
Near-Optimal Goal-Oriented Reinforcement
Learning in Non-Stationary Environments

Liyu Chen
University of Southern California

liyuc@usc.edu

Haipeng Luo
University of Southern California

haipengl@usc.edu

Abstract

We initiate the study of dynamic regret minimization for goal-oriented reinforce-
ment learning modeled by a non-stationary stochastic shortest path problem with
changing cost and transition functions. We start by establishing a lower bound
Ω((B?SAT?(∆c + B2

?∆P))1/3K2/3), where B? is the maximum expected cost
of the optimal policy of any episode starting from any state, T? is the maxi-
mum hitting time of the optimal policy of any episode starting from the initial
state, SA is the number of state-action pairs, ∆c and ∆P are the amount of
changes of the cost and transition functions respectively, and K is the number
of episodes. The different roles of ∆c and ∆P in this lower bound inspire us
to design algorithms that estimate costs and transitions separately. Specifically,
assuming the knowledge of ∆c and ∆P , we develop a simple but sub-optimal
algorithm and another more involved minimax optimal algorithm (up to loga-
rithmic terms). These algorithms combine the ideas of finite-horizon approxi-
mation [Chen et al., 2022a], special Bernstein-style bonuses of the MVP algo-
rithm [Zhang et al., 2020], adaptive confidence widening [Wei and Luo, 2021], as
well as some new techniques such as properly penalizing long-horizon policies.
Finally, when ∆c and ∆P are unknown, we develop a variant of the MASTER
algorithm [Wei and Luo, 2021] and integrate the aforementioned ideas into it to
achieve Õ(min{B?S

√
ALK, (B2

?S
2AT?(∆c +B?∆P))1/3K2/3}) regret, where

L is the unknown number of changes of the environment.

1 Introduction

Goal-oriented reinforcement learning studies how to achieve a certain goal with minimal total cost in
an unknown environment via sequential interactions. It has often been modeled as online learning
in an episodic Stochastic Shortest Path (SSP) model, where in each episode, starting from a fixed
initial state, the learner sequentially takes an action, suffers a cost, and transits to the next state, until
the goal state is reached. The performance of the learner can be measured by her regret, generally
defined as the difference between her total cost and that of a sequence of benchmark policies (one for
each episode).

Despite the recent surge of studies on this problem, all previous works consider minimizing static
regret, a special case where the benchmark policy is the same for every episode. This is reasonable
only for (near) stationary environments where one single policy performs well over all episodes.
In reality, however, the environment is often non-stationary with both the cost function and the
transition function changing over episodes, making static regret an unreasonable metric. Instead, the
desired objective is to minimize dynamic regret, where the benchmark policy for each episode is the
optimal policy for that corresponding environment, and the hope is to obtain sublinear dynamic regret
whenever the non-stationarity is not too large.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Based on this motivation, we initiate the study of dynamic regret minimization for non-stationary
SSP and develop the first set of results. Specifically, our contributions are as follows:

• To get a sense on the difficulty of the problem, we start by establishing a dynamic regret lower
bound in Section 3. Specifically, we prove that Ω((B?SAT?(∆c + B2

?∆P))1/3K2/3) regret is
unavoidable, where B? is the maximum expected cost of the optimal policy of any episode starting
from any state, T? is the maximum hitting time of the optimal policy of any episode starting
from the initial state, S and A are the number of states and actions respectively, ∆c and ∆P are
the amount of changes of the cost and transition functions respectively, and K is the number of
episodes. Note the different roles of ∆c and ∆P here — the latter is multiplied with an extra B2

?
factor, which we find surprising for a technical reason discussed in Section 3. More importantly,
this inspires us to estimate costs and transitions independently in subsequent algorithm design.

• For algorithms, we first present a simple one (Algorithm 2 in Section 5) that achieves sub-optimal
regret of Õ((B?SATmax(∆c+B2

?∆P))1/3K2/3), where Tmax ≥ T? is the maximum hitting time
of the optimal policy of any episode starting from any state. Except for replacing T? with the
larger quantity Tmax, this bound is optimal in all other parameters. Moreover, this also translates
to a minimax optimal regret bound in the finite-horizon setting (a special case of SSP), making
Algorithm 2 the first model-based algorithm with the optimal (SA)1/3 dependency.
• To improve the Tmax dependency to T?, in Section 6, we present a more involved algorithm

(Algorithm 4) that achieves a near minimax optimal regret bound matching the earlier lower bound
up to logarithmic terms.

• Both algorithms above require the knowledge of ∆c and ∆P . Moreover, for a special kind of
non-stationary environments where the cost/transition function only changes L times, they are not
able to achieve a more favorable dynamic regret bound of the form

√
LK. To overcome these

issues altogether, in Section 7, we develop a variant of the MASTER algorithm [Wei and Luo,
2021] and integrate the earlier algorithmic ideas into it, which finally leads to a (sub-optimal)
Õ(min{B?S

√
ALK, (B2

?S
2AT?(∆c + B?∆P))1/3K2/3}) regret bound without knowing the

non-stationarity ∆c, ∆P , or L.

