
A Boosting Approach to Reinforcement Learning

Nataly Brukhim
Princeton University

nbrukhim@cs.princeton.edu

Elad Hazan
Princeton University
Google AI Princeton

ehazan@cs.princeton.edu

Karan Singh
Carnegie Mellon University
karansingh@cmu.edu

Abstract

Reducing reinforcement learning to supervised learning is a well-studied and
effective approach that leverages the benefits of compact function approximation
to deal with large-scale Markov decision processes. Independently, the boosting
methodology (e.g. AdaBoost) has proven to be indispensable in designing efficient
and accurate classification algorithms by combining inaccurate rules-of-thumb.
In this paper, we take a further step: we reduce reinforcement learning to a sequence
of weak learning problems. Since weak learners perform only marginally better
than random guesses, such subroutines constitute a weaker assumption than the
availability of an accurate supervised learning oracle. We prove that the sample
complexity and running time bounds of the proposed method do not explicitly
depend on the number of states.
While existing results on boosting operate on convex losses, the value function
over policies is non-convex. We show how to use a non-convex variant of the
Frank-Wolfe method for boosting, that additionally improves upon the known
sample complexity and running time even for reductions to supervised learning.

1 Introduction

In reinforcement learning, Markov decision processes (MDP) model the mechanism of learning from
rewards, as opposed to examples. Although the case of tabular MDPs is well understood, the main
challenge in applying RL in the real-world is the size of the state space in practical domains.

This challenge of finding efficient and provable algorithms for MDPs with large state space is the
focus of our study. Various techniques have been suggested and applied to cope with very large
MDPs. One class of approaches attempts to approximate either the value or the transition function of
the underlying MDP by using a parametric function class. Such approaches invariably make strong
realizability assumptions to produce global optimality guarantees. Another class of approaches,
so-called direct methods, produces a near-optimal policy that maximizes the expected return from a
given policy class. To deal with the challenge of large (possibly innumerable) policy classes, a popular
strategy [24] is to the frame policy search as a sequence of supervised learning problems. Such
approaches yield global optimality guarantees under state coverage assumptions without reliance on
realizability, and have inspired practical adaptations for sampling-based policy search.

In this paper, we study another methodology to derive provable algorithms for reinforcement learning:
ensemble methods for aggregating weak or approximate algorithms into substantially more accurate
solutions. Our proposal extends the methodology of boosting, typically used to solve supervised
learning instances [32], to reinforcement learning. A typical boosting algorithm (e.g. AdaBoost)

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Supervised weak learner Online weak learner

Episodic model 1/α4ε5 1/α2ε3

Rollouts w. ν-resets 1/α4ε6 1/α2ε4

Table 1: Sample complexity of the proposed algorithms for different α-weak learning models
(supervised & online) and modes of accessing the MDP (rollouts & rollouts with reset distribution ν),
in terms of ϵ and α, suppressing other terms. This work is the first to introduce a reduction of RL to
weak supervised learning. See Theorem 7 for details.

Supervised strong learner

This work (Corollary 8) CPI [24]

Episodic model 1/ε3 1/ε4

Rollouts w. ν-resets 1/ε4 1/ε4

Table 2: Compared to previous work [24], the table shows sample complexity of the proposed
algorithm for a strong (α = 1) supervised learning model and different modes of accessing the MDP.

iteratively constructs a near-optimal classifier by combining computationally cheap, yet inaccurate
rules-of-thumb. Unlike RL reductions to supervised learning which assume the existence of an
efficient and accurate classification or regression procedure, the proposed algorithms builds on
learning algorithms that perform only ever-so-slightly better than a random guess, and which thus
may be produced cheaply both in computational and statistical terms.

Concretely, we assume access to a weak learner: an efficient sample-based procedure that is capable
of generating an approximate solution to any weighted multi-class objective over a fixed policy class.
We describe an algorithm that iteratively calls this procedure on carefully constructed new objectives,
and aggregates the solution into a single policy. We prove that after sufficiently many iterations, our
resulting policy has competitive global gurantees on performacnce. Interestingly, unlike boosting
algorithms for regression and classification, our resulting aggregation of weak learners is non-linear.

1.1 Challenges and techniques

Reinforcement learning is quite different from supervised learning and several difficulties have to be
circumvented for boosting to work. Among the challenges that the reinforcement learning setting
presents, consider the following,

(a) The value function is not a convex or concave function of the policy. This is true even in the
tabular case, and even more so if we use a parameterized policy class.

(b) The transition matrix is unknown, or prohibitively large to manipulate for large state spaces.
This means that even evaluation of a policy cannot be exact, and can only be computed
approximately.

(c) It is unrealistic to expect a weak learner that attains near-optimal value for a given linear
objective over the policy class. At most one can hope for a multiplicative and/or additive
approximation of the overall value.

Our approach overcomes these challenges by applied several new as well as recently developed
techniques. To overcome the nonconvexity of the value function, we use a novel variant of the
Frank-Wolfe optimization algorithm that simultaneously delivers on two guarantees. First, it finds
a first order stationary point with near-optimal rate. Secondly, if the objective happens to admit a
certain gradient domination property, an important generalization of convexity, it also guarantees near
optimal value. The application of the nonconvex Frank-Wolfe method is justified due to previous
recent investigation of the policy gradient algorithm [2, 1], which identified conditions under which
the value function is gradient dominated.

2

The second information-theoretic challenge of the unknown transition function is overcome by careful
algorithmic design: our boosting algorithm requires only samples of the transitions and rewards,
obtained by rollouts on the MDP.

The third challenge is perhaps the most difficult to overcome. Thus far, the use of the Frank-Wolfe
method in reinforcement learning did not include a multiplicative approximation, which is critical for
our application. We adapt the techniques used for boosting in online convex optimization [19] with
a multiplicative weak learner to our setting, by non-linearly aggregating (using a 2-layer network)
the weak learners. This aspect is perhaps of general interest to boosting algorithm design, which is
mostly based on linear aggregation.

1.2 Our contributions

Our main contribution is a novel efficient boosting algorithm for reinforcement learning. Our
techniques apply in various settings and the sample complexity bounds of all of our results are
summarized in Tables 1 and 2.

The input to this algorithm is a weak learning method capable of approximately solving a weighted
multi-class problem instance over a certain policy class. The output of the algorithm is a policy which
does not belong to the original class considered, hence being an instance of improper learning. It is
rather a non-linear aggregation of policies from the original class, according to a two-layer neural
network. This is a result of the two-tier structure of our algorithm: an outer loop of non-convex
Frank-Wolfe method, and an inner loop of online convex optimization based boosting. The final
policy comes with provable global optimality guarantees.

