = {{swl(t+1/2)

k2,c
(G0

, û0) | û0
2 N

G0

k2,c,left(v̂
0)}}

(1) + induction hypothesis =) (a) swl(t)k1,c
(G, v̂) = swl(t)k1,c

(G0
, v̂0)

(2) has two situations: |v̂| = |v̂0
| < k1 and |v̂| = |v̂0

| = k1. For the first situa-
tion, N

G
k2,c,right(v̂) = N

G
k1,c,right(v̂) and N

G0

k2,c,right(v̂
0) = N

G0

k1,c,right(v̂
0), 9 a bijective map-

ping b between N
G0

k2,c,right(v̂
0) and N

G
k2,c,right(v̂) such that 8û 2 N

G
k2,c,right(v̂), swl(t)k2,c

(G, û) =
swl(t)k2,c

(G0
, b(û)) and by induction swl(t)k1,c

(G, û) = swl(t)k1,c
(G0

, b(û)), hence swl(t+1/2)
k1,c

(G, v̂) =
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swl(t+1/2)
k1,c

(G0
, v̂0). For the second situation, NG0

k2,c,right(v̂
0) elements while NG0

k1,c,right(v̂
0) = ;, then

clearly (b) swl(t+1/2)
k1,c

(G, v̂) = swl(t+1/2)
k1,c

(G0
, v̂0) (both are empty multisets).

(3) follows the same argument step in (2)’s first situation, with induction hypothesis we can get (c)
{{swl(t)k1,c

(G, û) | û 2 N
G
k1,c,left(v̂)}} = {{swl(t)k1,c

(G0
, û0) | û0

2 N
G0

k1,c,left(v̂
0)}}

(4) implies that 9 a mapping b between N
G0

k2,c,left(v̂
0) and N

G
k2,c,left(v̂) such that for any

û 2 N
G0

k2,c,left(v̂
0), swl(t+1/2)

k2,c
(G, û) = swl(t+1/2)

k2,c
(G0

, b(û0)). Using the same argument in
(2) and induction hypothesis, this implies that for any û 2 N

G0

k1,c,left(v̂
0), swl(t+1/2)

k1,c
(G, û)

= swl(t+1/2)
k1,c

(G0
, b(û0)). Hence we get (d) {{swl(t+1/2)

k1,c
(G, û) | û 2 N

G
k1,c,left(v̂)}} =

{{swl(t+1/2)
k1,c

(G0
, û0) | û0

2 N
G0

k1,c,left(v̂
0)}}.

Combining (a) (b) (c) (d) we get swl(t+1)
k1,c

(G, v̂) = swl(t+1)
k1,c

(G0
, v̂0).

With Lemma.3 we are ready to prove (2) in Theorem 3. When two graphs G and G
0 can-

not be distinguished by (k2, c)()-SETWL, we have {{swl(t)k2,c
(G, v̂) | v̂ 2 V (Sk2,c-swl(G))}} =

{{swl(t)k2,c
(G0

, v̂0) | v̂0
2 V (Sk2,c-swl(G0))}}. When v̂ and û have different k (number of nodes)

and c (number of components of its induced subgraph), their color cannot be the same (as t = 0

already be different). Hence {{swl(t)k2,c
(G, v̂) | v̂ 2 V (Sk2,c-swl(G))}} = {{swl(t)k2,c

(G0
, v̂0) | v̂0

2

V (Sk2,c-swl(G0))}} is equivalent to 8k  k2, cc  c, {{swl(t)k2,c
(G, v̂) | v̂ 2 Vk,cc(Sk2,c-swl(G))}} =

{{swl(t)k2,c
(G0

, v̂0) | v̂0
2 Vk,cc(Sk2,c-swl(G0))}}. With Lemma.3 we can get that 8k  k1, cc  c,

{{swl(t)k1,c
(G, v̂) | v̂ 2 Vk,cc(Sk1,c-swl(G))}} = {{swl(t)k1,c

(G0
, v̂0) | v̂0

2 Vk,cc(Sk1,c-swl(G0))}}.
Hence two graphs G and G

0 cannot be distinguished by (k1, c)()-SETWL.

A.4.7 Proof of Theorem 6

Theorem 6. When (i) BaseGNN can distinguish any non-isomorhpic graphs with at most k nodes,
(ii) all MLPs have sufficient depth and width, and (iii) POOL is an injective function, then for any
t 2 N, t-layer (k, c)()-SETGNN is as expressive as (k, c)()-SETWL at the t-th iteration.