Techniques All our algorithms are built on top of a finite-horizon approximation scheme first
proposed by Cohen et al. [2021] and later improved by Chen et al. [2022a]; see Section 4. Both the
sub-optimal Algorithm 2 and the optimal Algorithm 4 are then developed based on ideas from the
MVP algorithm [Zhang et al., 2020] (for the finite-horizon setting), which adopts a UCBVI-style
update rule [Azar et al., 2017] with a special Bernstein-style bonus term. The sub-optimal algorithm
further integrates the idea of adaptive confidence widening [Wei and Luo, 2021] into the UCBVI-style
update by subtracting a bias from the cost function uniformly over all state-action pairs, which helps
control the magnitude of the estimated value function. The minimax optimal algorithm, on the other
hand, adds a positive correction term to the cost function to penalize long-horizon policies, which
helps improve the Tmax dependency to T?. It also incorporates several non-stationarity tests to ensure
that the algorithm resets its knowledge of the environment when the amount of non-stationarity is
large. Both algorithms maintain (update and reset) cost and transition estimation independently,
which is the key to achieve the correct B? dependency for both the ∆c-related and ∆P -related terms.

To handle unknown non-stationarity, we adopt the idea of the MASTER algorithm from [Wei and
Luo, 2021]. Although the nature of MASTER is a blackbox reduction, we cannot apply it directly
due to the presence of the correction term that changes continuously and brings extra challenges in
tracking the learner’s performance. We handle this by redesigning the first non-stationarity test of
the MASTER algorithm. Specifically, we maintain multiple running averages of the estimated value
function to detect different levels of non-stationarity.

Related Work Static regret minimization in SSP has been heavily studied in recent years, for both
stochastic costs [Tarbouriech et al., 2020, Cohen et al., 2020, 2021, Tarbouriech et al., 2021, Chen
et al., 2021a, Jafarnia-Jahromi et al., 2021, Vial et al., 2021, Min et al., 2021, Chen et al., 2022a] and
adversarial costs [Rosenberg and Mansour, 2021, Chen et al., 2021b, Chen and Luo, 2021, Chen et al.,
2022b]. To the best of our knowledge, we are the first to study dynamic regret for non-stationary SSP.

There is also a surge of studies on online learning in non-stationary environments, ranging from
bandits [Auer et al., 2019, Chen et al., 2019, 2021c, Russac et al., 2020, Faury et al., 2021, Abbasi-
Yadkori et al., 2022, Suk and Kpotufe, 2021] to reinforcement learning [Gajane et al., 2018, Ortner

2

et al., 2020, Cheung et al., 2020, Fei et al., 2020, Mao et al., 2021, Zhou et al., 2020, Touati and
Vincent, 2020, Domingues et al., 2021, Wei and Luo, 2021, Ding and Lavaei, 2022, Lykouris et al.,
2021, Wei et al., 2022]. Compared to previous work, the model we study is quite general and
subsumes multi-armed bandit and finite-horizon reinforcement learning. On the other hand, it also
introduces extra and unique challenges as we will discuss.

2 Preliminaries

A non-stationary SSP instance consists of state space S, action space A, initial state sinit ∈ S, goal
state g /∈ S, a set of cost mean functions {ck}Kk=1 with ck ∈ [0, 1]S×A, and a set of transition
functions {Pk}Kk=1 with Pk = {Pk,s,a}(s,a)∈S×A and Pk,s,a ∈ ∆S+ , where S+ = S ∪ {g}, ∆S+ is
the simplex over S+, and K is the number of episodes. The set of cost and transition functions are
unknown to the learner and determined by the environment before learning starts.

The learning protocol is as follows: the learner interacts with the environment for K episodes.
In episode k, starting from the initial state sinit, the learner sequentially takes an action, incurs a
cost, and transits to the next state until reaching the goal state. We denote by (ski , a

k
i , c

k
i , s

k
i+1) the

i-th state-action-cost-afterstate tuple observed in episode k, where cki is sampled from an unknown
distribution with support [0, 1] and mean ck(ski , a

k
i), and ski+1 is sampled from Pk,ski ,aki . We denote

by Ik the total number of steps in episode k, such that skIk+1 = g.

Learning Objective Intuitively, in each episode the learner aims at finding a policy that minimizes
the total cost of reaching the goal state. Formally, a policy π ∈ AS assigns an action π(s) to each
state s ∈ S, and its expected cost for episode k starting from a state s is denoted as V πk (s) =

E
[∑Ik

i=1 ck(ski , π(ski))|Pk, sk1 = s
]

where the expectation is with respect to the randomness of next
states ski+1 ∼ Pk,ski ,π(ski) and the number of steps Ik before reaching g. The optimal policy π?k for

episode k is then the policy that minimizes V πk (s) for all s. Using V ?k as a shorthand for V π
?
k

k , we
formally define the dynamic regret of the learner as

RK =

K∑
k=1

(
Ik∑
i=1

cki − V ?k (sinit)

)
.

When Ik =∞ for some k, we let RK =∞.
Remark 1. Note that our learning setting does not fall into the general non-stationary reinforcement
learning framework in [Wei and Luo, 2021]. In their framework, they fix a policy to play throughout
an episode, and the cost incurs by any policy is bounded. While in our case, the learner may follow
several different policies within an episode. This is necessary since under unknown and changing
transition, the learner may not be able to identify a proper policy (which reaches the goal state with
probability 1) at the beginning of an episode, and committing to a single policy within an episode
may lead to infinite regret.

Several parameters play a key role in characterizing the difficulty of this problem: B? =
maxk,s V

?
k (s), the maximum cost of the optimal policy of any episode starting from any state;

T? = maxk T
π?k
k (sinit) (where Tπk (s) is expected number of steps it takes for policy π to reach the

goal in episode k starting from state s), the maximum hitting time of the optimal policy of any
episode starting from the initial state; Tmax = maxk,s T

π?k
k (s), the maximum hitting time of the

optimal policy of any episode starting from any state; ∆c =
∑K−1
k=1 ‖ck+1 − ck‖∞, the amount

of non-stationarity in the cost functions; and finally ∆P =
∑K−1
k=1 maxs,a ‖Pk+1,s,a − Pk,s,a‖1,

the amount of non-stationarity in the transition functions. Throughout the paper we assume the
knowledge of B?, T?, and Tmax, and also B? ≥ 1 for simplicity. ∆c and ∆P are assumed to be
known for the first two algorithms we develop, but unknown for the last one.