Beyond novelty of techniques, an important contribution (Table 1) of our work is to highlight the
quantitative difference in guarantees that depend on the mode of accessing the MDP (episodic rollouts
vs. access to an exploratory reset distrbution) and the nature of the weak learners (online vs statistical),
thus indicating that some algorithmic choices may be preferable compared to others in terms of speed
of convergence and sample complexity.

As with existing reductions to supervised learning [24], these global convergence guarantees happen
under appropriate state coverage assumptions either via access to a reset distribution that has some
overlap with the state distribution of the optimal policy, or by constraining the policy class to policies
that explore sufficiently. Yet another contribution of our work is to show an improved sample
complexity result in the latter setting, even when considering reductions to supervised learning
instances. This improvement in convergence in well-studied settings is documented in Table 2.

1.3 Related work

Reinforcement learning approaches for dealing with large-scale MDPs rely on function approximation
[35]. Such function approximation may be performed on the underlying conditional probability of
transition (e.g. [34, 21]) or the value function (e.g. [37, 36]). The provable guarantees in such methods
come at the cost of strong realizability assumptions. In contrast, the so-called direct approaches
attempt policy search over an appropriate policy class [2, 1], and rely on making making incremental
updates, such as variants of Conservative Policy Iteration (CPI) [24, 33, 4], and Policy Search by
Dynamic Programming (PSDP)[6]. These provide convergence guarantees under appropriate state
coverage assumptions comparable to ones made in this work.

Our boosting approach for provable RL builds on the vast literature of boosting for supervised learning
[32], and recently online learning [27, 12, 13, 7, 22, 23]. One of the crucial techniques important for
our application is the extension of boosting to the online convex optimization setting, with bandit
information [10], and critically with a multiplicative weak learner [19]. This latter technique implies
a non-linear aggregation of the weak learners. Non-linear boosting was only recently investigated in
the context of classification [5], where it was shown to potentially enable significantly more efficient
boosting. Another work on boosting in the context of control of dynamical systems [3]. However,
this work critically requires knowledge of the underlying dynamics (transitions) and makes convexity
assumptions, which we do not, and cannot cope with a multiplicative approximate weak learner.

The Frank-Wolfe algorithm is extensively used in machine learning, see e.g. [20], references therein,
and recent progress in stochastic Frank-Wolfe methods [16, 28, 11, 39]. Recent literature has applied
a variant of this algorithm to reinforcement learning in the context of state space exploration [18].

3

2 Preliminaries

Optimization. We say that a differentiable function f : K 7→ R over some domain
K ⊂ Rd is L-smooth with respect to some norm ∥ · ∥∗ if for every x, y ∈ K we have∣∣f(y)− f(x)−∇f(x)⊤(y − x)

∣∣ ≤ L
2 ∥x − y∥2∗. We define the projection Γ : R|A| → ∆A,

with respect to a set A, where ∆A denotes the probability simplex over A. For any x ∈ R|A|,
Γ[x] = argminy∈∆A

∥x − y∥. An important generalization of the property of convexity we use
henceforth is that of gradient domination.

Definition 1 (Gradient Domination). A function f : K → R is said to be (κ, τ,K1,K2)-locally
gradient dominated (around K1 by K2) if for all x ∈ K1, it holds that

max
y∈K

f(y)− f(x) ≤ κ · max
y∈K2

{
∇f(x)⊤(y − x)

}
+ τ.

Markov decision process. An infinite-horizon discounted Markov Decision Process (MDP) M =
(S,A, P, r, γ, d0) is specified by: a state space S, an action space A, a transition model P where
P (s′|s, a) denotes the probability of immediately transitioning to state s′ upon taking action a at
state s, a reward function r : S ×A → [0, 1] where r(s, a) is the immediate reward associated with
taking action a at state s, a discount factor γ ∈ [0, 1); a starting state distribution d0 over S. For
any infinite-length state-action sequence (hereafter, called a trajectory), we assign the following
value V (ς = (s0, a0, s1, a1, . . .)) =

∑∞
t=0 γ

tr(st, at). The agent interacts with the MDP through
the choice of stochastic policy π : S → ∆A it executes. The execution of such a policy induces a
distribution over trajectories ς = (s0, a0, . . .) as P (ς|π) = d0(s0)

∏∞
t=0(P (st+1|st, at)π(at|st)).

Using this description we can associate a state V π(s) and state-action Qπ(s, a) value function with
any policy π. For an arbitrary distribution d over S, define:

Qπ(s, a) = E

[∞∑
t=0

γtr(st, at)
∣∣∣ π, s0 = s, a0 = a

]
,

V π(s) = Ea∼π(·|s) [Q
π(s, a)|π, s] , V π

d = Es0∼d [V
π(s)|π] .

Here the expectation is with respect to the randomness of the trajectory induced by π in M. When
convenient, we shall use V π to denote V π

d0
, and V ∗ to denote maxπ V

π .

Similarly, to any policy π, one may ascribe a (discounted) state-visitation distribution dπ = dπd0
.

dπd (s) = (1− γ)

∞∑
t=0

γt
∑

ς:st=s

P (ς|π, s0 ∼ d)

Modes of Accessing the MDP. We henceforth consider two modes of accessing the MDP, that are
standard in the reinforcement learning literature, and provide different results for each.

The first natural access model is called the episodic rollout setting. This mode of interaction allows
us to execute a policy, stop and restart at any point, and do this multiple times.

Another interaction model we consider is called rollout with ν-restarts. This is similar to the
episodic setting, but here the agent may draw from the MDP a trajectory seeded with an initial state
distribution ν ̸= d0. This interaction model was considered in prior work on policy optimization
[24, 2]. The motivation for this model is two-fold: first, ν can be used to incorporate priors (or
domain knowledge) about the state coverage of the optimal policy; second, ν provides a mechanism
to incorporate exploration into policy optimization procedures.

2.1 Weak learning

Our boosting algorithms henceforth call upon weak learners to generate weak policies. We formalize
the notion of a weak learner next. We consider two types of weak learners, and give different
end results based on the different assumptions: weak supervised and weak online learners. In the
discussion below, let πRand be a uniformly random policy, i.e. ∀(s, a) ∈ S×A, πRand(a|s) = 1/|A|.
The formal definition and results for the online setting are deferred to the appendix. In what follows
we define the supervised weak learning model.

