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Abstract

Computer simulations have proven a valuable tool for understanding complex
phenomena across the sciences. However, the utility of simulators for modelling
and forecasting purposes is often restricted by low data quality, as well as practical
limits to model fidelity. In order to circumvent these difficulties, we argue that
modellers must treat simulators as idealistic representations of the true data
generating process, and consequently should thoughtfully consider the risk of
model misspecification. In this work we revisit neural posterior estimation (NPE),
a class of algorithms that enable black-box parameter inference in simulation
models, and consider the implication of a simulation-to-reality gap. While recent
works have demonstrated reliable performance of these methods, the analyses
have been performed using synthetic data generated by the simulator model itself,
and have therefore only addressed the well-specified case. In this paper, we find
that the presence of misspecification, in contrast, leads to unreliable inference
when NPE is used naïvely. As a remedy we argue that principled scientific inquiry
with simulators should incorporate a model criticism component, to facilitate
interpretable identification of misspecification and a robust inference component,
to fit ‘wrong but useful’ models. We propose robust neural posterior estimation
(RNPE), an extension of NPE to simultaneously achieve both these aims, through
explicitly modelling the discrepancies between simulations and the observed
data. We assess the approach on a range of artificially misspecified examples, and
find RNPE performs well across the tasks, whereas naïvely using NPE leads to
misleading and erratic posteriors.

1 Introduction
Stochastic simulators have become a ubiquitous modelling tool across the sciences and are regularly
applied to some of the most complex and challenging problems of scientific interest, including climate
change (see e.g. Randall et al., 2007), particle physics (e.g. Brehmer et al., 2020), and the Covid-19
pandemic (e.g. Ferguson et al., 2020). Simulators implicitly define a likelihood function p(x | θ),
where x is the simulator output and θ are the simulator parameters. Although running the simulator
to sample from the model is straightforward, the inherent complexity of simulators often makes
analytic calculation of the likelihood intractable. As a result, classical inference techniques to find the
parameter posterior p(θ | x) such as Markov chain Monte Carlo (MCMC) (Metropolis et al., 1953) are
infeasible. To overcome this issue, a large family of simulation-based inference (SBI) methods have
been developed that allow parameter inference to be performed on arbitrary black-box simulators
(see Cranmer et al., 2020). Broadly, these approaches estimate a function that allows access to an
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approximate posterior. This can be achieved by approximating the posterior directly (Papamakarios
and Murray, 2016; Greenberg et al., 2019; Lueckmann et al., 2017), or indirectly, via approximating
the likelihood (Papamakarios et al., 2019b) or likelihood-to-evidence ratio (Hermans et al., 2020;
Thomas et al., 2022), from which the posterior can be sampled using MCMC. For estimating the
posterior or likelihood, neural posterior estimation (NPE) and neural likelihood estimation (NLE) have
shown to be powerful approaches (Lueckmann et al., 2021), which rely on neural network-based
conditional density estimators, such as normalising flows, to approximate the likelihood or posterior
(Papamakarios et al., 2019a).
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Figure 1: Overview of the robust neural posterior estimation (RNPE) framework. Through ‘denoising’
the observed data, we can simultaneously perform model criticism to identify how the model is
misspecified, and perform inference robust to model misspecification. See Gaussian example in
section 4.1 for details of the experiment.

To define misspecification, it is necessary to make a clear distinction between the true data generating
process and the simulator: we will write yo for observed data, following some unknown data generat-
ing process with distribution denoted p∗, and we will write x ∼ p(x | θ) to denote samples from
the simulator. In many applications of SBI, summary statistics are used to reduce the dimensionality
of the problem. If this is the case, we use x and yo to denote the simulated and observed summary
statistics, rather than the raw data, and treat the raw data as an unobserved latent variable of the
model. The simulator is said to be misspecified if the true data generating process does not fall within
the family of distributions defined by the simulator, i.e. p∗ /∈ {p(x | θ); θ ∈ Θ}. Simulators gener-
ally form idealised and simplistic representations of a more complex data generating process, and
hence – like all statistical models – will be wrong to some extent. This misspecification often results
in a discrepancy between simulated and observed data, sometimes termed a “simulation-to-reality
gap” (e.g. Miglino et al., 1995). Despite this, the general approach in SBI is to learn a posterior
approximation q(θ | x) (either directly, or indirectly), using simulated data, (x,θ) ∼ p(x | θ)p(θ),
and to condition on the observed data, q(θ | x = yo). This approach is only theoretically justified
under the assumption that the simulator is well-specified; relying on this approach for misspecified
simulators leads to two issues:

(i) As the posterior approximation q(θ | x) is learned using samples from the simulator, we
can only expect it to form a reasonable approximation of p(θ | x) for regions well covered
by simulations. For misspecified simulators, the observed data yo may be very unlikely in
p(x) =

∫
p(x|θ)p(θ)dθ, in which case the approximation q(θ | x = yo) often becomes

poor (Cannon et al., 2022). In some cases, yo may even fall outside the support of p(x),
which results in NPE attempting to extrapolate to estimate the undefined posterior.

(ii) It has been demonstrated more generally that Bayesian inference is frequently problematic
under misspecification. Even for simple models, misspecification can lead to posterior con-
centration around “bad” models (Grünwald and Langford, 2007; Grünwald and Van Ommen,
2017) and poorly calibrated credible regions (Kleijn and van der Vaart, 2012; Syring and
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Martin, 2019). These issues will persist even in the unlikely case that q(θ | x) perfectly
approximates p(θ | x).