Other Notations For a value function V ∈ RS+ and a distribution P over S+, define PV =
Es′∼P [V (s′)] (mean) and V(P, V) = Es′∼P [V (s′)2]− (PV)2 (variance). Let S = |S| and A = |A|
be the number of states and actions respectively. The notation Õ(·) hides all logarithmic dependency
including lnK and ln 1

δ for some failure probability δ ∈ (0, 1). Also define a value function upper
bound B = 16B?. For integers s and e, we define [s, e] = {s, s+ 1, . . . , e} and [e] = {1, . . . , e}.

3

Algorithm 1 Finite-Horizon Approximation of SSP

Input: Algorithm A for finite-horizon MDP M̊ with horizon H = 4Tmax ln(8K).
Initialize: interval counter m← 1.
for k = 1, . . . ,K do

1 Set sm1 ← sinit.
2 while sm1 6= g do
3 Feed initial state sm1 to A, h← 1.
4 while True do
5 Receive action amh from A, play it, and observe cost cmh and next state smh+1.
6 Feed cmh and smh+1 to A.
7 if h = H or smh+1 = g or A requests to start a new interval then
8 Hm ← h. break.
9 else h← h+ 1.

10 Set sm+1
1 = smHm+1 and m← m+ 1.

3 Lower Bound

To better understand the difficulty of learning non-stationary SSP, we first establish the following
dynamic regret lower bound.

Theorem 1. In the worst case, the learner’s regret is at least Ω((B?SAT?(∆c +B2
?∆P))1/3K2/3).

The lower bound construction is similar to that in [Mao et al., 2021], where the environment is
piecewise stationary. In each stationary period, the learner is facing a hard SSP instance with a
slightly better hidden state. Details are deferred to Appendix B.2.

In a technical lemma in Appendix B.1, we show that for any two episodes k1 and k2, the change of
the optimal value function due to non-stationarity satisfies V ?k1(sinit)−V ?k2(sinit) ≤ (∆c +B?∆P)T?,
with only one extra B? factor for the ∆P -related term. We thus find our lower bound somewhat
surprising since an extra B2

? factor shows up for the ∆P -related term. This comes from the fact that
constructing the hard instance with perturbed costs requires a larger amount of perturbation compared
to that with perturbed transitions; see Theorem 7 and Theorem 8 for details.

More importantly, this observation implies that simply treating these two types of non-stationarity as
a whole and only consider the non-stationarity in value function as done in [Wei and Luo, 2021] does
not give the right B? dependency. This further inspires us to consider cost and transition estimation
independently in our subsequent algorithm design.

4 Basic Framework: Finite-Horizon Approximation

Our algorithms are all built on top of the finite-horizon approximation scheme of [Cohen et al., 2021],
whose analysis is greatly simplified and improved by [Chen et al., 2022a], making it applicable to our
non-stationary setting as well. This scheme makes use of an algorithm A that deals with a special
case of SSP where each episode ends within H = Õ(Tmax) steps, and applies it to the original SSP
following Algorithm 1. Specifically, call each “mini-episode” A is facing an interval. At each step h
of interval m, the learner receives the decision amh from A, takes this action, observes the cost cmh ,
transits to the next state smh+1, and then feed the observation cmh and smh+1 to A (Line 5 and Line 6).
The interval m ends whenever one of the following happens (Line 7): the goal state is reached, H
steps have passed, or A requests to start a new interval.1 In the first case, the initial state sm+1

1 of the
next interval m+ 1 will be set to sinit, while in the other two cases, it is naturally set to the learner’s
current state, which is also smHm+1 where Hm is the length of interval m (see Line 10). At the end of
each interval, we artificially let A suffer a terminal cost cf (smHm+1) where cf (s) = 2B?I{s 6= g}.

1This last condition is not present in prior works. We introduce it since later our instantiation of A will
change its policy in the middle of an interval, and creating a new interval in this case allows us to make sure that
the policy in each interval is always fixed, which simplifies the analysis.

4

Algorithm 2 Non-Stationary MVP
Parameters: window sizes Wc (for costs) and WP (for transitions), and failure probability δ.
Initialize: for all (s, a, s′), C(s, a)← 0, M(s, a)← 0, N(s, a)← 0, N(s, a, s′)← 0.
Initialize: Update(1).
for m = 1, . . . ,M do

for h = 1, . . . ,H do
1 Play action amh ← argminaQh(smh , a), receive cost cmh and next state smh+1.

C(smh , a
m
h)

+← cmh , M(smh , a
m
h)

+← 1, N(smh , a
m
h)

+← 1, N(smh , a
m
h , s

m
h+1)

+← 1.2

2 if smh+1 = g or M(smh , a
m
h) = 2l or N(smh , a

m
h) = 2l for some integer l ≥ 0 then

break (which starts a new interval).

3 if Wc divides m then reset C(s, a)← 0 and M(s, a)← 0 for all (s, a).
4 if WP divides m then reset N(s, a, s′)← 0 and N(s, a)← 0 for all (s, a, s′).