4

The natural way to define weak learning is an algorithm whose performance is always slight better
than that of random policy, one that chooses an action uniformly at random at any given state.
However, in general no learner can outperform a random learner over all label distributions. This
motivates the literature on agnostic boosting [25, 9, 19] that defines a weak learner as one that can
approximate the best policy in a given policy class.
Definition 2 (Weak Supervised Learner). Let α ∈ (0, 1]. Consider a class L of linear loss functions
ℓ : RA → R, a family D of distributions that are supported over S × L, and policy class Π. A weak
supervised learning algorithm, for every ε, δ > 0, given m(ε, δ) = log |W|

ε2 log 1
δ samples Dm from

any distribution D ∈ D outputs a policy W(Dm) ∈ Π such that with probability 1− δ,

E(s,ℓ)∼D
[
ℓ(W(Dm))

]
≤ α min

π∗∈Π
E(s,ℓ)∼D

[
ℓ(π∗(s))

]
+ (1− α) E(s,ℓ)∼D

[
ℓ(πRand(s))

]
+ ε.

Note that the weak learner outputs a policy in Π which is approximately competitive against the class
Π. As an additional relaxation, instead of requiring that the weak learning guarantee holds for all
distributions, in our setup, it will be sufficient that the weak learning assumption holds over natural
distributions. Specifically, we define a class of natural distributions D, such that D ∈ D if and only if
there exists some π ∈ Π such that, D(s) =

∫
ℓ
D(s, ℓ)dµ(ℓ) = dπ(s). In particular, while a natural

distribution may have arbitrary distribution over labels, its marginal distribution over states must be
realizable as the state distribution of some policy in Π over the MDP M. Therefore, the complexity
of weak learning adapts to the complexity of the MDP itself. As an extreme example, in stochastic
contextual bandits where policies do not affect the distribution of states (say d0), it is sufficient that
the weak learning condition holds with respect to all couplings of a single distribution d0.

3 Algorithm & Main Results

In this section we describe our RL boosting algorithm. Here we focus on the case where a supervised
weak learning is provided. The online weak learners variant of our result is detailed in the appendix.
We next define several definitions and algorithmic subroutines required for our method.

3.1 Policy aggregation

For a base class of policies Π, our algorithm incrementally builds a more expressive policy class by
aggregating base policies via both linear combinations and non-linear transformations. In effect, the
algorithm produces a finite-width depth-2 circuit over some subset of the base policy class. That
is, our approach can be thought of as an aggregation of base policies, which forms a 2-layer neural
network, as depicted in Figure 1. The leaves of the tree are the policies π ∈ Π the base policy class.
These are then linearly aggregated to form the first layer of the tree, denoted π̃1, π̃2 in Figure 1.

Next, each linear combination of policies in the overall aggregation undergoes a projection operation.
The projection may be viewed as a non-linear activation function, such as ReLU, in deep learning
terms. Note that the projection of any function from S to R|A| produces a policy, i.e. a mapping from
states to distributions over actions. In the analysis of our algorithm we give a particular projection
operation Γ[·] which allows us to yield the desired guarantees.

Definition 3 (Policy Projection). Given π̃ : S → R|A|, define a projected policy π = Γ[π̃] to be a
policy such that simultaneously for all s ∈ S, it holds that π(·|s) = Γ [π̃(s)] .

Definition 4 (Policy Tree). A Policy Tree Π ⊆ S → ∆A with respect to Π ⊆ S → ∆A some base
policy class, and N,T ∈ N, is a linear combination of T projected policies Γ[π̃], where each π̃ is a
linear combination of N base policies π ∈ Π.

This final definition describes the set of possible outputs of the boosting procedure. It is important
that the policy that the boosting algorithm outputs can be evaluated efficiently. In the appendix we
show it is indeed the case (see Lemma 12). Hereafter, we refer to a Policy Tree with respect to Π, N
and T , as Π for N,T = O(poly(|A|, (1− γ)−1, ε−1, α−1, log δ−1)) specified later.

3.2 Main results

Next, we give the main results of our RL boosting algorithm via weak supervised learning, specified
in Algorithm 1.

5

π̄

Γ[π̃1]

π̃1

π1 π2 π3

Γ[π̃2]

π̃2

π4 π5 π6

A Policy Tree π̄

Figure 1: The figure illustrates a Policy Tree hierarchy (see Definition 4), output of the boosting
procedure specified in Algorithm 1. Specifically, it is obtained by setting N = 3 on the inner loop of
Internal Boost (Algorithm 2), and T = 2 on the main booster (Algorithm 1). Overall we get all base
policies π1, ..., π6 ∈ Π on the lower level, to form the Policy Tree π̄ ∈ Π.

Algorithm 1 RL Boosting
1: Input: number of iterations T , initial state distribution µ, and P,N,M parameters for Internal

Boost.
2: Initialize a policy π0 ∈ Π arbitrarily.
3: for t = 1 to T do
4: Run Internal Boost (Algorithm 2) with distribution µ and policy πt to obtain π′

t.
5: Update πt = (1− η1,t)πt−1 + η1,tπ

′
t.

6: end for
7: Run each policy πt for P rollouts to compute an empirical estimate V̂ πt of the expected return.
8: return π̄ := πt′ where t′ = argmaxt V̂

πt .

To state the results, we need the following definitions. The first generalizes the policy completeness
notion from [33]. It may be seen as the policy-equivalent analogue of inherent bellman error [29].
Intuitively, it measures the degree to which a policy in Π can best approximate the bellman operator
in an average sense with respect to the state distribution induced by a policy from Π.

Definition 5 (Policy Completeness). For any initial state distribution µ, and policy classes Π,Π,
define Eµ = maxπ∈Π minπ∗∈Π Es∼dπ

µ

[
maxa∈A Qπ(s, a)−Qπ(s, ·)⊤π∗(·|s)

]
.

Definition 6 (Distribution Mismatch). Let π∗ = argmaxπ V
π, and ν a fixed initial state dis-

tribution (see section 2). Define the following distribution mismatch coefficients: C∞ =
maxπ∈Π

∥∥dπ∗
/dπ
∥∥
∞ , D∞ =

∥∥dπ∗
/ν
∥∥
∞ .