Proof. For any G, v̂, let swl(t)k,c(G, v̂) denotes the color of v̂ at t-iteration (k, c)()-SETWL and
h
(t)
k,c(G, v̂) denotes the embedding of v̂ at t-th layer (k, c)()-SETGNN. We prove the above theo-

rem by showing that swl(t)k,c(G, v̂) = swl(t)k,c(G
0
, v̂0)() h

(t)
k,c(G, v̂) = h

(t)
k,c(G

0
, v̂0). We remove the

subscript k, c when possible without introducing confusion.

For easier reference, recall the updating formulation for t-iteration (k, c)()-SETWL is

swl(t+
1
2 )(G, v̂) ={{swl(t)k,c(G, û) | û 2 N

G
right(v̂)}} (26)

swl(t+1)(G, v̂) =

✓
swl(t)(G, v̂), swl(t+

1
2 )(G, v̂), (27)

{{swl(t)(G, û) | û 2 N
G
left(v̂)}}, {{swl(t+

1
2 )(G, û) | û 2 N

G
left(v̂)}}

◆
(28)

And the updating formulation for (k, c)()-SETGNN is

h
(t+ 1

2 )(v̂) =
X

û2NG
right(v̂)

MLP(t+ 1
2 )(h(t)(û)) (29)

h
(t+1)(v̂) =MLP(t)

⇣
h
(t)(v̂), h(t+ 1

2 )(v̂), (30)
X

û2NG
left(v̂)

MLP(t)
A (h(t)(û)),

X

û2NG
left(v̂)

MLP(t)
B (h(t+ 1

2 )(û))
⌘

(31)
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At t = 0, given powerful enough BaseGNN with condition (i) in the theorem, h
(0)(G, v̂) =

h
(0)(G0

, v̂0)() G[v̂] and G
0[v̂0] are isomorphic() swl(0)(G, v̂) = swl(0)(G0

, v̂0).

Now assume for  t iterations the claim swl(t)(G, v̂) = swl(t)(G0
, v̂0) () h

(t)(G, v̂) =
h
(t)(G0

, v̂0) holds (for any v̂ and v̂0). We prove it holds for t + 1 iteration. We first prove the
forward direction. swl(t+1)(G, v̂) = swl(t+1)(G0

, v̂0) imples that

(1) swl(t)(G, v̂) = swl(t)(G0
, v̂0)

(2) swl(t+1/2)(G, v̂) = swl(t+1/2)(G0
, v̂0)

(3) {{swl(t)(G, û) | û 2 N
G
left(v̂)}} = {{swl(t)(G0

, û0) | û0
2 N

G0

left (v̂
0)}}

(4) {{swl(t+1/2)(G, û) | û 2 N
G
left(v̂)}} = {{swl(t+1/2)(G0

, û0) | û0
2 N

G0

left (v̂
0)}}

(1) and (3) can be directly transformed to relationship between h using the inductive hypothesis.
Formally, we have
(a) h(t)(G, v̂) = h

(t)(G0
, v̂0) and

(c) {{h(t)(G, û) | û 2 N
G
left(v̂)}} = {{h

(t)(G0
, û0) | û0

2 N
G0

left (v̂
0)}}

(2) and (4) need one additional process. Notice that (2) is equivalent to {{swl(t)(G, û) | û 2
N

G
right(v̂)}} = {{swl(t)(G0

, û0) | û 2 N
G0

right(v̂
0)}} and by inductive hypothesis we know

{{h
(t)(G, û) | û 2 N

G
right(v̂)}} = {{h

(t)(G0
, û0) | û 2 N

G0

right(v̂
0)}}. As the formulation Eq.(29)

applies a MLP with summation, which is permutation invariant to ordering, to the multiset
{{h

(t)(G, û) | û 2 N
G
right(v̂)}}, the same multiset leads to the same output. Hence we know

(b) h(t+1/2)(G, v̂) = h
(t+1/2)(G0

, v̂0).

For (4) we know that there is a bijective mapping g between N
G
left(v̂) and N

G
left(v̂

0) such that
swl(t+1/2)(G, û) = swl(t+1/2)(G0

, g(û)). Then using the same argument as (2) =>(b) we can
get h(t+1/2)(G, û) = h

(t+1/2)(G0
, g(û)) for any û 2 N

G
left(v̂), which is equivalent to

(d) {{h(t+1/2)(G, û) | û 2 N
G
left(v̂)}} = {{h

(t+1/2)(G0
, û0) | û0

2 N
G0

left (v̂
0)}}.