Update(m+ 1).
Procedure Update(m)

VH+1(s)← 2B?I{s 6= g}, Vh(g)← 0 for h ≤ H , ι← 211 · ln
(

2SAHKm
δ

)
, and x← 1

mH .
for all (s, a) do

N+(s, a)← max{1,N(s, a)}, M+(s, a)← max{1,M(s, a)}, c̄(s, a)← C(s,a)
M+(s,a) ,

ĉ(s, a)← max
{

0, c̄(s, a)−
√

c̄(s,a)ι
M+(s,a) −

ι
M+(s,a)

}
, P̄s,a(·)← N(s,a,·)

N+(s,a) .

while True do
for h = H, . . . , 1 do

5 bh(s, a)← max
{

7
√

V(P̄s,a,Vh+1)ι
N+(s,a) , 49B

√
Sι

N+(s,a)

}
for all (s, a).

6 Qh(s, a)← max{0, ĉ(s, a) + P̄s,aVh+1 − bh(s, a)− x} for all (s, a).
Vh(s)← minaQh(s, a) for all s.

7 if maxs,a,hQh(s, a) ≤ B/4 then break; else x← 2x.

This procedure (adaptively) generates a non-stationary finite-horizon Markov Decision Process (MDP)
that A faces: M̊ = (S,A, g, {cm}Mm=1, {Pm}Mm=1, cf , H). Here, cm = ck(m) and Pm = Pk(m)

where k(m) is the unique episode that interval m belongs to, and M is the total number of intervals
over K episodes, a random variable determined by the interactions. Note that cm and Pm always
lie in the oblivious sets {ck}Kk=1 and {Pk}Kk=1 respectively, but cm and Pm are not oblivious since
their values depend on the interaction history. Let V π,m1 (s) be the expected cost (including the
terminal cost) of following policy π starting from state s in interval m. Define the regret of A over

the first M ′ intervals in M̊ as R̊M ′ =
∑M ′

m=1(
∑Hm+1
h=1 cmh − V

π?k(m),m

1 (sm1)) where we use cmHm+1

as a shorthand for the terminal cost cf (smHm+1). Following similar arguments as in [Cohen et al.,
2021, Chen et al., 2022a], the regret inM and M̊ are close in the following sense.

Lemma 1. Algorithm 1 ensures RK ≤ R̊M +B?.

See Appendix C for the proof. Based on this lemma, in following sections we focus on developing
the finite-horizon algorithm A and analyzing how large R̊M is. Note, however, that while this
finite-horizon reduction is very useful, it does not mean that our problem is as easy as learning
non-stationary finite-horizon MDPs and that we can directly plug in an existing algorithm as A. Great
care is still needed when designing A in order to obtain tight regret bounds as we will show.

5 A Simple Sub-Optimal Algorithm

In this section, we present a relatively simple finite-horizon algorithm A for M̊ which, in combination
with the reduction of Algorithm 1, achieves a regret bound that almost matches our lower bound
except that T? is replaced by Tmax. The key steps are shown in Algorithm 2. It follows the ideas

2z
+← y is a shorthand for z ← z + y.

5

of the MVP algorithm [Zhang et al., 2020] and adopts a UCBVI-style update rule (Line 6) with a
Bernstein-type bonus term (Line 5) to maintain a set of Qh functions, which then determines the
action at each step in a greedy manner (Line 1). The two crucial new elements are the following.
First, in the update rule Line 6, we subtract a positive value x uniformly over all state-action pairs
so that ‖Qh‖∞ is of order O(B?) (recall B = 16B?), and we find the (almost) smallest such x via
a doubling trick (Line 7). This is similar to the adaptive confidence widening technique of [Wei
and Luo, 2021], where they increase the size of the transition confidence set to ensure a bounded
magnitude on the estimated value function; our approach is an adaptation of their idea to the UCBVI
style update rule.

Second, we periodically restart the algorithm (by resetting some counters and statistics) in Line 3
and Line 4. While periodic restart is a standard idea to deal with non-stationarity, the novelty here
is a two-scale restart schedule: we set one window size Wc related to costs and another one WP

related to transitions, and restart after every Wc intervals or every WP intervals. As mentioned, this
two-scale schedule is inspired by the lower bound in Section 3, which indicates that cost estimation
and transition estimation play different roles in the final regret and should be treated separately.

Another small modification is that we start a new interval when the visitation to some (s, a) doubles
(Line 2), which helps remove Tmax dependency in lower-order terms and is important for following
sections. With all these elements, we prove the following regret guarantee of Algorithm 2.

Theorem 2. For any M ′ ≤ M , with probability at least 1 − 22δ Algorithm 2 ensures R̊M ′ =

Õ
(
M ′
(√

B?SA
(

1/Wc + B?/WP

)
+B?SA (1/Wc + S/WP)

)
+ (∆cWc +B?∆PWP)Tmax

)
.

Thus, with a proper tunning of Wc and WP (that is in term of M ′), Algorithm 2 ensures R̊M ′ =

Õ((B?SATmax(∆c + B2
?∆P))1/3M ′

2/3
). However, this does not directly imply a bound on R̊M

since M is a random variable (and the tunning above would depend on M). Fortunately, to resolve
this it suffices to perform a doubling trick on the number of intervals, that is, first make a guess
on M , and then double the guess whenever M exceeds it. We summarize this idea in Algorithm 3.
Finally, combining it with Algorithm 1, Lemma 1, and the simplified analysis of [Chen et al., 2022a]
which is able to bound the total number of intervals M in terms of the total number of episodes K
(Lemma 16), we obtain the following result (all proofs are deferred to Appendix D).
Theorem 3. With probability at least 1−22δ, applying Algorithm 1 with A being Algorithm 3 ensures
RK′ = Õ((B?SATmax(∆c +B2

?∆P))1/3K ′
2/3

) (ignoring lower order terms) for any K ′ ≤ K.