The above notion of the distribution mismatch coefficient is often useful to characterize the exploration
problem faced by policy optimization algorithms. We now give the main result for the output of our
RL boosting algorithm, assuming supervised weak learners.

Theorem 7. Algorithm 1 samples T (MN + P) episodes of length Õ(1
1−γ) with probability 1− δ.

In the episodic model, with µ = d0, for η1,t = min{1, 2C∞
t }, T = O

(
C2

∞
(1−γ)3ε

)
, N =

(
16|A|C∞
(1−γ)2αϵ

)2
,

M = m
(

(1−γ)2αε
C∞|A| , δ

NT

)
, with probability 1− δ, V ∗ − V π ≤ C∞E

1−γ + ε.

In the ν-reset model, with µ = ν, for η1,t =
√

8γ(1−γ)2

|A|2T , T =
8D2

∞
(1−γ)6ε2 , N =

(
16|A|D∞
(1−γ)3αϵ

)2
,

M = m
(

(1−γ)3αε
8|A|D∞

, δ
2NT

)
, with probability 1− δ, V ∗ − V π ≤ D∞Eν

(1−γ)2 + ε.

Sample complexities: If m(ε, δ) = log |W|
ε2 log 1

δ for some measure of weak learning complexity |W|,

6

Algorithm 2 Internal Boost
1: Input: number of iterations N , number of episodes M , initial policy π, initial state distribution

µ.
2: Set π̃0 to be an arbitrary policy in Π.
3: for n = 1 to N do
4: Execute π with µ via Algorithm 3 for M episodes, to get Dn = {(si, Q̂i)

M
i=1}.

5: Modify Dn to produce a new dataset D′
n = {(si, fi)}Mi=1, such that for all i ∈ [m]:

fi =
1

β
(yi − π̃n(·|si)) , yi = argmin

y∈R|A|
{−Q̂⊤

i y +G min
z∈∆A

∥z − y∥+ ∥π̃n(·|si)− y∥2

2β
}

where G = A
1−γ , β = 2γ

(1−γ)3 and fi, Q̂i ∈ R|A|.
6: Let An be the policy chosen by the weak learning oracle when given data set D′

t,n.
7: Update

π̃n = (1− η2,n)π̃n−1 +
η2,n
α

An.

8: end for
9: return Γ [π̃N].

Algorithm 3 Trajectory Sampler: samples a state s ∼ dπ , and an unbiased estimate of Qπ
s

1: Sample state s0 ∼ µ, action a′ ∼ U(A) uniformly.
2: Sample s ∼ dπ as follows: at every timestep h, with probability γ, act according to π; else,

accept sh as the sample and proceed to Step 3.
3: Take action a′ at state sh, then continue to execute π, and use a termination probability of 1− γ.

Upon termination, set R(sh, a
′) as the undiscounted sum of rewards from time h onwards.

4: Define the vector Q̂π
sh

, such that for all a ∈ A, Q̂π
sh
(a) = |A| ·R(sh, a

′) · Ia=a′ .
5: return (sh, Q̂π

sh
).

the algorithm samples Õ
(

C6
∞|A|4 log |W|
(1−γ)11α4ε5

)
episodes in the episodic model, and Õ

(
D6

∞|A|4 log |W|
(1−γ)18α4ε6

)
in the ν-reset model.

Theorem 7 above pertains to the case where a weak learning algorithm is available. However, another
main result is given by considering the simpler approach of reduction of RL to a strong supervised
learning algorithm. In particular, when running our main boosting algorithm, we can replace the call
to Internal Boost (in Line 4 of Algorithm 1) with a call to a strong supervised learning algorithm. By
a similar analysis to that of Theorem 7 we obtain the following corollary.

Corollary 8. Let m(ε, δ) = log |W|
ε2 log 1

δ for some measure of weak learning complexity |W|. When
run with a supervised learning oracle (Definition 2 with α = 1, i.e. N = 1) as the Internal boosting,
Algorithm 1 samples Õ

(
C3

∞ log |W|
ε3

)
episodes in the episodic model, and Õ

(
D4

∞ log |W|
ε4

)
in the

ν-reset model, to guarantee V ∗ − V π ≤ C∞E
1−γ + ε with probability 1− δ in the episodic model and

V ∗ − V π ≤ D∞Eν

(1−γ)2 + ε in the ν-reset model.

We note that this result is an improvement over previous results in terms of sample complexity
requirement of the algorithm. In particular, in [24], Theorem 4.4 and Corollary 4.5 achieve the
same guarantee using O(1/ε4) samples regardless of the MDP access model. Briefly, CPI utilizes
1/ε2 calls to an ε-optimal supervised learning oracle (each call needing 1/ε2 samples) to reach a
ε-local optima of the value function. Under requisite state coverage assumptions, this translates to
ε-function value suboptimality. Indeed, such mode of analysis via first arguing for convergence to a
local optima for the CPI algorithm can be shown to be tight. The improvement in our case for the
episodic access model comes from the insight that it is possible to make direct claims on the function
value sub-optimality (second part of Theorem 9), bypassing the need for making a claim on the local
optimality, in the gradient-dominated case.

7

3.3 Trajectory sampler

In Algorithm 3 we describe an episodic sampling procedure, that is used in our sample-based RL
boosting algorithms described above. For a fixed initial state distribution µ, and any given policy
π, we apply the following sampling procedure: start at an initial state s0 ∼ µ, and continue to
act thereafter in the MDP according to any policy π, until termination. With this process, it is
straightforward to both sample from the state visitation distribution s ∼ dπ, and to obtain unbiased
samples of Qπ(s, ·); see Algorithm 3 for the detailed process.

4 Sketch of the analysis

Non-convex Frank-Wolfe. We give an abstract high-level procedural template that the previously
introduced RL boosters operate in. This is based on a variant of the Frank-Wolfe optimization
technique [15], adapted to non-convex and gradient dominated function classes (see Definition 1).
The Frank-Wolfe (FW) method assumes oracle access to a black-box linear optimizer, denoted O,
and utilizes it by iteratively making oracle calls with modified objectives, in order to solve the harder
task of convex optimization. Analogously, boosting algorithms often assume oracle access to a
”weak” learner, which are utilized by iteratively making oracle calls with modified objective, in order
to obtain a ”strong” learner, with boosted performance. In the RL setting, the objective is in fact
non-convex, but exhibits gradient domination. By adapting Frank-Wolfe technique to this setting, we
will in subsequent section obtain guarantees for the algorithms given in Section 3.Oracle: Denote by
O a black-box oracle to an (ϵ0,K2)-approximate linear optimizer over a convex set K ⊆ Rd such
that for any given v ∈ Rd, we have v⊤O(v) ≥ maxu∈K2

v⊤u− ϵ0.