Combining (a)(b)(c)(d) and using the permutation invariant property of MLP with summation, we
can derive that h(t+1)(G, v̂) = h

(t+1)(G0
, v̂0).

Now for the backward direction. We first characterize the property of MLP with summation from
DeepSet [64] and GIN [61]’s Lemma 5.

Lemma 4 (Lemma 5 of [61]). Assume X is countable. There exists a function f : X ! Rn so that
h(X) =

P
x2X f(x) is unique for each multiset X 2 X of bounded size.

Using this Lemma, we know that given enough depth and width of a MLP, there exist a MLP thatP
x2X MLP(x) =

P
y2Y MLP(y) () X = Y or in other words two multisets X and Y are

equivalent. Now by h
(t+1)(G, v̂) = h

(t+1)(G0
, v̂0) and using the Eq.(31), we know there exists

MLPs inside Eq.(29) and Eq.(31), such that

(1) h(t)(G, v̂) = h
(t)(G0

, v̂0)
(2) h(t+1/2)(G, v̂) = h

(t+1/2)(G0
, v̂0)

(3) {{h(t)(G, û) | û 2 N
G
left(v̂)}} = {{h

(t)(G0
, û0) | û0

2 N
G0

left (v̂
0)}}

(4) {{h(t+1/2)(G, û) | û 2 N
G
left(v̂)}} = {{h

(t+1/2)(G0
, û0) | û0

2 N
G0

left (v̂
0)}}

Where (3) and (4) are derived using the provided lemma. Hence following the same argument as the
forward process, we can prove that swl(t+1)(G, v̂) = swl(t+1)(G0

, v̂0).

Combining the forward and backward direction, we have swl(t+1)(G, v̂) = swl(t+1)(G0
, v̂0)()

h
(t+1)(G, v̂) = h

(t+1)(G0
, v̂0). Hence by induction we proved for any step t and any v̂, v̂0, the

above statement is true. This shows that (k, c)()-SETGNN and (k, c)()-SETWL have same
expressivity.
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A.4.8 Proof of Theorem 7

Theorem 7. For any t 2 N, the t-layer (k, c)()-SETGNN⇤ is more expressive than the t-layer
(k, c)()-SETGNN. As limt!1, (k, c)()-SETGNN is as expressive as (k, c)()-SETGNN⇤.

Proof. We first prove that t-layer (k, c)()-SETGNN⇤ is more expressive than t-layer (k, c)()-
SETGNN, by showing that if a m-set û has the same representation to another m-set v̂ in t-layer
(k, c)()-SETGNN⇤, then they also have the same representation in t-layer (k, c)()-SETGNN.
Let h be the representation inside (k, c)()-SETGNN⇤, and g be the representation inside (k, c)(
)-SETGNN.

To simplify the proof, we first simplify the formulations of (k, c)()-SETGNN⇤ Eq.13 and Eq.14
by removing unnecessary super and under script of MLP without introducing ambiguity. We then
add another superscript to embeddings to indicate which step inside the one-layer bidirectional prop-
agation. Notice that for one-layer bidirectional propagation, there are 2k�2 intermediate sequential
steps. The proof assumes that all MLPs are injective. We rewrite Eq.13 and Eq.14 as follows

8m-set v̂, h(t+ 1
2 )(v̂) := h(t+ 1

2 ,k�m)(v̂) = MLP
⇣
h(t)(v̂),

X

ŵ2NG
right(v̂)

MLP(h(t+ 1
2 ,k�m�1)(ŵ))

⌘
(32)

8m-set v̂, h(t+1)(v̂) := h(t+1,m�1)(v̂) = MLP
⇣
h(t+ 1

2 ,k�m)(v̂),
X

ŵ2NG
left(v̂)

MLP(h(t+1,m�2)(ŵ))
⌘

(33)

Where we have boundary case with h
(t+ 1

2 ,0)(û) = h
(t)(û) and h

(t+1,0)(û) = h
(t+ 1

2 )(û).
h
(t+ 1

2 )(v̂) := h
(t+ 1

2 ,k�m)(v̂) represents that the representation is calculated at k � m step for
t+ 1

2 layer.

We prove the theorem by induction on t. Specifically, we want to prove that for any t, v̂, û,
h
(t)(û) = h

(t)(v̂) =) g
(t)(û) = g

(t)(v̂) and h
(t� 1

2 )(û) = h
(t� 1

2 )(v̂) =) g
(t� 1

2 )(û) =
g
(t� 1

2 )(v̂). The base case is easy to verify as the definition of initialization step is the same.