One approach to improve robustness is to incorporate an error model to explicitly model potential
discrepancies between the observed data and simulations. A simple method would be to directly
incorporate the error model within the simulator itself, such as by applying additive noise to the
output to ensure that the observed data has reasonable marginal likelihood under the model (Cranmer
et al., 2020). However, this approach has some limitations: i) it is challenging to interpret how the
model is misspecified – an obvious choice is to use posterior predictive checks, but poor predictive
performance could result from failed inference, limitations of simulator, or both; ii) retraining of
the approximate posterior would be required to investigate different error models, which can be
computationally expensive; and iii) the error model itself is likely tractable, which can be utilised to
improve inference.

Our contribution. We propose robust neural posterior estimation (RNPE), an SBI framework that
incorporates an error model, p(y | x) to account for discrepancies between simulations and the
observed data, whilst avoiding the limitations of naïvely incorporating it directly into the simulator.
We explicitly learn to invert the error model for the observed data prior to inference of the parameter
posterior, a process we call ‘denoising’. This approach yields the following advantages:

Efficient Model Criticism. Understanding a model’s limitations is crucial for principled model
development (Box, 1980; Gelman and Shalizi, 2013). By probabilistically inverting the error
process for the observed data, and inferring any associated error model parameters, we can detect
and interpret discrepancies between the simulated and observed data, allowing criticism of the
simulator. This process can be achieved in a manner decoupled from inference, which provides
efficiency benefits, whilst avoiding confounding inference failures with problems arising due to
limitations of the simulator.

Robust Inference. Even after several rounds of model development and model criticism, the best
available model will still frequently be misspecified to an appreciable degree. However, it is
often still desirable to use ‘wrong but useful’ models for parameter inference and predictions, and
hence the inference process should be robust to misspecification. By exploiting the amortisation1

property of NPE, we can ensemble posterior estimates over a set of ‘denoised’ observations,
leading to posterior estimates robust to misspecification.

An overview of the RNPE framework can be seen in Fig. 1. We examine the practical value of this
approach for model criticism and robust inference on examples in which we artificially introduce
realistic levels of misspecification.

2 Method
2.1 Error Model
As outlined above, we can explicitly model discrepancies between the observed data and simulations
by introducing an error model p(y | x), such that the assumed generative model is

p(θ,x,y) = p(y | x)p(x | θ)p(θ), (1)

where we assume that the error is independent of the simulator parameters θ, and we treat x as an
unobserved latent variable of the model. Using the equivalent factorisation

p(θ,x,y) = p(θ | x)p(x | y)p(y),
we can marginalise over the latent x and find an expression for the parameter posterior

p(θ,y) = p(y)

∫
p(x | y)p(θ | x) dx, (2)

p(θ | y) =
∫

p(x | y)p(θ | x) dx = Ex∼p(x|y)[p(θ | x)]. (3)

Equation (3), implies that if we had access to p(x | y) and p(θ | x), we could sample from the
parameter posterior by first sampling from the posterior over the latent variables x ∼ p(x | y), and

1Amortisation refers to the ability of a conditional distribution approximation to condition on arbitrary
instances of the conditioning variable, rather than being specialised to a particular instance.
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then sampling from p(θ | x). This approach reverses the data generating process from Equation
(1), whilst propagating uncertainty throughout, first removing the error from the observed data by
denoising, and then finding the associated simulator parameters given the denoised data. A Monte
Carlo approximation of the expectation in Equation (3) can also be used to estimate the posterior
density p(θ | y), i.e.

p(θ | y) ≈ 1

M

M∑
m=1

p(θ | x̃m), x̃1, . . . , x̃M ,
iid∼ p(x | y), (4)

however, we note that in some scenarios this approximation could have high variance. In practice,
p(x | y) and p(θ | x) are unknown. We can approximate p(θ | x) by training a normalising flow
q(θ | x) on simulated data (x,θ) ∼ p(x | θ)p(θ), as is commonly done for NPE. To approximately
sample from p(x | y), we i) specify an error model p(y | x), ii) train a normalising flow, q(x),
fitted to samples from the prior predictive distribution of the simulator x ∼ p(x), and iii) sample
x̃ ∼ p(x | y), along with any error model parameters, using MCMC, as p̂(x | y) ∝ p(y | x)q(x).
We denote samples from p̂(x | y) and q(θ | x) as x̃ and θ̃ to avoid confusion with prior samples and
simulations. Pseudo-code for the overall approach is given in Algorithm 1.

Algorithm 1: Robust neural posterior estimation (RNPE)
for i in 1 : N do

1 Sample θi ∼ p(θ)
2 Simulate xi ∼ p(x | θ)

end
3 Train NPE q(θ | x) on {(θi,xi)}Ni=1

4 Train q(x) on {xi}Ni=1
5 Sample x̃m ∼ p̂(x | yo) ∝ p(yo | x)q(x), m = 1, . . . ,M using MCMC

6 Sample θ̃m ∼ q(θ | x̃m), m = 1, . . . ,M

return {(θ̃m, x̃m)}Mm=1, samples drawn approximately from p(θ,x | yo)

Under this framework, the standard SBI approach can be retrieved as the special case in which
p(y | x) = p(x | y) = δ(x− y), where δ is the Dirac delta distribution, meaning that we revert to
assuming no discrepancy between the simulator and data generating process.