Note that Theorem 3 actually provides an anytime regret guarantee (that is, holds for any K ′ ≤ K),
which is important in following sections. Compared to our lower bound in Theorem 1, the only
sub-optimality is in replacing T? with the larger quantity Tmax. Despite its sub-optimality for SSP,
however, as a side result our algorithm in fact implies the first model-based finite-horizon algorithm
that achieves the optimal dependency on SA and matches the minimax lower bound of [Mao et al.,
2021]. Specifically, in previous works, the optimal SA dependency is only achievable by model-free
algorithms, which unfortunately have sub-optimal dependency on the horizon by the current analysis
(see [Mao et al., 2021, Lemma 10]). On the other hand, existing model-based algorithms for finite
state-action space all follow the idea of extended value iteration, which gives sub-optimal dependency
on S and also brings difficulty in incorporating entry-wise Bernstein confidence sets.3 Our approach,
however, resolves all these issues. See Appendix D.4 for more discussions.

Technical Highlights The key step of our proof for Theorem 2 is to bound the term∑M ′

m=1

∑Hm
h=1 V(Pmsmh ,amh , V

?,m
h+1 − V mh+1), where V mh+1 is the value of Vh+1 at the beginning of

interval m, and V ?,mh+1 is the optimal value function of M̊ in interval m (formally defined in Ap-
pendix A). The standard analysis on bounding this term requires V ?,mh+1 (s) − V mh+1(s) ≥ 0, which
is only true in a stationary environment due to optimism. To handle this in non-stationarity envi-
ronments, we carefully choose a set of constants {zmh } so that V ?,mh+1 (s) + zmh − V mh+1(s) ≥ 0

(Lemma 18), and then apply similar analysis on
∑M ′

m=1

∑Hm
h=1 V(Pmsmh ,amh , V

?,m
h+1 − V mh+1) =∑M ′

m=1

∑Hm
h=1 V(Pmsmh ,amh , V

?,m
h+1 + zmh − V mh+1). See Lemma 20 for more details.

3Note that the transition non-stationarity ∆P is defined via L1 norm. Thus, naively applying entry-wise
confidence widening to Bernstein confidence sets introduces extra dependency on S.

6

Algorithm 3 Non-Stationary MVP with a Doubling Trick
for n = 1, 2, . . . do

Initialize an instance of Algorithm 2 with Wc = d(B?SA)1/3(2n−1/(∆cTmax))2/3e and WP =
d(SA)1/3(2n−1/(∆PTmax))2/3e, and execute it in intervals m = 2n−1, . . . , 2n − 1.

Algorithm 4 MVP with Non-Stationarity Tests
Parameters: window sizes Wc and WP , coefficients c1, c2, sample probability p, and failure
probability δ.
Initialize: ResetC(), ResetP(), Update(1).
for m = 1, . . . ,M do

for h = 1, . . . ,H do
Play action amh ← argmina Q̌h(smh , a), receive cost cmh and next state smh+1.

C(smh , a
m
h)

+← cmh , M(smh , a
m
h)

+← 1, N(smh , a
m
h)

+← 1, N(smh , a
m
h , s

m
h+1)

+← 1.

1 χ̂c
+← cmh − ĉ(smh , amh), χ̂P +← V̌h+1(smh+1)− P̄smh ,amh V̌h+1.

if smh+1 = g or M(smh , a
m
h) = 2l or N(smh , a

m
h) = 2l for some integer l ≥ 0 then

break (which start a new interval).

2 if χ̂c > χcm (defined in Lemma 24) then ResetC(). (Test 1)
3 if χ̂P > χPm (defined in Lemma 25) then ResetC() and ResetP(). (Test 2)
4 if νc = Wc then ResetC().
5 if νP = WP then ResetC() and ResetP().

νc
+← 1, νP +← 1, Update(m+ 1).

6 if
∥∥V̌h∥∥∞ > B/2 for some h (Test 3) then
ResetC(), with probability p execute ResetP(), and Update(m+ 1).

Procedure Update(m)
V̌H+1(s)← 2B?I{s 6= g}, V̌h(g)← 0 for all h ≤ H , and ι← 211 · ln

(
2SAHKm

δ

)
.

7 ρc ← min{ c1√
νc
, 1

28H }, ρ
P ← min{ c2√

νP
, 1

28H }, η ← ρc +BρP .
for all (s, a) do

N+(s, a)← max{1,N(s, a)}, M+(s, a)← max{1,M(s, a)}, c̄(s, a)← C(s,a)
M+(s,a) ,

P̄s,a(·)← N(s,a,·)
N+(s,a) , ĉ(s, a)← max

{
0, c̄(s, a)−

√
c̄(s,a)ι

M+(s,a) −
ι

M+(s,a)

}
,

8 č(s, a)← ĉ(s, a) + 8η.
for h = H, . . . , 1 do

bh(s, a)← max

{
7
√

V(P̄s,a,V̌h+1)ι
N+(s,a) , 49B

√
Sι

N+(s,a)

}
for all (s, a).

Q̌h(s, a) = max{0, č(s, a) + P̄s,aV̌h+1 − bh(s, a)} all (s, a).
V̌h(s) = argmina Q̌h(s, a) for all s.

Procedure ResetC()
νc ← 1, χ̂c ← 0, C(s, a)← 0, M(s, a)← 0 for all (s, a).

Procedure ResetP()
νP ← 1, χ̂P ← 0, N(s, a, s′)← 0, N(s, a)← 0 for all (s, a, s′).