Now assume that for t  l we have for any t, v̂, û, h(t)(û) = h
(t)(v̂) =) g

(t)(û) = g
(t)(v̂)

and h
(t� 1

2 )(û) = h
(t� 1

2 )(v̂) =) g
(t� 1

2 )(û) = g
(t� 1

2 )(v̂). We first prove that for t = l + 1,
h
(l+ 1

2 )(û) = h
(l+ 1

2 )(v̂) =) g
(l+ 1

2 )(û) = g
(l+ 1

2 )(v̂).

First, Eq.32 can be rewrite as

h
(t+ 1

2 )(v̂) : h(t+ 1
2 ,k�m)(v̂) = MLP

⇣
h
(t)(v̂),

X

ŵ2NG
right(v̂)

MLP(h(t+ 1
2 ,k�m�1)(ŵ))

⌘
(34)

= MLP
⇣
h
(t)(v̂),

X

ŵ2NG
right(v̂)

MLP(MLP(h(t)(ŵ)),
X

p̂2NG
right(ŵ)

MLP(h(t+ 1
2 ,k�m�2)(p̂)))

⌘
(35)

Then h
(l+ 1

2 )(v̂) = h
(l+ 1

2 )(û) =)
P

ŵ2NG
right(v̂)

MLP(h(l)(ŵ)) =
P

ŵ2NG
right(û) MLP(h(l)(ŵ)).

Hence we can find a bijective mapping f between N
G
right(v̂) and N

G
right(û) such that MLP(h(l)(ŵ)) =

MLP(h(l)(f(ŵ))). Then by inductive hyphothesis, MLP(g(l)(ŵ)) = MLP(g(l)(f(ŵ))) for all
ŵ 2 N

G
right(v̂). This implies that

P
ŵ2NG

right(v̂)
MLP(g(l)(ŵ)) =

P
ŵ2NG

right(û) MLP(g(l)(ŵ)) or

equivalently g
(l+ 1

2 )(v̂) = g
(l+ 1

2 )(û).

Now we can assume that for t  m we have for any t, v̂, û, h(t)(û) = h
(t)(v̂) =) g

(t)(û) =
g
(t)(v̂) and for t  l + 1 h

(t� 1
2 )(û) = h

(t� 1
2 )(v̂) =) g

(t� 1
2 )(û) = g

(t� 1
2 )(v̂). We prove that for

t = l + 1, h(l+1)(û) = h
(l+1)(v̂) =) g

(l+1)(û) = g
(l+1)(v̂).
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We first rewrite Eq.33 as

h
(t+1)(v̂) := h

(t+1,m�1)(v̂) = MLP
⇣
h
(t+ 1

2 ,k�m)(v̂),
X

ŵ2NG
left(v̂)

MLP(h(t+1,m�2)(ŵ))
⌘

(36)

= MLP

 
h
(t+ 1

2 ,k�m)(v̂),
X

ŵ2NG
left(v̂)

MLP
⇣

MLP
�
h
(t+ 1

2 ,k�m+1)(ŵ),
X

p̂2NG
left(ŵ)

MLP(h(t+1,m�3)(p̂))
�⌘
!

(37)

Then h
(l+1)(û) = h

(l+1)(v̂) implies

1) h(t+ 1
2 ,k�m)(v̂) = h

(t+ 1
2 ,k�m)(û) or equivalently h

(t+ 1
2 )(v̂) = h

(t+ 1
2 )(û)

2) {{h(t+ 1
2 )(ŵ) | ŵ 2 N

G
left(v̂)}} = {{h

(t+ 1
2 )(ŵ) | ŵ 2 N

G
left(û)}}

Also by Eq.32 we know that h(t+ 1
2 )(v̂) = h

(t+ 1
2 )(û) implies

3) h(t)(v̂) = h
(t)(û).

Combining with 2) and 3) we know

4) {{h(t)(ŵ) | ŵ 2 N
G
left(v̂)}} = {{h

(t)(ŵ) | ŵ 2 N
G
left(û)}}

Now using our inductive hypothesis, we can transform 1) 2) 3) 4) by replace h with g. Then based
on the equation in 11, we know g

(l+1)(û) = g
(l+1)(v̂).

Combining the two proved inductive hypothesis and applying them alternately, we know that for any
t, v̂, û, h(t)(û) = h

(t)(v̂) =) g
(t)(û) = g

(t)(v̂) and h
(t� 1

2 )(û) = h
(t� 1

2 )(v̂) =) g
(t� 1

2 )(û) =
g
(t� 1

2 )(v̂). Hence t-layer (k, c)()-SETGNN⇤ is more expressive than t-layer (k, c)()-SETGNN.