The idealised nature of simulation models implies that frequently there will be some characteristics
of the observed data that are well captured by simulations, and some aspects in which there exists
a discrepancy. Using a set of summary statistics for inference, rather than the raw data naturally
captures an interpretable, low dimensional and diverse set of characteristics of the simulated and
observed data. Because of this, we find that in general, reducing the raw data to summary statistics is
advantageous for model criticism, as the practitioner can choose summary statistics which align with
their belief about important model characteristics, and easily interpret any discrepancies (see Section
5). The requirement for domain specific knowledge to develop summary statistics has been alleviated
by recent work (e.g. Fearnhead and Prangle, 2012; Chan et al., 2018; Chen et al., 2020), which
seek to automatically embed the raw data to summary statistics; however, these embeddings often
lack a tangible interpretation. Additionally, the embedding methods themselves may not be robust
to misspecification. One approach is to use both hand-crafted and automatic summary statistics in
tandem. Hereafter, however, we generally perform model criticism and inference using hand-crafted
summary statistics, such that x and yo refer to the simulated and observed summary statistics, not
the raw data.

2.2 Spike and Slab
In practice, the true error model is unknown, and hence the error model should describe our prior
belief over the discrepancy between the data generating process and simulations. Additionally, to
facilitate model criticism, it should ideally allow easy assessment of which summary statistics are
approximately well-specified and which are misspecified. Inspired by sparsity-inducing priors used
in Bayesian regression literature (George and McCulloch, 1993), we use a “spike and slab” error
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model on each summary statistic

x ∼ q(x), (5)
zj ∼ Bernoulli(ρ), j = 1, . . . , D (6)

yj | xj , zj ∼
{
N(xj , σ

2), if zj = 0

Cauchy(xj , τ), if zj = 1
j = 1, . . . , D (7)

where x ∈ RD. As the summary statistics have varying scales, we standardise them to have
mean zero and variance one. The Bernoulli variables indicate whether the j-th summary statistic
is approximately well-specified; we use the probability of ρ = 0.5 to express the belief that it is
equally likely a summary statistic will be misspecified or well-specified a priori. When a summary
statistic is well-specified (i.e., zj = 0), we take the error distribution to be a tight Gaussian (a spike)
centred on xj , choosing σ = 0.01 to enforce consistency between the simulator and the observed
data for the j-th statistic. In contrast, in the misspecified case (i.e., zj = 1), we take the error model
to be the much wider and heavy tailed Cauchy distribution (a slab). Generally, we might expect
misspecification to be relatively subtle, but some model inadequacies can lead to catastrophically
misspecified summary statistics. We chose the Cauchy scale τ = 0.25, to reflect this, as it places
half the mass within ±0.25 standard deviations of xj , but the long tails accommodate summary
statistics that are highly misspecified. The sparsity-inducing effect of this error model matches what
we consider to be a common scenario, namely that a proportion of the summary statistics are jointly
consistent with the simulator, whereas others may be incompatible. If we expect a priori more or
fewer of the summary statistics to be misspecified, the prior misspecification probability can be
adjusted accordingly. By marginalising over z, the spike and slab error model can also be written as

p(y | x) =
D∏

j=1

[
(1− ρ) · p(yj | xj , zj = 0) + ρ · p(yj | xj , zj = 1)

]
, (8)

and as such can be viewed as an equally weighted mixture of the Gaussian spike, p(yj | xj , zj = 0),
and the Cauchy slab, p(yj | xj , zj = 1), for each summary statistic. We note that error model
hyperparameter tuning approaches could be considered, e.g. a reasonable heuristic would be to
choose an error model that is broad enough that the denoised data x̃ tend not to be outliers in q(x),
compared to simulations2. However, we chose to keep the hyperparameters consistent across tasks,
to avoid the risk of overfitting to the tasks and to demonstrate that neither strong prior knowledge on
the error model, nor careful hyperparameter tuning is necessary to yield substantial improvements in
performance.

A key advantage of the spike and slab error model is given by the latent variable z. Similar to
posterior inclusion probabilities in Bayesian regression, the posterior frequency of being in the slab,
Pr(zj = 1 | y), can be used as an indicator of the posterior misspecification probability for the
j-th summary statistic. By comparing to the prior misspecification probability ρ, we can say that if
Pr(zj = 1 | y) > ρ, the model provides evidence of misspecification for the j-th summary statistic,
and if Pr(zj = 1 | y) < ρ, it provides evidence it is well-specified (Talbott, 2016). For the purpose
of generality, the latent variable z was not included when describing RNPE thus far. However, we
can jointly infer the posterior p̂(x, z | y) in step 5 of algorithm 1, by using an MCMC algorithm
that supports sampling both continuous and discrete variables. We used mixed Hamiltonian Monte
Carlo (HMC) (Zhou, 2020, 2022) from the NumPyro python package (Phan et al., 2019), which is an
adaptation of HMC (Neal et al., 2011; Duane et al., 1987), for this purpose.