6 A Minimax Optimal Algorithm

In this section, we present an improved algorithm that achieves the minimax optimal regret bound up
to logarithmic terms, starting with a refined version of Algorithm 2 shown in Algorithm 4. Below, we
focus on describing the new elements introduced in Algorithm 4 (that is, Lines 1-3 and 6-4).4

The main challenge in replacing Tmax with T? is that the regret due to non-stationarity accumulates
along the learner’s trajectory, which can be as large as O((∆c +B?∆P)H) since the horizon is H

4Line 4 and Line 5, althogh written in a different form, are similar to Line 3 and Line 4 of Algorithm 2.

7

Algorithm 5 A Two-Phase Variant of Algorithm 1
Initialize: Phase 1 algorithm instance A1 and Phase 2 algorithm instance A2.
Execute Algorithm 1 with A = A1 for every first interval of an episode, and A = A2 otherwise.

(recall H = Õ(Tmax)). Moreover, bounding the number of steps needed for the learner’s policy to
reach the goal is highly non-trivial due to the changing transitions. Our main idea to address these
issues is to incorporate a correction term η (computed in Line 7) into the estimated cost (Line 4) to
penalize policies that take too long to reach the goal. This correction term is set to be an upper bound
of the learner’s average regret per interval (defined through ρc and ρP in Line 7). It introduces the
effect of canceling the non-stationarity along the learner’s trajectory when it is not too large. When
the non-stationarity is large, on the other hand, we detect it through two non-stationary tests (Line 2
and Line 3), and reset the knowledge of the environment (more details to follow).

However, this correction leads to one issue: we cannot perform adaptive confidence widening (that
is, the −x bias) anymore as it would cancel out the correction term. To address this, we introduce
another test (Line 6, Test 3) to directly check whether the magnitude of the estimated value function
is bounded as desired. If not, we reset again since that is also an indication of large non-stationarity.

We now provide some intuitions on the design of Test 1 and Test 2. First, one can show that the
two quantities χ̂c and χ̂P we maintain in Line 1 are such that their sum is roughly an upper bound
on the estimated accumulated regret. So directly checking whether χ̂c + χ̂P is too large would be
similar to the second test of the MASTER algorithm [Wei and Luo, 2021]. Here, however, we again
break it into two tests where Test 1 only guards the non-stationarity in cost, and Test 2 mainly guards
the non-stationarity in transition. Note that Test 2 also involves cost information through V̌ , but our
observation is that we can still achieve the desired regret bound as long as the ratio of the number of
resets caused by procedures ResetC() and ResetP() is of order Õ(B?). This inspires us to reset both
the cost and the transition estimation when Test 2 fails, but reset the transition estimation only with
some probability p (eventually set to 1/B?) when Test 3 fails.

For analysis, we first establish a regret guarantee of Algorithm 4 in an ideal situation where the first
state of each interval is always sinit. (Proofs of this section are deferred to Appendix E.)

Theorem 4. Let c1 =
√
B?SA/T?, c2 =

√
SA/T?, Wc = d(B?SA)1/3(K/(∆cT?))

2/3e, WP =
d(SA)1/3(K/(∆PT?))

2/3e, and p = 1/B?. Suppose sm1 = sinit for all m ≤ K, then Algorithm 4
ensures R̊K = Õ((B?SAT?(∆c +B2

?∆P))1/3K2/3) (ignoring lower order terms) with probability
at least 1− 40δ.

The reason that we only analyze this ideal case is that, if the initial state is not sinit, then even the
optimal policy does not guarantee T? hitting time by definition. This also inspires us to eventually
deploy a two-phase algorithm slightly modifying Algorithm 1: feed the first interval of each episode
into an instance of Algorithm 4, and the rest of intervals into an instance of Algorithm 3 (see
Algorithm 5). Thanks to the large terminal cost, we are able to show that the regret in the second
phase is upper bounded by a constant, leading to the following final result.

Theorem 5. Algorithm 5 with A1 being Algorithm 4 and A2 being Algorithm 3 ensures RK =
Õ((B?SAT?(∆c+B2

?∆P))1/3K2/3) (ignoring lower order terms) with probability at least 1− 64δ.

Ignoring logarithmic and lower-order terms, our bound is minimax optimal. Also note that the bound
is sub-linear (in K) as long as ∆c and ∆P are sub-linear (that is, not the worst case).

7 Learning without Knowing ∆c and ∆P

To handle unknown non-stationarity, we combine our algorithmic ideas in previous sections with a
new variant of the MASTER algorithm [Wei and Luo, 2021]. The original MASTER algorithm is
a blackbox reduction that takes a base algorithm for (near) stationary environments as input, and
turns it into another algorithm for non-stationarity environments. For many problems (including
multi-armed bandits, contextual bandits, linear bandits, finite-horizon or infinite-horizon MDPs),
Wei and Luo [2021] show that the final algorithm achieves optimal regret without knowing the
non-stationarity. While powerful, MASTER can not be directly used in our problem to achieve the

8

same strong result. As we will discuss, some modification is needed, and even with this modification,
some extra difficulty unique to SSP still prevents us from eventually obtaining the optimal regret.

Specifically, in order to obtain T? dependency, we again follow the two-phase procedure Algorithm 5
and instantiate a MASTER algorithm with a different base algorithm in each phase. In Phase 1,
since it is unclear how to update cost and transition estimation independently under the framework
of MASTER, we adopt a simpler version of Algorithm 4 as the base algorithm, which performs
synchronized cost and transition estimation and a simpler non-stationarity test; see Algorithm 6 (all
algorithms/proofs in this section are deferred to Appendix F due to space limit). In Phase 2, we use
Algorithm 2 as the base algorithm.