Algorithm 4 Non-convex Frank-Wolfe
1: Input: T > 0, objective f , linear optimizer O, rate ηt.
2: Choose x0 ∈ K arbitrarily.
3: for t = 1, . . . , T do
4: Call zt = O(∇t−1), where ∇t−1 = ∇f(xt−1). Set xt = (1− ηt)xt−1 + ηtzt.
5: end for
6: return x̄ := xt′ where t′ = argmint ∇⊤

t (zt − xt).

Theorem 9. Let f : K → R be L-smooth in some norm ∥ · ∥∗, bounded for all x ∈ K, |f(x)| ≤ H
for some H > 0, and let the diameter of K in ∥ · ∥∗ be D. Then, for a (ϵ0,K2)-linear optimization

oracle O, and ηt = η =
√

4H
LD2T , the output x̄ of Algorithm 4 satisfies

max
u∈K2

∇f(x̄)⊤(u− x̄) ≤
√

2HLD2

T
+ ϵ0; max

x∗∈K
f(x∗)− f(x̄) ≤ 2κ2 max{LD2, H}

T
+ τ + κϵ0

Furthermore, if f is (κ, τ,K1,K2)-locally gradient-dominated and x0, . . . xT ∈ K1, then the output
x̄ of Algorithm 4 where ηt = min{1, 2κ

t } satisfies the bound on the right.

We sketch the high-level ideas of the proof of our main result, stated in Theorem 7, and refer the
reader to the appendix for the formal proof. We will establish an equivalence between RL Boosting
(Algorithm 1) and the variant of the Frank-Wolfe algorithm (Algorithm 4). This abstraction allows us
to obtain the novel convergence guarantees given in Theorem 7. Throughout the analysis, we use
the notation ∇πV

π to denote the gradient of the value function with respect to the |S| × |A|-sized
representation of the policy π, namely the functional gradient of V π .

Internal-boosting weak learners. The Frank-Wolfe algorithm utilizes an inner gradient optimization
oracle as a subroutine. To implement this oracle using approximate optimizers, we utilize yet another
variant of the FW method as “internal-boosting” for the weak learners, by employing an adapted
analysis of [19] that is stated in Claim 10 below. Let Dt be the distribution induced by the trajectory
sampler in round t.

Claim 10. Let β =
√
1/αN , η2,n = min{2/n, 1}. π′

t produced by Algorithm 1 satisfies

maxπ∈Π E(s,Q)∼Dt

[
Q⊤π(s)

]
− E(s,Q)∼Dt

[
Q⊤π′

t(s)
]

≤ (2|A|/(1− γ)α)
(
ε+ 2/

√
N
)
.

8

From weak learning to linear optimization, Next, we give an important observation which allows
us to re-state the guarantee in the previous subsection in terms of linear optimization over functional
gradients. The key observation here is that the expensive optimizing procedure for (∇πV

π)⊤π′,
which in particular requires iterating over all states in S, can be instead replaced with sampling from
an appropriate distribution D (via Algorithm 3). These sample pairs (s, Q̂π(s, ·)) could then be fed
to our weak learning algorithm, which guarantees generalization.
Lemma 11. Applying Algorithm 3 for any given policy π yields an unbiased estimate of the gradient,
such that for any π′, (∇πV

π
µ)⊤π′ = E

(s,Q̂π(s,·))∼D

[
Q̂π(s, ·)⊤π′(·|s)

]
/(1− γ), where π′(·|s) ∈ ∆A,

D is the distribution induced on the outputs of Algorithm 3, for the policy π and initial distribution µ.

5 Experiments

The primary contribution of the present work is theoretical. Nevertheless, we empirically test our
proposal with the experiment designed to elicit qualitative properties of the proposed algorithm,
instead of aiming to achieve the state-of-the-art. To validate our results, we check if the proposed
algorithm is indeed capable of boosting the accuracy of concrete instantiations of weak learners. We
use depth-3 decision trees, with the implementation adapted from Scikit-Learn [30], as our base
weak learner. This choice of weak learner is particularly suitable for boosting, because it is an
impoverished policy class in a representational sense and hence it is reasonable to expect that it may
do only slightly better than random guessing with respect to the classification loss. We consider the
performance of the boosting algorithm (Algorithm 1) across multiple rounds of boosting or number
of weak learners to that of supervised-learning-based policy iteration; the computational burden
of the algorithm scales linearly with the latter. Throughout all the experiments, we used η = 0.9.
To speed up computation, the plots below were generated by retaining the 3 most recent policies
of every iteration in the policy mixture. We evaluated these on the CartPole and the LunarLander
environments. The results demonstrate the proposed RL boosting algorithm succeeds in maximizing
rewards while using few weak learners (equivalently, within a few rounds of boosting).

Figure 2: Reward trajectory for the CartPole (left) and the LunarLander (right) environments of
the proposed boosting algorithm for N = 20, 50, 100 number of base weak learners is compared
to supervised-learning-based policy iteration (decision tree) above. The x-axis corresponds to T
number of iterations, and for each t ∈ [T], reward is computed over 100 episodes of interactions. The
confidence interval is plotted over 3 such runs.

6 Conclusions

Building on recent advances in boosting for online convex optimization and bandits, we have described
a boosting algorithm for reinforcement learning over large state spaces with provable guarantees. We
see this as a first attempt at using a tried-and-tested methodology from supervised learning to RL.

9

References
[1] Alekh Agarwal, Mikael Henaff, Sham Kakade, and Wen Sun. Pc-pg: Policy cover directed

exploration for provable policy gradient learning. arXiv preprint arXiv:2007.08459, 2020.

[2] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of
policy gradient methods: Optimality, approximation, and distribution shift. arXiv preprint
arXiv:1908.00261, 2019.

[3] Naman Agarwal, Nataly Brukhim, Elad Hazan, and Zhou Lu. Boosting for control of dynamical
systems. In International Conference on Machine Learning, pages 96–103. PMLR, 2020.

[4] Naman Agarwal, Brian Bullins, and Karan Singh. Variance-reduced conservative policy iteration.
arXiv preprint arXiv:2212.06283, 2022.