3 Related Work
3.1 Model Criticism in SBI

Posterior predictive checks have been widely used in SBI, to compare the predictive samples to the
observed data (e.g. Durkan et al., 2020; Greenberg et al., 2019; Papamakarios et al., 2019b). Although
this is a form of model criticism, we note a key limitation of this approach is that if a discrepancy is
discovered, it may not be clear whether this is due to the failure of the inference procedure, or due to
simulator misspecification. In general, it may be possible to identify the presence of misspecification
using anomaly/novelty detection. One such approach was suggested by Schmitt et al. (2021) in the

2This could for example be assessed by estimating highest density regions of q(x), using the density quantile
approach from Hyndman (1996).
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context of SBI. However, this approach does not facilitate interpreting misspecification in the sense
presented here, and it is not clear how to extend it to perform robust inference.

There are a few related methods that criticise a posterior estimate by assessing its calibration using
simulated data (e.g. Hermans et al., 2021; Prangle et al., 2014; Talts et al., 2018); however, these
approaches criticise the inference procedure, not the simulator itself, and the associated results rely
on the simulator being well-specified.

3.2 Robust Inference in SBI

Approximate Bayesian computation (ABC) is a family of SBI methods characterised by their use of
rejection sampling alongside a kernel function to compare the simulated and observed data (Tavaré
et al., 1997; Pritchard et al., 1999; Beaumont et al., 2002). The simplest form of ABC samples
candidate parameters from the prior distribution and accepts them with probability proportional to
the similarity of the corresponding simulations to the observed data. The use of a kernel is often seen
as a necessary evil, as enforcing an exact match between the observed and simulated data generally
results in all samples being rejected. However, it has been noted that the kernel function can often be
interpreted as specifying an error model distribution p(y | x) (Wilkinson, 2013). This idea has been
expanded using generalised Bayesian inference, in which the kernel is replaced with a loss function,
which can be chosen to use a robust measure of discrepancy such as the maximum mean discrepancy
(MMD) (Chérief-Abdellatif and Alquier, 2020; Frazier et al., 2020a; Fujisawa et al., 2021; Park et al.,
2015; Schmon et al., 2020; Dyer et al., 2021).

Synthetic likelihood is an SBI method that uses a Gaussian approximation of the likelihood (Wood,
2010). Frazier and Drovandi (2021) investigated a robust synthetic likelihood algorithm, in which the
variance components of the Gaussian likelihood are expanded based on additional free parameters,
inferred in a nested MCMC sampling scheme. In the context of the paper, they interpret this approach
as “likelihood adjustment”; however, this could equivalently be reframed as the addition of an
independent Gaussian error model, with a prior on the variances3.

In contrast to more traditional SBI methods, few solutions have been proposed for performing robust
inference with neural SBI methods. Perhaps the most common approach is to augment the model with
additional nuisance parameters to expand the range of values the simulator can reasonably produce
(Cranmer et al., 2020). This again can often be interpreted as a method of incorporating an error
model within the simulator. However, as previously discussed, the primary limitation of this approach
is that it does not easily facilitate model criticism.

4 Experimental setup
On three misspecified tasks, we benchmark the performance of three methods for parameter inference:
i) RNPE, ii) noisy neural posterior estimation (NNPE) in which we directly approximate p(θ | y) by
incorporating the error model into the simulator, and iii) NPE, in which we assume no model error
is present. To reliably assess performance, we repeat the inference procedure with 1000 different
observations and ground truth parameter pairs for each misspecified task, and calculate two metrics:
i) the log probability of the true parameter vector, θ∗, and ii) the posterior coverage properties (see
Section 4.2). Further metrics, and results for the well-specified case, can be found in Appendix A.
We further show examples of RNPE on a single observation for each task to demonstrate how RNPE
can be applied in practice for model criticism and robust posterior inference.

For all experiments, we used N = 50, 000 simulations, with M = 100, 000 MCMC samples following
20, 000 warm up steps. The MCMC chains were initialised using a random simulation, and zj =
1 for j = 1, . . . , D. To build the approximation q(x), we used block neural autoregressive flows
(De Cao et al., 2020), as we do not require the ability to sample directly from q(x). For the
approximation of q(θ | x), we used neural spline flows (Durkan et al., 2019). For all tasks the
hyperparameters were kept consistent; information on hyperparameter choices can be found in
Appendix C. The code required to reproduce all the results from this manuscript is available at
https://github.com/danielward27/rnpe.

4.1 Tasks
Detailed descriptions of each task can be found in Appendix B.

3This results due the fact that the addition of two independent Gaussian variables yields another Gaussian
random variable, with covariance equal to the sum of the individual covariance matrices.

6

https://github.com/danielward27/rnpe


Gaussian. A simple Gaussian example from Frazier et al. (2020b). The task involves predicting a
single parameter µ, using the sample mean and variance of 100 i.i.d. samples drawn from N(µ, 1),
where 1 is the variance of the Gaussian distribution. To artificially produce misspecified observations,
the 100 i.i.d. are instead drawn from N(µ, 2). Despite its simplicity, this task usefully demonstrates
that issues with misspecification can arise even in the simplest of models.

Gaussian Linear. A 10-d linear Gaussian model from Lueckmann et al. (2021). The parameter θ is
the mean vector of a Gaussian likelihood. Additive Gaussian noise is used to introduce misspecifica-
tion. For this task, the spike and slab error model employed will be reasonably misspecified, as the
noise is not sparse or heavy tailed.