Our version of the MASTER algorithm (Algorithm 8) requires a different Test 1 compared to
that in [Wei and Luo, 2021], which is essential due to the presence of the correction terms in
Algorithm 6. Specifically, it no longer makes sense to simply maintain the maximum of estimated
value functions over the past intervals, since the cost function combined with the correction term is
changing adaptively, and a large correction term will interfere with the detection of a small amount
of non-stationarity. Our key observation is that for a base algorithm scheduled on a given range by
MASTER, the average of its correction terms within the same range is of the desired order that does
not interfere with non-stationarity detection. This inspires us to maintain multiple running averages
of the estimated value functions with different scales (see Line 2 of Algorithm 8). Then, to detect a
certain level of non-stationarity, we refer to the running average with the matching scale (see Line 3).

We show that the algorithm described above achieves the following regret guarantee without knowl-
edge of the non-stationarity.
Theorem 6. Let A1 be an instance of Algorithm 8 with Algorithm 6 as the base algorithm and A2 be
an instance of Algorithm 8 with Algorithm 2 as the base algorithm. Then Algorithm 5 with A1 and
A2 ensures with high probability (ignoring lower order terms):

RK = Õ
(

min
{
B?S
√
ALK,B?S

√
AK + (B2

?S
2A(∆c +B?∆P)T?)

1/3K2/3
})

,

where L = 1 +
∑K−1
k=1 I{Pk+1 6= Pk or ck+1 6= ck} is the number changes of the environment (plus

one). Moreover, this is achieved without the knowledge of ∆c, ∆P , or L.

The advantage of this result compared to Theorem 5 is two-fold. First, it adapts to different levels of
non-stationarity (∆c, ∆P , and L) automatically. Second, it additionally achieves a bound of order
Õ(B?S

√
ALK), which could be much better than that in Theorem 5; for example, when L = O(1),

the former is a
√
K-order bound while the latter is of order K2/3. As discussed in [Wei and Luo,

2021], this is a unique benefit brought by the MASTER algorithm and is not achieved by any other
algorithms even with the knowledge of L.

The disadvantage of Theorem 6, on the other hand, is its sub-optimality in the B? dependency for
the ∆c-related term and the S dependency for both terms. The extra B? dependency is due to the
synchronized cost and transition estimation. As mentioned, it is unclear how to update cost and
transition estimation independently as we do in Algorithm 4 under the framework of MASTER,
which we leave as an important future direction. On the other hand, the extra S dependency comes
from the fact that the lower-order term in the regret bound of the base algorithm affects the final regret
bound (see the statement of Theorem 13). Specifically, the lower-order term is B?S2A instead of
B?SA, which eventually leads to extra S dependency. How to remove the extra S factor in the base
algorithm, or eliminate the undesirable lower-order term effect brought by the MASTER algorithm,
is another important future direction.

8 Conclusion

In this work, we develop the first set of results for dynamic regret minimization in non-stationary SSP,
including a (near) minimax optimal algorithm and two others that are either simpler or advantageous
in some other cases. Besides the immediate next step such as improving our results when the non-
stationarity is unknown, our work also opens up many other possible future directions on this topic,
such as extension to more general settings with function approximation. It would also be interesting
to study more adaptive dynamic regret bounds in this setting. For example, our B? and T? are defined
as the maximum optimal expected cost and hitting time over all episodes, which is undesirable if only

9

a few episodes admit a large optimal expected cost or hitting time. Ideally, some kind of (weighted)
average would be a more reasonable measure in these cases.

Acknowledgments and Disclosure of Funding

The authors thank Aviv Rosenberg and Chen-Yu Wei for many helpful discussions. HL is supported
by NSF Award IIS-1943607 and a Google Research Scholar Award.

References
Yasin Abbasi-Yadkori, Andras Gyorgy, and Nevena Lazic. A new look at dynamic regret for

non-stationary stochastic bandits. arXiv preprint arXiv:2201.06532, 2022.

Peter Auer, Pratik Gajane, and Ronald Ortner. Adaptively tracking the best bandit arm with an
unknown number of distribution changes. In Conference on Learning Theory, pages 138–158.
PMLR, 2019.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for rein-
forcement learning. In International Conference on Machine Learning, pages 263–272. PMLR,
2017.

Liyu Chen and Haipeng Luo. Finding the stochastic shortest path with low regret: The adversarial
cost and unknown transition case. In International Conference on Machine Learning, 2021.

Liyu Chen, Mehdi Jafarnia-Jahromi, Rahul Jain, and Haipeng Luo. Implicit finite-horizon approxima-
tion and efficient optimal algorithms for stochastic shortest path. Advances in Neural Information
Processing Systems, 2021a.

Liyu Chen, Haipeng Luo, and Chen-Yu Wei. Minimax regret for stochastic shortest path with
adversarial costs and known transition. In Conference on Learning Theory, pages 1180–1215.
PMLR, 2021b.

Liyu Chen, Rahul Jain, and Haipeng Luo. Improved no-regret algorithms for stochastic shortest path
with linear MDP. In International Conference on Machine Learning, 2022a.

Liyu Chen, Haipeng Luo, and Aviv Rosenberg. Policy optimization for stochastic shortest path.
Conference on Learning Theory, 2022b.

Wei Chen, Liwei Wang, Haoyu Zhao, and Kai Zheng. Combinatorial semi-bandit in the non-stationary
environment. In Uncertainty in Artificial Intelligence, pages 865–875. PMLR, 2021c.

Yifang Chen, Chung-Wei Lee, Haipeng Luo, and Chen-Yu Wei. A new algorithm for non-stationary
contextual bandits: Efficient, optimal and parameter-free. In Conference on Learning Theory,
pages 696–726. PMLR, 2019.

Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Reinforcement learning for non-stationary
Markov decision processes: The blessing of (more) optimism. In International Conference on
Machine Learning, pages 1843–1854. PMLR, 2020.