[5] Noga Alon, Alon Gonen, Elad Hazan, and Shay Moran. Boosting simple learners. arXiv
preprint arXiv:2001.11704, 2020.

[6] J Andrew Bagnell, Sham Kakade, Andrew Y Ng, and Jeff G Schneider. Policy search by
dynamic programming. In Advances in Neural Information Processing Systems, 2003.

[7] Alina Beygelzimer, Satyen Kale, and Haipeng Luo. Optimal and adaptive algorithms for online
boosting. In International Conference on Machine Learning, pages 2323–2331, 2015.

[8] Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual
bandit algorithms with supervised learning guarantees. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, pages 19–26. JMLR Workshop
and Conference Proceedings, 2011.

[9] Nataly Brukhim, Xinyi Chen, Elad Hazan, and Shay Moran. Online agnostic boosting via regret
minimization. In Advances in Neural Information Processing Systems, 2020.

[10] Nataly Brukhim and Elad Hazan. Online boosting with bandit feedback. In Algorithmic
Learning Theory, pages 397–420. PMLR, 2021.

[11] Lin Chen, Christopher Harshaw, Hamed Hassani, and Amin Karbasi. Projection-free online
optimization with stochastic gradient: From convexity to submodularity. In International
Conference on Machine Learning, pages 814–823, 2018.

[12] Shang-Tse Chen, Hsuan-Tien Lin, and Chi-Jen Lu. An online boosting algorithm with theoretical
justifications. In Proceedings of the 29th International Coference on International Conference
on Machine Learning, pages 1873–1880, 2012.

[13] Shang-Tse Chen, Hsuan-Tien Lin, and Chi-Jen Lu. Boosting with online binary learners for the
multiclass bandit problem. In International Conference on Machine Learning, pages 342–350,
2014.

[14] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections
onto the l 1-ball for learning in high dimensions. In Proceedings of the 25th international
conference on Machine learning, pages 272–279, 2008.

[15] Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval research
logistics quarterly, 3(1-2):95–110, 1956.

[16] Hamed Hassani, Mahdi Soltanolkotabi, and Amin Karbasi. Gradient methods for submodular
maximization. In Advances in Neural Information Processing Systems, pages 5841–5851, 2017.

[17] Elad Hazan. Introduction to online convex optimization. arXiv preprint arXiv:1909.05207,
2019.

[18] Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum
entropy exploration. In International Conference on Machine Learning, pages 2681–2691.
PMLR, 2019.

10

[19] Elad Hazan and Karan Singh. Boosting for online convex optimization. arXiv preprint
arXiv:2102.09305, 2021.

[20] Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In Interna-
tional Conference on Machine Learning, pages 427–435. PMLR, 2013.

[21] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pages 2137–
2143. PMLR, 2020.

[22] Young Hun Jung, Jack Goetz, and Ambuj Tewari. Online multiclass boosting. In Advances in
neural information processing systems, pages 919–928, 2017.

[23] Young Hun Jung and Ambuj Tewari. Online boosting algorithms for multi-label ranking. In
International Conference on Artificial Intelligence and Statistics, pages 279–287, 2018.

[24] Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning.
In In Proc. 19th International Conference on Machine Learning. Citeseer, 2002.

[25] Varun Kanade and Adam Kalai. Potential-based agnostic boosting. In Advances in neural
information processing systems, pages 880–888, 2009.

[26] Alessandro Lazaric and Rémi Munos. Hybrid stochastic-adversarial on-line learning. In
Conference on Learning Theory, 2009.

[27] Christian Leistner, Amir Saffari, Peter M Roth, and Horst Bischof. On robustness of on-line
boosting-a competitive study. In IEEE 12th International Conference on Computer Vision
Workshops, ICCV Workshops, pages 1362–1369. IEEE, 2009.

[28] Aryan Mokhtari, Hamed Hassani, and Amin Karbasi. Stochastic conditional gradient methods:
From convex minimization to submodular maximization. arXiv preprint arXiv:1804.09554,
2018.

[29] Rémi Munos and Csaba Szepesvári. Finite-time bounds for fitted value iteration. Journal of
Machine Learning Research, 9(5), 2008.

[30] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in python. the Journal of machine Learning research, 12:2825–2830,
2011.

[31] Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Online learning: Stochastic and
constrained adversaries. arXiv preprint arXiv:1104.5070, 2011.

[32] Robert E Schapire and Yoav Freund. Boosting: Foundations and Algorithms. MIT Press, 2012.

[33] Bruno Scherrer and Matthieu Geist. Local policy search in a convex space and conservative
policy iteration as boosted policy search. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 35–50. Springer, 2014.

[34] Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Model-based
rl in contextual decision processes: Pac bounds and exponential improvements over model-free
approaches. In Conference on learning theory, pages 2898–2933. PMLR, 2019.

[35] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In S. Solla, T. Leen, and
K. Müller, editors, Advances in Neural Information Processing Systems, volume 12. MIT Press,
2000.

[36] Yuanhao Wang, Ruosong Wang, and Sham M Kakade. An exponential lower bound for
linearly-realizable mdps with constant suboptimality gap. arXiv preprint arXiv:2103.12690,
2021.

11

[37] Gellert Weisz, Philip Amortila, Barnabás Janzer, Yasin Abbasi-Yadkori, Nan Jiang, and Csaba
Szepesvári. On query-efficient planning in mdps under linear realizability of the optimal
state-value function. arXiv preprint arXiv:2102.02049, 2021.

[38] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256, 1992.

[39] Jiahao Xie, Zebang Shen, Chao Zhang, Hui Qian, and Boyu Wang. Stochastic recursive
gradient-based methods for projection-free online learning. arXiv preprint arXiv:1910.09396,
2019.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] in the supplementary

material.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

12

A Notation: List of Symbols

Weak Learning and Boosting

α Weak learning parameter

T Number of boosting iterations

N Number of internal-boosting iterations

M Number of internal-boosting episodes

Γ[·] Policy projection

Π Policy class

Π Policy-Tree class (w.r.t Π, Γ, N and T)

Markov Decision Process

S State space

A Action space

∆A Probability simplex over actions

Qπ(s, a) Q function

V π(s) Value function

d(s0) Initial state distribution

dπd (s) State-visitation distribution w.r.t π, d

γ Discount factor

Eµ(Π,Π) Policy completeness

µ, ν Used for different initial state distributions

C∞ Distribution mismatch if µ = d0

D∞ Distribution mismatch if µ = ν ̸= d0

Optimization

K Decision set

L Smoothness of the objective

H Upper bound on the range of function value

D Upper bound on Euclidean diameter

B Appendix

It is important that the policy that the boosting algorithm outputs can be evaluated efficiently. Towards
that end, we give the following claim.