SIR. A stochastic model of epidemic spread with a time-varying infection rate. We attempt to infer
two parameters, the infection rate β and the recovery rate γ. We computed the following summary
statistics: 1-3) Mean, Median and Max - the mean, median and maximum number of infections; 4)
Max Day - the day of occurrence of the maximum number of infections, 5) Half Day - the day at
which half the total number of infections was reached, and 6) Autocor - the mean autocorrelation
(lag 1) of infections. To artificially produce misspecified observations, we chose to introduce a
small degree of reporting delays, whereby weekend infection counts are reduced by 5%, which are
subsequently recouped on the following Monday. Fig. 4d shows an example of a raw observation.

CS. A marked point process model of cancer and stromal (CS) cell development in 2D-space, in
which the locality of a cell relative to unobserved parent points determines whether it is a cancer or a
stromal cell. Similar point process models can be found in Jones-Todd et al. (2019). There are three
Poisson rate parameters, corresponding to the cell rate λc, the parent rate λp and the daughter rate λd,
where λd controls the number of nearest cells to each parent which become cancerous. The following
summary statistics were used: 1-2) N Cancer and N Stromal - the number of cancer and stromal
cells; 3-4) Mean Min Dist and Max Min Dist - the mean and maximum distance from stromal
cells to their nearest cancer cell. To artificially produce misspecified observations, cancer cells were
removed if they fell too close to a parent point, mimicking necrosis that often occurs in core regions
of tumours. A plot of an example misspecified simulation and a corresponding artificially produced
observation can be found in Fig. 9 in the appendix.

4.2 Performance Metrics
Log probability of θ∗. The mean posterior log probability of the true parameters over multiple
observations is an extensively used performance metric (e.g. Papamakarios and Murray, 2016;
Hermans et al., 2020; Durkan et al., 2020), and is closely related to the average KL divergence
between the true and approximate posteriors (Lueckmann et al., 2021). We found that NPE would
occasionally fail catastrophically, placing negligible posterior mass on the true parameters, skewing
the mean estimates. Due to this, we instead use box plots to visualise the distribution over the
log-probabilities of the true parameters, rather than reporting the mean.

Posterior Coverage. Given a confidence level α and a posterior approximation p̂(θ | y), let
HDRp̂(θ|y)(1− α) represent its 1− α highest posterior density region, i.e. the smallest region that
contains at least 100(1 − α)% of the mass of p̂(θ | y). The expected posterior coverage is the
frequency with which the true parameter value falls within this highest density region

Eθ∗,y∼p(θ,y)

[
1{θ∗ ∈ HDRp̂(θ|y)(1− α)}

]
(9)

where 1 is the indicator function. Posterior coverage is useful for assessing whether an inference
procedure is likely to yield overconfident or conservative posterior estimates (Hermans et al., 2021).
We empirically estimate this expectation, approximating the highest density regions using the density
quantile approach outlined in Hyndman (1996), with 10,000 samples from the approximate posterior.

5 Results and Discussion
5.1 Overall Performance
The results shown in Fig. 2 show that both RNPE and NNPE perform better than NPE, both in terms of
producing posteriors with more conservative coverage properties (Fig. 2a) and by tending to place
more mass on θ∗ (Fig. 2b). It is important to note that having conservative posterior estimates is
generally considered preferable to having overconfident posterior estimates, as the latter could lead to
drawing of erroneous scientific conclusions. RNPE slightly outperforms NNPE in terms of the mass
placed on θ∗. We hypothesise this increased performance is due to RNPE exploiting the fact that the
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Figure 2: Comparative performance of RNPE, NNPE and NPE on the four misspecified tasks, using
1000 different observation and true parameter pairs. (a) The coverage of each approach at different
confidence levels. A well-calibrated posterior follows the dotted line, with conservative posteriors
lying above the dotted line, and overconfident posteriors falling below the dotted line. (b) The
log-probability of the true parameters θ∗ in the approximate posteriors.

error model is known and tractable, rather than naïvely relying on NPE to account for it. For all the
tasks the error model is misspecified: these results highlight the importance of accounting for model
misspecification, even if doing so may introduce a misspecified error model.

5.2 Examples
Gaussian. An example for the Gaussian task can be seen in Fig. 1, in which x1 corresponds to the
mean statistic, and x2 the variance. From observing the posterior misspecification probabilities and
the denoised samples, the results clearly identify a discrepancy in which the observed variance statistic
is higher than the simulated variance statistics, allowing identification of source of misspecification.
As this is a simple example, we can analytically access the true posterior (obtained using the true data
generating model). RNPE produces a posterior close to the ground-truth, whereas NPE confidently
places most of the posterior mass far from the ground-truth posterior.

0.0 0.5 1.0
Posterior Misspecification Probability

x5
x7
x4
x2
x1
x6
x0
x3
x8
x9

Figure 3: Posterior misspecification probabilities
for an example of the Gaussian Linear task.

Gaussian Linear. For the Gaussian Linear task,
misspecification was introduced by applying
additive Gaussian noise. Due to the lack of
structure (e.g. correlations between simulation
output dimensions), and the lack of sparsity in
the errors, the model generally cannot provide
much evidence for or against misspecification,
as shown by Fig. 3. Corresponding pair plots
of the denoised data and posterior are shown in
Figs. 10-11, in the appendix.