Now let’s considering t to infinity. Then all representations will become stable with h
(t)(v̂) =

h
(t)(û) () h

(t+1)(v̂) = h
(t+1)(û) and h

(t�1/2)(v̂) = h
(t�1/2)(û) () h

(t+1/2)(v̂) =
h
(t+1/2)(û). Notice that for a single set v̂, the information used from its neighbors are the same

in both (k, c)()-SETGNN and (k, c)()-SETGNN⇤. Hence the equilibrium equations for set v̂
should be the same in both (k, c)()-SETGNN and (k, c)()-SETGNN⇤. Then they will have the
same stable representations at the end.

A.4.9 Proof of Theorem 8

Theorem 8. Let G be a graph with c connected components C1, ..., Cc, and G
0 be a graph also with

c connected components C 0
1, ..., C

0
c, then G and G

0 are isomorphic if and only if 9p : [c] ! [c], s.t.
8i 2 [c], Ci and C

0
p(i) are isomorphic.

Proof. Right =) Left. Let hi : V (Ci) ! V (C 0
p(i)) be one isomorphism from Ci to C

0
p(i) for

i 2 [c]. Then we can create a new mapping h : V (G)! V (G0), such that for any x 2 V (C), it first
locates which component x inside, for example i, then apply hi to x. Clearly h is a isomorphism
between G and G

0, hence G and G
0 are isomorphic.

Left =) Right. G and G
0 are isomorphic, then there exists an isomorphism h from G to G

0. Now
for a specific component Ci in G, h maps V (Ci) to a nodes set inside V (G0), and name it as Bi.
For i 6= j, Bi \ Bj = ; and there is not edges e 2 E(G0) between Bi and Bj otherwise there
must be an corresponding edge (apply h

�1) between V (Ci) and V (Cj) which is impossible. Hence
{G

0[Bi]}ci=1 are disconnected subgraphs. As h also preserves connections, for any i, Ci and G
0[Bi]

are isomorphic. Hence we proved the right side.

A.4.10 Conjecture that k-MWL is equvialent to k-WL

Proof of 8t,wl(t)k (G, ṽ) = wl(t)k (G0
, ṽ0)(= mwl(t)k (G, ṽ) = mwl(t)k (G0

, ṽ0)
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Proof. We first take a closer look at the condition of mwl(t+1)
k (G, ṽ) = mwl(t+1)

k (G0
, ṽ0). By

Eq.(3) we know this is equivalent to

(1) mwl(t)k (G, ṽ) = mwl(t)k (G0
, ṽ0) and (2)

⇢⇢
{{mwl(t)k (G, ṽ[x/o�1

G (ṽ, i)])
��x 2 V (G)}} | i =

1, ..., k

��
=
⇢⇢
{{mwl(t)k (G0

, ṽ0[x/o�1
G (ṽ0

, i)])
��x 2 V (G0)}} | i = 1, ..., k

��
. (2) can be rewrite

as
⇢⇢
{{mwl(t)k (G, ṽ[x/idxṽ(y)])

��x 2 V (G)}} | y 2 ṽ

��
=
⇢⇢
{{mwl(t)k (G0

, ṽ0[x/idxṽ0(y)])
��x 2

V (G0)}} | y 2 ṽ0
��

, which is equivalent to (3) 9 bijective f : V (G) ! V (G0), 8y 2 ṽ,

{{mwl(t)k (G, ṽ[x/idxṽ(y)])
��x 2 V (G)}} = {{mwl(t)k (G0

, ṽ0[x/idxṽ0(f(y))])
��x 2 V (G0)}}.

Define F
(t+1)(G,G

0
, ṽ, ṽ0) := { injective f : ṽ ! ṽ0

| f 2 F
(t)(G,G

0
, ṽ, ṽ0), AND , 8y 2

ṽ, 9hy : V (G) ! V (G0), 8x, f 2 F
(t)(G,G

0
, ṽ[x/idxṽ(y)], ṽ0[hy(x)/idxṽ0(f(y))])}. Let

F
(0)(G,G

0
, ṽ, ṽ0) := {f | f is an isomorphism from G[ṽ] to G

0[ṽ0]}.

Lemma 5. 8t, mwl(t)k (G, ṽ) = mwl(t)k (G0
, ṽ0) if and only if F (t)(G,G

0
, ṽ, ṽ0) 6= ;.

Notice that this Lemma is conjectured to be true. This needs additional proof.