Alon Cohen, Haim Kaplan, Yishay Mansour, and Aviv Rosenberg. Near-optimal regret bounds for
stochastic shortest path. In Proceedings of the 37th International Conference on Machine Learning,
volume 119, pages 8210–8219. PMLR, 2020.

Alon Cohen, Yonathan Efroni, Yishay Mansour, and Aviv Rosenberg. Minimax regret for stochastic
shortest path. Advances in Neural Information Processing Systems, 2021.

Yuhao Ding and Javad Lavaei. Provably efficient primal-dual reinforcement learning for CMDPs
with non-stationary objectives and constraints. arXiv preprint arXiv:2201.11965, 2022.

Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Emilie Kaufmann, and Michal Valko. A
kernel-based approach to non-stationary reinforcement learning in metric spaces. In International
Conference on Artificial Intelligence and Statistics, pages 3538–3546. PMLR, 2021.

10

Louis Faury, Yoan Russac, Marc Abeille, and Clément Calauzènes. Regret bounds for generalized
linear bandits under parameter drift. arXiv preprint arXiv:2103.05750, 2021.

Yingjie Fei, Zhuoran Yang, Zhaoran Wang, and Qiaomin Xie. Dynamic regret of policy optimization
in non-stationary environments. Advances in Neural Information Processing Systems, 33:6743–
6754, 2020.

Pratik Gajane, Ronald Ortner, and Peter Auer. A sliding-window algorithm for Markov decision
processes with arbitrarily changing rewards and transitions. arXiv preprint arXiv:1805.10066,
2018.

Sébastien Gerchinovitz and Tor Lattimore. Refined lower bounds for adversarial bandits. Advances
in Neural Information Processing Systems, 29, 2016.

Mehdi Jafarnia-Jahromi, Liyu Chen, Rahul Jain, and Haipeng Luo. Online learning for stochastic
shortest path model via posterior sampling. arXiv preprint arXiv:2106.05335, 2021.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Thodoris Lykouris, Max Simchowitz, Alex Slivkins, and Wen Sun. Corruption-robust exploration in
episodic reinforcement learning. In Conference on Learning Theory, pages 3242–3245. PMLR,
2021.

Weichao Mao, Kaiqing Zhang, Ruihao Zhu, David Simchi-Levi, and Tamer Basar. Near-optimal
model-free reinforcement learning in non-stationary episodic mdps. In International Conference
on Machine Learning, pages 7447–7458. PMLR, 2021.

Yifei Min, Jiafan He, Tianhao Wang, and Quanquan Gu. Learning stochastic shortest path with linear
function approximation. arXiv preprint arXiv:2110.12727, 2021.

Ronald Ortner, Pratik Gajane, and Peter Auer. Variational regret bounds for reinforcement learning.
In Ryan P. Adams and Vibhav Gogate, editors, Proceedings of The 35th Uncertainty in Artificial
Intelligence Conference, volume 115 of Proceedings of Machine Learning Research, pages 81–90.
PMLR, 22–25 Jul 2020.

Aviv Rosenberg and Yishay Mansour. Stochastic shortest path with adversarially changing costs. In
Zhi-Hua Zhou, editor, Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021, 2021.

Yoan Russac, Olivier Cappé, and Aurélien Garivier. Algorithms for non-stationary generalized linear
bandits. arXiv preprint arXiv:2003.10113, 2020.

Lior Shani, Yonathan Efroni, Aviv Rosenberg, and Shie Mannor. Optimistic policy optimization with
bandit feedback. In Proceedings of the 37th International Conference on Machine Learning, pages
8604–8613, 2020.

Joe Suk and Samory Kpotufe. Tracking most severe arm changes in bandits. arXiv preprint
arXiv:2112.13838, 2021.

Jean Tarbouriech, Evrard Garcelon, Michal Valko, Matteo Pirotta, and Alessandro Lazaric. No-regret
exploration in goal-oriented reinforcement learning. In International Conference on Machine
Learning, pages 9428–9437. PMLR, 2020.

Jean Tarbouriech, Runlong Zhou, Simon S Du, Matteo Pirotta, Michal Valko, and Alessandro Lazaric.
Stochastic shortest path: Minimax, parameter-free and towards horizon-free regret. Advances in
Neural Information Processing Systems, 2021.

Ahmed Touati and Pascal Vincent. Efficient learning in non-stationary linear Markov decision
processes. arXiv preprint arXiv:2010.12870, 2020.

Daniel Vial, Advait Parulekar, Sanjay Shakkottai, and R Srikant. Regret bounds for stochastic shortest
path problems with linear function approximation. arXiv preprint arXiv:2105.01593, 2021.

Chen-Yu Wei and Haipeng Luo. Non-stationary reinforcement learning without prior knowledge: An
optimal black-box approach. In Conference on Learning Theory, pages 4300–4354. PMLR, 2021.

11

Chen-Yu Wei, Christoph Dann, and Julian Zimmert. A model selection approach for corruption
robust reinforcement learning. In International Conference on Algorithmic Learning Theory, pages
1043–1096. PMLR, 2022.

Zihan Zhang, Xiangyang Ji, and Simon S Du. Is reinforcement learning more difficult than bandits?
a near-optimal algorithm escaping the curse of horizon. In Conference On Learning Theory, 2020.

Huozhi Zhou, Jinglin Chen, Lav R Varshney, and Ashish Jagmohan. Nonstationary reinforcement
learning with linear function approximation. arXiv preprint arXiv:2010.04244, 2020.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] After each main theorem.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] Pure

theoretical work.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 2.
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [N/A]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

12