SIR. In the SIR model, the observed data were
artificially corrupted by mimicking reporting de-
lays over the weekend. With this in mind, we
can consider how the model criticism aspect of
RNPE could facilitate identification of the issue.
Fig. 4a shows that most summary statistics are
more likely to be well-specified than was be-
lieved a priori, with the clear exception of the Autocor summary statistic, which is inferred to be
misspecified. Fig. 4b shows a density plot of the denoised data for the Autocor summary statistic
(for a full pair plot, see Fig. 12, in the appendix), showing that the observed autocorrelation is much
lower than would be expected under the model. This may prompt the practitioner to investigate the
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day-to-day changes in infections, in which case the discontinuities introduced by the reporting delays
could be identified. Fig. 4c shows the posteriors for RNPE and NPE. RNPE yields a posterior with
far lower variance than NPE, demonstrating that it does not always achieve robustness simply by
producing broader posterior estimates.

0.0 0.5 1.0
Posterior Misspecification Probability
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Mean
Max
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Max Day
Autocor

(a)

0.9900 0.9925 0.9950 0.9975 1.0000
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Figure 4: The results for an example of the SIR task. (a) The inferred posterior misspecification
probabilities for each summary statistic. (b) Density plot for the denoised samples of the most
misspecified summary statistic (autocorrelation). (c) The posteriors for both NPE and RNPE and; (d)
The associated posterior predictive distributions for NPE and RNPE. Note the (artificially introduced)
reporting delays are visible for the raw observed data.

CS. In the CS model, the observed data was corrupted by removing cells in the core regions of
tumours, mimicking necrosis (see Fig. 9 in the appendix). This misspecification primarily impacts
the N Cancer summary statistic (the number of cancer cells). From Figs. 5a,5b, we can see that
the results provide evidence that the N Cancer statistic is misspecified, with the observed data
having fewer cancer cells than would be expected if it was generated from the simulator. Once again,
alongside domain knowledge, this information points the practitioner to the source of misspecification
(necrosis), and hence the model could be adjusted appropriately. For this example, NPE produced an
overconfident posterior with little mass on the true parameters, whereas RNPE does not exhibit this
issue (Fig. 5c).

5.3 Indeterminacy

In some cases, there can be indeterminacy when inferring misspecification, in which it is impossible
to determine which summary statistic is misspecified, despite clear evidence of misspecification. This
occurs, for example, when a model can only be consistent with one observed summary statistic, e.g.
x1, at the expense of being able to recreate another summary statistic, e.g. x2 (or vice versa). RNPE
allows these trade-offs to be identified, as the statistics will show a small frequency of being jointly
well-specified, Pr(z1 = 0, z2 = 0 | y), alongside reasonable probabilities of either statistic being
well-specified, Pr(z1 = 1, z2 = 0 | y) and Pr(z1 = 0, z2 = 1 | y). We show an example of this in
Fig. 8 in the Appendix.
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Figure 5: The results for an example of the CS task. (a) The inferred posterior misspecification
probabilities for each summary statistic. (b) Density plot for the denoised samples of the N Cancer
summary statistic. (c) A pair plot of the posteriors for both NPE and RNPE.

6 Conclusions
We described RNPE, an approach that can be applied to any black-box simulator to simultaneously
perform model criticism and robust inference. RNPE is philosophically similar to existing robust
SBI approaches for ABC and synthetic likelihood (Wilkinson, 2013; Frazier and Drovandi, 2021).
However, this work introduces three novel contributions: i) we apply the idea of using error models
for robust inference to a neural SBI method, which has advantages in simulation efficiency, flexibility
and scaling to high dimensional problems (Lueckmann et al., 2021), ii) we facilitate model criticism
decoupled from inference, which avoids confounding of inference failures and model misspecification,
and iii) we use a spike-and-slab error model to obtain explicit misspecification probability diagnostics
for summary statistics, to facilitate model criticism. Our work is not without limitations. Firstly,
RNPE is more computationally costly than NPE, requiring an additional MCMC step and fitting of
q(x). Secondly, we only evaluated performance of a single choice of error model on a limited number
of tasks. It would be beneficial in the future to have a larger set of realistic misspecified tasks for
assessing performance, similar to the work by Lueckmann et al. (2021) for the well-specified case.
Finally, we restricted our focus to NPE; in future work it would be interesting to consider other SBI
algorithms and to compare results with existing methods for robust inference.

We demonstrated with four examples that RNPE consistently outperforms NPE for parameter inference
under misspecification, tending to put more posterior mass on the true parameters whilst also
exhibiting more conservative coverage properties. The tasks were designed to mimic levels of
misspecification that could be realistically encountered, and hence the poor performance of NPE calls
into question its use in practice, particularly when the level of misspecification could be significant.
The substantial difference in performance highlights, as suggested by Box (1980), that we should
not have blind faith that a model is sufficiently accurate, and therefore must devise methods for
performing model criticism and robust inference. With further research and wider adoption of these
principles in SBI, we believe simulators will only become more powerful tools for scientific discovery.
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Appendix

A Additional Results
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Figure 6: The C2ST accuracy, between the true
posterior (under the true data generating process),
and the approximate posteriors for each method.