Lemma 6. 8t,mwl(t)k (G, ṽ) = mwl(t)k (G0
, ṽ0) =) 8f 2 F

(t)(G,G
0
, ṽ, ṽ0),wl(t)k (G,

�!v ) =

wl(t)k (G, f(�!v ))

Proof of Lemma.6: We prove it by induction on t. When t = 0, F
(0)(G,G

0
, ṽ, ṽ0)

contains all isomorphisms between G[ṽ] and G
0[ṽ0], hence the right side is correct. As-

sume the statement is correct for  t. For t + 1 case, the left side implies (1)
mwl(t)k (G, ṽ) = mwl(t)k (G0

, ṽ0) and (2)F (t+1)(G,G
0
, ṽ, ṽ0) 6= ;, 8f 2 F

(t+1)(G,G
0
, ṽ, ṽ0),

8y 2 ṽ, 9hy : V (G) ! V (G0), 8x 2 V (G), mwl(t)k (G, ṽ[x/idxṽ(y)]) =

mwl(t)k (G0
, ṽ0[hy(x)/idxṽ0(f(y))]). By induction hypothesis, (1) and F

(t+1)(G,G
0
, ṽ, ṽ0) ✓

F
(t)(G,G

0
, ṽ, ṽ0) imply (a) 8f 2 F

(t+1)(G,G
0
, ṽ, ṽ0),wl(t)k (G,

�!v ) = wl(t)k (G0
, f(�!v )); (2)

and 8y 2 ṽ, f 2 F
(t)(G,G

0
, ṽ[x/idxṽ(y)], ṽ0[hy(x)/idxṽ0(f(y))]) imply (b) 9h, 8x 2 V (G),

wl(t)k (G,
�!v [x/idx�!v (y)]) = wl(t)k (G0

, f(�!v )[h(x)/idxf(�!v )(f(y))]), which can be rewritten as
8y 2 ṽ, {{wl(t)k (G,

�!v [x/idx�!v (y)] | x 2 V (G))}} = {{wl(t)k (G0
, f(�!v )[x/idxf(�!v )(f(y))] | x 2

V (G))}}. Now applying Eq.(1) with (a) and (b), we can derive that 8f 2 F
(t+1)(G,G

0
, ṽ, ṽ0),

wl(t+1)
k (G,

�!v ) = wl(t+1)
k (G, f(�!v )). Hence the statement is correct for any t.

Using Lemma.6 and the conclusion (8p 2 perm[k], wl(t+1)
k (G, p(�!v )) = wl(t+1)

k (G0
, p(f(�!v ))))

proved in the first part of the proof of Theorem.1, we proved 8t,mwl(t)k (G, ṽ) =

mwl(t)k (G0
, ṽ0) =) wl(t)k (G, ṽ) = wl(t)k (G0

, ṽ0).

A.5 Algorithm of extracting (k, c)() sets and constructing the super-graph of
(k, c)()-SETWL

Here we present the algorithm of constructing supernodes (t+1, c)() sets from supernodes (t, c)(
) sets, and constructing the bipartite graph between (t, c)() sets and (t+ 1, c)() sets. Notice the
algorithm we presented is just the pseudo code and we use for-loops to help presentation. The
algorithm can easily be parallelized (removing for-loops) with using matrix operations.

To get the full supergraph Sk,c-swl, we need to apply Algorithm.1 k�1 times sequentially.

A.6 Algorithm of connecting supernodes to their connected components

In Sec.4.3 we proved that for a supernode with multi-component induced subgraph (call it multi-
component supernode), the color initialization can be greatly sped up given knowing its each com-
ponent’s corresponding supernode. Hence we need to build the bipartite graph (call it components
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Algorithm 1 Constructing supernodes (t+1, c)() sets and the bipartite graph between t and t+1

Input: Input graph G, the list Ot,c containing all supernodes with t nodes and  c number of
components, the list Nt,c with Nt,c[i] be the number of components of G[Ot,c[i]].