Claim 12. For any π ∈ Π(Π, N, T), π(·|s) for any s ∈ S can be evaluated using TN base policy
evaluations and O(T × (NA+A logA)) arithmetic and logical operations.

Proof. Since π ∈ Π(Π, N, T), it is composed of TN base policies. Producing each aggregated
function takes NA additions and multiplications; there are T of these. Each projection takes time
equivalent to sorting |A| numbers, due to a water-filling algorithm [14]; these are also T in number.
The final linear transformation takes an additional TA operations.

13

C RL Boosting via Weak Online Learning

The second model of weak learning we consider requires a stronger assumption, but will give us
better sample and oracle complexity bounds henceforth.
Definition 13 (Weak Online Learner). Let α ∈ (0, 1). Consider a class L of linear loss functions
ℓ : RA → R. A weak online learning algorithm, for every M > 0, incrementally for each timestep
computes a policy Wm ∈ Π and then observes the state-loss pair (s, ℓt) ∈ S × L such that

M∑
m=1

ℓm(Wm(sm)) ≥ α max
π∗∈Π

M∑
m=1

ℓm(π∗(sm)) + (1− α)

M∑
m=1

ℓm(πRand(sm))−RW(M).

Assumption 1 (Weak Online Learning). The booster has access to a weak online learning oracle
(Definition 13) over the policy class Π, for some α ∈ (0, 1).
Remark 14. A similar remark about natural distributions applies to the online weak learner. In
particular, it is sufficient the guarantee in 13 holds for arbitrary sequence of loss functions with
high probability over the sampling of the state from dπ for some π ∈ Π. Although stronger than
supervised weak learning, this oracle can be interpreted as a relaxation of the online weak learning
oracle considered in [9, 10, 19]. A similar model of hybrid adversarial-stochastic online learning was
considered in [31, 26, 8]. In particular, it is known [26] that unlike online learning, the capacity of a
hypothesis class for this model is governed by its VC dimension (vs. Littlestone dimension).

Algorithm 5 RL Boosting via Weak Online Learning
1: Initialize a policy π0 ∈ Π arbitrarily.
2: for t = 1 to T do
3: Initialize online weak learners W1, . . .WN .
4: for m = 1 to M do
5: Execute πt−1 once with initial state distribution µ via Algorithm 3, to get (st,m, Q̂t,m).
6: Choose π̃t,m,0 ∈ Π arbitrarily.
7: for n = 1 to N do
8: Set π̃t,m,n = (1− η2,n)π̃t,m,n−1 +

η2,n

α Wn.
9: end for

10: Pass to each Wn the following loss linear ft,m,n:

ft,m,n =
1

β
(yt,m,n − π̃t,m,n(·|si)) .

where G = A
1−γ , β = 2γ

(1−γ)3 and fi, Q̂i ∈ R|A|

yi = argmin
y∈∆A

{−Q̂⊤
t,my +G min

z∈∆A

∥z − y∥+ ∥π̃t,m,n(·|st,m)− y∥2

2β
}

11: end for
12: Declare π′

t =
1
M

∑M
m=1 Γ [π̃t,m,N].

13: Choose η1,t = min{1, 2C∞
t } if µ = d0 else set η1,t =

√
8γ(1−γ)2

|A|2T .
14: Update πt = (1− η1,t)πt−1 + η1,tπ

′
t.

15: end for
16: Run each policy πt for P rollouts to compute an empirical estimate V̂ πt of the expected return.
17: return π̄ := πt′ where t′ = argmaxt V̂

πt .

Theorem 15. Algorithm 5 samples TM episodes of length 1
1−γ log TM

δ with probability 1− δ. In

the episodic model, Algorithm 5 guarantees as long as T =
16C2

∞
(1−γ)3ε , N =

(
16|A|C∞
(1−γ)2αϵ

)2
, M =

max
{

1000|A|2C2
∞

(1−γ)4ε2α2 log2 Tδ, 8|A|C∞RW(M)
(1−γ)2αε

}
,µ = d0, we have with probability 1− δ

V ∗ − V π ≤ C∞
E(Π,Π)

1− γ
+ ε

14

In the ν-reset model, Algorithm 1 guarantees as long as T =
100D2

∞
(1−γ)6ε2 , N =

(
20|A|D∞
(1−γ)3αϵ

)2
, M =

max

{(
40|A|D∞
(1−γ)3αε log

T
δ

)2
, 10|A|D∞RW(M)

(1−γ)3αε

}
,µ = ν, we have with probability 1− δ

V ∗ − V π ≤ D∞
Eν(Π,Π)

(1− γ)2
+ ε

If RW(M) =
√
M log |W| for some measure of weak learning complexity |W|, the algorithm

samples Õ
(

C4
∞|A|2 log |W|
(1−γ)7α2ε3

)
episodes in the episodic model, and Õ

(
D4

∞|A|2 log |W|
(1−γ)12α2ε4

)
in the ν-reset

model.

D Analysis for Boosting with Weak Supervised Learning (Proof of
Theorem 7)

Theorem (Formal version of Theorem 7). Algorithm 1 samples TMN episodes of length
1

1−γ log TMN
δ with probability 1 − δ. In the episodic model, Algorithm 1 guarantees as long

as T =
16C2

∞)
(1−γ)3ε , N =

(
16|A|C∞
(1−γ)2αϵ

)2
, M = m

(
(1−γ)2αε
8C∞|A| ,

δ
NT

)
,µ = d0, we have with probability

1− δ

V ∗ − V π ≤ C∞
E(Π,Π)

1− γ
+ ε

In the ν-reset model, Algorithm 1 guarantees as long as T =
8D2

∞
(1−γ)6ε2 , N =

(
16|A|D∞
(1−γ)3αϵ

)2
, M =

m
(

(1−γ)3αε
8|A|D∞

, δ
2NT

)
,µ = ν, we have with probability 1− δ

V ∗ − V π ≤ D∞
Eν(Π,Π)

(1− γ)2
+ ε

If m(ε, δ) = log |W|
ε2 log 1

δ for some measure of weak learning complexity |W|, the algorithm samples

Õ
(

C6
∞|A|4 log |W|
(1−γ)11α4ε5

)
episodes in the episodic model, and Õ

(
D6

∞|A|4 log |W|
(1−γ)18α4ε6

)
in the ν-reset model.