In the classifier 2-sample test (Friedman, 2004;
Lopez-Paz and Oquab, 2016) a classifier is
trained to distinguish between a true and in-
ferred posterior distribution. In the case that
the classifier struggles to distinguish between
the samples (i.e. when the posterior approxima-
tion is good), the C2ST score approaches 0.5.
In contrast, when the posterior approximation
is poor the C2ST score will be close to 1. Here
we take the ‘true’ posterior to be the analytical
posterior obtained under the true data generating
process. For calculation of the C2ST metric we
used a multilayer perceptron, as implemented
in the sbibm python package (Lueckmann et al.,
2021). This metric requires a tractable posterior,
so is only available for the Gaussian and Gaus-
sian Linear tasks. We note that the error model
used in RNPE and NNPE is misspecified, so we
cannot realistically expect a C2ST score close
to 0.5, but the results are useful to highlight that
even a misspecified error model can improve
performance. These results are shown in Fig. 6

Mean Square Error
In addition to calculating the log-probability of θ∗ and the posterior coverage properties (see Section
4.2 and Fig. 2), we also considered taking the posterior mean as a parameter point estimate and
comparing this to the true parameters θ∗. Over the 1000 different true parameters and observation
pairs, we compared the posterior means to the true parameters using the mean squared error

MSE =
1

1000

1000∑
i=1

(θ̄ij − θ∗ij)
2,

where θ̄ij is the posterior mean of the j-th parameter, resulting from either NPE or RNPE, and θ∗ij is
the ground truth parameter sampled from the prior. These results are shown in Table 1.

Task Parameter Mean Squared Error

NNPE NPE RNPE

Gaussian µ 0.04 0.17 0.02

Gaussian Linear θ 0.70 0.75 0.70

CS λc 0.12 0.12 0.13
λd 1.21 1.92 1.21
λp 0.80 1.10 0.75

SIR β 0.20 1.10 0.13
γ 0.11 0.59 0.09

Table 1: The mean squared error between the posterior means and the true parameters for each task,
estimated using 1000 different observation and true parameter pairs. The mean squared errors were
calculated on standardised parameters, i.e. scaled based on the prior mean and variance, due to the
differing scales of different parameters. For the Gaussian Linear task, we average the mean squared
error across the parameters (rather than listing them for the 10 parameters individually).
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Well-Specified Case
An obvious question to ask is, what is the impact of incorrectly using an error model when the
simulator is well-specified? These results are shown in Fig. 7. In the well-specified case, NPE
becomes well-calibrated (Fig. 7a), whereas RNPE produces slightly conservative posteriors. NPE
performs marginally better in terms of the posterior mass placed on the true parameters (Fig. 7b).
However, in the well-specified case, RNPE may indicate that the model is not likely to be misspecified,
in which case the researcher could choose to collapse the error model by directly using q(θ | x), with
no additional cost.
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Figure 7: Comparative performance of RNPE and NPE on the four tasks without misspecification of
the simulator, using 1000 different observation and true parameter pairs. (a) The coverage of each
approach at different confidence levels. A well-calibrated posterior follows the dotted line, with
conservative posteriors lying above the dotted line, and overconfident posteriors falling below the
dotted line. (b) The log-probability of the true parameters θ∗ in the approximate posteriors.

B Tasks
Gaussian

Model Description. A simple Gaussian toy model used by Frazier et al. (2020b). The task
has a single parameter µ, which is the mean of a Gaussian distribution. A simulation consists
of drawing 100 i.i.d. samples from N(µ, 1), which are summarised to the sample mean and
variance.

Misspecification. To artificially introduce misspecification, samples were drawn from N(µ, 2)
for the observed data, rather than N(µ, 1), prior to summarising.

Priors. µ ∼ N(0, 25).

Gaussian Linear
Model Description. A misspecified extension of a simple Gaussian toy model used by Lueck-
mann et al. (2021). The task involves inferring the mean vector θ of a 10-d Gaussian distribution,
where a simulation consists of sampling this distribution i.e. x | θ ∼ N(θ, 0.1 · I10).

Misspecification. To artificially introduce misspecification, we add Gaussian additive noise such
that y | x ∼ N(x, 0.1 · I10), or equivalently, we can view this as a misspecified variance in the
simulator such that y | θ ∼ N(θ, 0.2 · I10).

Priors. θ ∼ N(0, 0.1 · I10).
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SIR
Model Description. The SIR model is an idealised model of disease spread, where a series
of differential equations describe the rates of transitions between three states: susceptible (s),
infected (i) and recovered (r). The simplest (and deterministic) model is

ds

dt
= −βsi,

di

dt
= βsi− γi,

dr

dt
= γi, (10)

where β is the infection rate, and γ the recovery rate. We use a stochastic extension of this model,
with a time-varying infection rate β̃t (see Atkeson et al., 2020; Perla et al., 2022), reflecting for
example policy changes or mutations in the virus. This process is parameterised using the basic
reproduction number, R0t =

β̃t

γ

dR0t = η

(
β

γ
−R0t

)
dt+ σ

√
R0dWt, (11)

where η is the mean reversion strength of R0t to β
γ , σ is the volatility, and Wt is Brownian

motion. We set η = 0.05 and σ = 0.05 and focused on inferring β and γ. This model was
implemented in Julia, using the DifferentialEquations package (Rackauckas and Nie, 2017). We
scaled the resulting infection trajectories by 100,000 (representing the population size), and used
summary statistics of the daily infection counts over 365 days, as described in Section 4.1.

Misspecification. To artificially introduce misspecification, we reduce the infection counts on
weekends by 5%, and these infections are recouped on the subsequent Monday, mimicking
reporting delays over weekends. We (arbitrarily) take the first day to be Monday. An example of
a simulations, compared to an observation with reporting delays is shown in Fig. 4.