Output: Ot+1,c, Nt+1,c, Bt containing edges between Ot,c and Ot+1,c

Ot+1,c, Nt+1,c, Bt  [], [], []
for all ŝ, n in zip( Ot,c, Nt,c ) do

N1  1-st hop neighbors of G[ŝ]
N>1  (V (G) \ ŝ) \ N1

for all m in N1 do . Number of components doesn’t change.
q̂  ŝ+ {m}

Append q̂ into Ot+1,c, n into Nt+1,c

Append edge (ŝ, q̂) into Bt . We change the edge to (ŝ, q̂,m) for Algorithm.2
end for
if n < c then . Creating an additional component.

for all m in N>1 do
q̂  ŝ+ {m}

Append q̂ into Ot+1,c, n+ 1 into Nt+1,c

Append edge (ŝ, q̂) into Bt . We change the edge to (ŝ, q̂,m) for Algorithm.2
end for

end if
end for
Remove repeated elements inside Ot+1,c, with corresponding mask M

Apply mask M to Nt+1,c

return Ot+1,c, Nt+1,c, Bt

graph) between single-component supernodes and multi-component supernodes. We present the al-
gorithm of constructing these kind of connections sequentially. That is, given knowing the connec-
tions between single-component supernodes and all multi-component supernodes with  t number
of nodes, to build the connections between single-component supernodes and all multi-component
supernodes with  t+1 number of nodes. To build the full bipartite graph for (k, c)() sets, we
need to conduct the algorithm k�1 times sequentially.

For the clear of presentation we use for-loops inside Algorithm.2, while in practice we use matrix
operations to eliminate for-loops.

A.7 Dataset Details

Table 6: Dataset statistics.
Dataset Task # Cls./Tasks # Graphs Avg. # Nodes Avg. # Edges

EXP [1] Distinguish 1-WL failed graphs 2 1200 44.4 110.2
SR25 [6] Distinguish 3-WL failed graphs 15 15 25 300

CountingSub. [15] Regress num. of substructures 4 1500 / 1000 / 2500 18.8 62.6
GraphProp. [17] Regress global graph properties 3 5120 / 640 / 1280 19.5 101.1

ZINC-12K [19] Regress molecular property 1 10000 / 1000 / 1000 23.1 49.8
QM9 [59] Regress molecular properties 192 130831 18.0 37.3

A.8 Experimental Setup

Due to limited time and resource, we highly restrict the hyperparameters and fix most of hyper-
parameters the same across all models and baselines to ensure a fair comparison. This means the
performance of (k, c)()-SETGNN⇤ reported in the paper is not the best performance given that we
didn’t tune much hyperparameters. Nevertheless the performance still reflects the theory and designs
proposed in the paper, and we postpone studying the SOTA performance of (k, c)()-SETGNN⇤

to future work. To be clear, we fix batch size to 128, the hidden size to 128, the number of layers

2We use the version of the dataset from PyG [20], and it contains 19 tasks.
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Algorithm 2 Constructing the bipartite graph between all single-component supernodes and all
multi-component supernodes with  t+1 number of nodes)

Input: {Bi}
t
i=1, {Oi,c}

t+1
i=1, {Ni,c}

t+1
i=1 from Algorithm.1 (with blue lines applied), dictionary

Dt with each key being a multi-component supernode with  t nodes, and value being a list of
its corresponding single-component supernodes.

Output: Dt+1

Dt+1  Dt

for all q̂ in Ot+1,c do
Get all edges T = {(ŝi, q̂),mi} in Bt with q̂ inside, and let j  argmaxi Nt,c[ŝi]
if Nt,c[ŝj ] == Nt+1,c[q̂] then . No increasing of components

Dt+1[q̂] []
for all p̂ in Dt[ŝj ] do

Assume k = |p̂|, i.e. the number of nodes inside.
Traverse Bk to find the supernode (p̂,mj)
if Found it and Nk+1,c[(p̂,mj)] == 1 then

Append (p̂,mj) to Dt+1[q̂]
else

Append p̂ to Dt+1[q̂]
end if

end for
else . Nt,c[ŝj ] = Nt+1,c[q̂]� 1

Dt+1[q̂] Dt[ŝj ] + [mj ]
end if

end for
return Dt+1

of Base GNN to 4, and the number of layers of (k, c)()-SETGNN⇤ (the number of iterations of
(k, c)()-SETWL) to be 2 (we will do ablation study over it later). This hyperparameters configu-
ration is used for all datasets. We have run the baseline GINE over many datasets, and we tune the
number of layers from [4,6] and keep other hyperparameters the same as (k, c)()-SETGNN⇤. For
all other baselines, we took the performance reported in [68].

For all datasets except QM9, we follow the same configuration used in [68]. For QM9, we use the
dataset from PyG and conduct regression over all 19 targets simultaneously. To balance the scale
of each target, we preprocess the dataset by standardizing every target to a Gaussian distribution
with mean 0 and standard derivation 1. The dataset is randomly split with ratio 80%/10%/10% to
train/validation/test sets (with a fixed random state so that all runs and models use the same split).
For every graph in QM9, it contains 3d positional coordinates for all nodes, and we use them to
augment edge features by using the absolute difference between the coordinates of two nodes on an
edge for all models. Notice that our goal is not to achieve SOTA performance on QM9 but mainly
to verify our theory and effectiveness of designs.

We use Batch Normalization and ReLU activation in all models. We use Adam optimizer with
learning rate 0.001 in all experiments for optimization. We repeat all experiments three times (for
random initialization) to calculate mean and standard derivation. All experiments are conducted on
V100 and RTX-A6000 GPUs.
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A.9 Graph Property Dataset Results

Table 7: Train and Test performances of (k, c)()-SETGNN⇤ on regressing graph properties by
varying k and c.

Regressing Graph Properties (log10(MSE))

Is Connected Diameter Radius

k c Train Test Train Test Train Test

2 1 -4.2266 ± 0.1222 -2.9577 ± 0.1295 -4.0347 ± 0.0468 -3.6322 ± 0.0458 -4.4690 ± 0.0348 -4.9436 ± 0.0277
3 1 -4.2360 ± 0.1854 -3.4631 ± 0.6392 -4.0228 ± 0.1256 -3.7885 ± 0.0589 -4.4762 ± 0.1176 -5.0245 ± 0.0881
4 1 -4.7776 ± 0.0386 -4.9941 ± 0.0913 -4.1396 ± 0.0442 -4.0122 ± 0.0071 -4.2837 ± 0.5880 -4.1528 ± 0.9383
2 2 -4.6623 ± 0.3170 -4.7848 ± 0.3150 -4.0802 ± 0.1654 -3.8962 ± 0.0124 -4.5362 ± 0.2012 -5.1603 ± 0.0610
3 2 -4.2601 ± 0.3192 -4.4547 ± 1.1715 -4.3235 ± 0.3050 -3.9905 ± 0.0799 -4.6766 ± 0.1797 -4.9836 ± 0.0658
4 2 -4.8489 ± 0.1354 -5.4667 ± 0.2125 -4.5033 ± 0.1610 -3.9495 ± 0.3202 -4.4130 ± 0.2686 -4.1432 ± 0.4405

A.10 Ablation Study over Number of Layers

Table 8: Ablation study of (k, c)()-SETGNN⇤ over number of bidirectional message passing
layers (L) on ZINC dataset.

L 2 4 6

k c Train Test Train Test Train Test

2 1 0.1381 ± 0.0240 0.2345 ± 0.0131 0.1135 ± 0.0418 0.1921 ± 0.0133 0.0712 ± 0.0015 0.1729 ± 0.0134
3 1 0.1172 ± 0.0063 0.2252 ± 0.0030 0.0792 ± 0.0190 0.1657 ± 0.0035 0.0692 ± 0.0118 0.1679 ± 0.0061
4 1 0.0693 ± 0.0111 0.1636 ± 0.0052 0.0700 ± 0.0085 0.1566 ± 0.0101 0.0768 ± 0.0116 0.1572 ± 0.0051

The table shows that increasing the number of bidirectional message passing (t in Eq.(13) and
Eq.(14) ) always increase the performance, which is aligning with the fact that increasing number of
layers always increases expressivity.

A.11 Computational Footprint on QM9

(a) Memory usage (b) Runtime

Figure 5: (k, c)()-SETGNN’s computational footprint scales with both k and c in terms of memory
(a) and runtime (b). Solid blue, orange and green lines track scaling as k increases, when running
(k, c)()-SETGNN on the QM9 dataset with c = 1, 2 and 3 respectively.
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A.12 Discussion of k-Bipartite Message Passing
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Figure 6: k-bipartite message passing recovers many well-known GNNs: message passing based
GNNs [25], edge-enhanced GNNs [7], and line-graph GNNs [14, 16]. The line graph is marked
with red dash frame.

Interestingly, the k-bipartite bidirectional message passing is very general and its modification cov-
ers many well known GNNs. Considering only using 1-sets and 2-sets with single connected com-
ponents (the red frame inside Figure 6), and initializing their embeddings with their original nodes
and edges representations, then it covers the follows

• Message passing based GNNs [25]. By using sequential message passing defined in
Eq.(13) and Eq.(14), and performing forward step first then backward step for all 1-sets.

• Line graph based GNNs [14, 16]. By using sequential message passing defined in Eq.(13)
and Eq.(14), and performing backward step first then forward step for all 2-sets.

• Relational Graph Networks [7] or edge-enhanced GNN [16]. By using performing bidirec-
tional sequential message passing on all 1-sets and 2-sets.
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