Priors. We used β ∼ Uniform(0, 0.5) and γ ∼ Uniform(0, 0.5), but rejected samples where
γ > β as frequently the number of infections stayed near zero (as the recovery rate is greater
than the infection rate).

CS
Model Description. The CS model simulates cancer and stromal cell development on a 2D plane.
The total number of cells N c, number of unobserved parents Np, and the number of daughter
cells for each parent Nd

i are sampled

N c ∼ Poisson(λc),

Np ∼ Poisson(λp),

Nd
i ∼ Poisson(λd), i = 1, . . . , Np,

where λc, λp and λd are the three Poisson rate parameters we attempt to infer. The cell positions
{ci}N

c

i=1 and parent positions {pi}N
p

i=1 are generated uniformly on the 2D plane (i.e. as two
homogeneous point processes). Let ri represent the euclidean distance from parent pi to its
Nd

i -th nearest cell. ri is the affected radius, such that cells are assigned to be cancerous if they
fell on or within this distance of pi. We used summary statistics based on cell type counts and
distances, as described in Section 4.1. In order to efficiently calculate the distances, we made use
of the Numba just-in-time compiler for Python (Lam et al., 2015). The distance based metrics
(Mean Min Dist and Max Min Dist) were approximated empirically through sampling 50
stromal cells, as the full distance matrix was too expensive to compute.

Misspecification. For each parent, we sampled wi ∼ Bernoulli(0.75). If wi = 1, cancer cells
falling within 0.8ri of the corresponding parent pi were removed. An example of this is shown
in Fig. 9. This mimics necrosis that often occurs in the centre regions of tumours (see e.g.,
Jones-Todd et al., 2019).

Priors. λc ∼ Uniform(200, 1500), λp ∼ Uniform(3, 20), λd ∼ Uniform(10, 20).

C Hyperparameters
Flows. For q(x) we used a block neural autoregressive flow (De Cao et al., 2020), with a single
hidden layer of size 8D, where x ∈ RD. For q(θ | x) we used a neural spline flow (Durkan et al.,
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2019), defining the transform on the interval [−5, 5], using 10 spline segments, and 5 coupling
layers. For both flows we used a standard Gaussian base distribution. We used custom normalising
flow implementations using JAX (Bradbury et al., 2018) and Equinox (Kidger and Garcia, 2021),
which can be found at https://github.com/danielward27/flowjax. We found JAX flow
implementations alongside NumPyro (Phan et al., 2019) for performing HMC to be several orders of
magnitude faster than relying on Pytorch implementations and Pyro (Bingham et al., 2019).

Training. For both flow approximations, we used a batch size of 256, using 10% of the data as a
validation set. We trained for a maximum of 50 epochs, terminating training early if 5 consecutive
epochs occurred with no improvement in the validation loss. For the block neural autoregressive flow
q(x), we used a learning rate of 1 × 10−2, whereas for the neural spline flow q(θ | x) we used a
learning rate of 5× 10−4.

MCMC. We used 100,000 steps with 20,000 warm up steps. The trajectory length was set to 1, and
the target acceptance probability to 0.95 to increase the robustness of the MCMC algorithm. All other
hyperparameters were left to the defaults of the NumPyro Python package (Phan et al., 2019).

D Computational Resources
All experiments were performed on CPU, with a maximum of 8GB of RAM, using the com-
putational facilities of the Advanced Computing Research Centre, University of Bristol - http:
//www.bristol.ac.uk/acrc/.

E Additional Figures
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Figure 8: An example in which there is ‘indeterminacy’ in the inferred misspecification, where we
take p(x) to be a correlated Gaussian. (a) The denoised samples, compared to the observed data
and simulations. (b) The frequencies with which the different pairwise combinations occurred in
z ∼ p̂(z|y), inferred during denoising. The results suggest a very low probability of both being well
specified, despite reasonable probabilities of either x1 or x2 (exclusively) being well-specified, or both
being misspecified. Despite the strong evidence for misspecification, the source of misspecification
cannot be determined without further information.
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Figure 9: Example of a raw observation for the CS task, compared to the underlying simulation
prior to corruption. In the core region of some tumours for the observed data, cancer cells have been
removed, artificially mimicking necrosis. See Appendix B for more information.
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Figure 10: Pair plot of the denoised data for the Gaussian Linear task, corresponding to the example
shown in Section 5.
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Figure 11: Pair plot of the posterior Gaussian Linear task, corresponding to the example shown in
Section 5.
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Figure 12: Pair plot of the denoised data for the SIR task, corresponding to the example shown in
Section 5. Note that the observed data point obscures the denoised data along many axes, due to
the shrinkage effect of the spike and slab error model. See Section 4.1 for the summary statistic
definitions.

N Stromal

N Cancer

Mean Min Dist

N Stromal

Max Min Dist

N Cancer Mean Min Dist Max Min Dist

Simulations
Denoised
Observed

Figure 13: Pair plot of the denoised data for the CS task, corresponding to the example shown in
Section 5. See Section 4.1 for the summary statistic definitions.
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Figure 14: RNPE and NPE under increasing misspecification for the Gaussian task. Note that at
σ2 = 4, NPE failed to put significant mass within ±4 standard deviations of the true posterior mean.
The “True" posterior is given by the posterior under the true data generating process model.
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