Proof of Theorem 7. The broad scheme here is to utilize an equivalence between Algorithm 1 and
Algorithm 4 on the function V π (or V π

ν in the ν-reset model), to which Theorem 9 applies.

To this end, firstly, note V π is 1
1−γ -bounded. Define a norm ∥ · ∥∞,1 : R|S|×|A| → R as ∥x∥1,∞ =

maxs∈S

∑
a∈A |xs,a|. Further, observe that for any policy π : S → ∆A, ∥π∥∞,1 = 1. The following

lemma specifies the smoothness of V π in this norm.

Lemma 16. V π is 2γ
(1−γ)3 -smooth in the ∥ · ∥∞,1 norm.

To be able to interpret Algorithm 1 as an instantiation of the algorithmic template Algorithm 4 presents,
we need to show that π′

t (Line 3-10) serves as an approximate linear optimizer for ∇V πt−1 . This will
imply that the iterates produced by the two algorithms coincide. Indeed, Claim 17 demonstrates that
π′
t serves a linear optimizer over gradients of the function V π; the suboptimality specifies ϵ0.

Claim 17. Let β =
√

1
αN , and η2,n = min{ 2

n , 1}. Then, for any t, π′
t produced by Algorithm 1

satisfies with probability 1− δ

max
π∈Π

(∇V πt−1
µ)⊤(π − π′

t) ≤ 2|A|
(1− γ)2α

(
2√
N

+ εW

)
Finally, observe that it is by construction that πt ∈ Π. Therefore, in terms of the previous section, K
is the class of all policies, K1 = Π, K2 = Π.

In the episodic model, we wish to invoke the second part of Theorem 9. The next lemma establishes
gradient-domination properties of V π to support this.

15

Lemma 18. V π is
(
C∞, 1

1−γC∞E(Π,Π),Π,Π
)

-gradient dominated, i.e. for any π ∈ Π:

V ∗ − V π ≤ C∞

(
1

1− γ
E(Π,Π) + max

π′∈Π
(∇V π)⊤(π′ − π)

)
Deriving κ, τ from the above lemma along with ϵ0 from Claim 17, as a consequence of the second
part of Theorem 9, we have with probability 1−NTδ

V ∗ − V π̄ ≤ C∞
E(Π,Π)

1− γ
+

4C2
∞

(1− γ)3T
+

4|A|C∞

(1− γ)2α
√
N

+
2|A|C∞

(1− γ)2α
εW .

Similarly, in the ν-reset model, the first part of Theorem 9 provides a local-optimality guarantee for
V π
ν . Lemma 19 provides a bound on the function-value gap (on V π) provided such local-optimality

conditions.

Lemma 19. For any π ∈ Π, we have

V ∗ − V π ≤ 1

1− γ
D∞

(
1

1− γ
Eν(Π,Π) + max

π′∈Π
(∇V π

ν)⊤(π′ − π)

)
.

Again, using the bound on maxπ′∈Π(∇V π̄
ν)⊤(π′ − π̄) Theorem 9 provides, we have that with

probability 1− 2NTδ

V ∗ − V π̄ ≤ D∞Eν(Π,Π)

(1− γ)2
+

2D∞

(1− γ)3
√
T

+
2|A|D∞

(1− γ)3α

(
2√
N

+ εW

)
+

48|A|D∞

(1− γ)3
√
P

log
1

δ

E Analysis for Boosting with Weak Online Learning (Proof of Theorem 15)

Proof of Theorem 15. Similar to the proof of Theorem 7, we establish an equivalence between
Algorithm 1 and Algorithm 4 on the function V π (or V π

ν in the ν-reset model), to which Theorem 9
applies provided smoothness (see Lemma 16).

Indeed, Claim 20 demonstrates π′
t serves a linear optimizer over gradients of the function V π, and

provides a bound on ϵ0. As before, observe that it is by construction that πt ∈ Π.

Claim 20. Let β =
√

1
αN , and η2,n = min{ 2

n , 1}. Then, for any t, π′
t produced by Algorithm 5

satisfies with probability 1− δ

max
π∈Π

(∇V πt−1
µ)⊤(π − π′

t) ≤ 2|A|
(1− γ)2α

(
2√
N

+
RW(M)

M
+

√
16 log δ−1

M

)

In the episodic model, one may combine the second part of Theorem 9, which provides a bound on
function-value gap for gradient dominated functions, which Lemma 18 guarantees, to conclude with
probability 1− Tδ

V ∗ − V π̄ ≤ C∞E(Π,Π)

1− γ
+

4C2
∞(Π)

(1− γ)3T
+

4|A|C∞

(1− γ)2α
√
N

+
2|A|C∞

(1− γ)2α

RW(M)

M
+

8|A|C∞ log δ−1

(1− γ)2α
√
M

.

16

Similarly, in the ν-reset model, Lemma 19 provides a bound on the function-value gap provided
local-optimality conditions, which the first part of Theorem 9 provides for. Again, with probability
1− Tδ

V ∗ − V π̄ ≤ D∞Eν(Π,Π)

(1− γ)2
+

2D∞

(1− γ)3

(
1√
T

+
|A|
α

(2√
N

+
RW(M)

M
+

4 log δ−1

√
M

)
+

24|A|√
P

log
1

δ

)
.

F Proofs of Supporting Claims

F.1 Guarantees on the sampling algorithm

Proof of Lemma 11. Recall ∇πV
π denotes the gradient with respect to the |S| × |A|-sized represen-

tation of the policy π – the functional gradient. Then, using the policy gradient theorem [38, 35], it is
given by,

∂V π
µ

∂π(a|s)
=

1

1− γ
dπµ(s)Q

π(s, a). (1)

The following sources of randomness are at play in the sampling algorithm (Algorithm 3): the
distribution dπ (which encompasses the discount-factor-based random termination, the transition
probability, and the stochasticity of π), and the uniform sampling over A. For a fixed s, π, denote by
Qπ

s as the distribution over Q̂π(s, ·) ∈ RA, induced by all the aforementioned randomness sources.
To conclude the claim, observe that by construction

EQπ(s,·)[Q̂π(s, ·)|π, s] = Qπ(s, ·). (2)

F.2 Non-convex Frank-Wolfe method (Theorem 9)

Proof of Theorem 9. Non-convex general case. Note that for any timestep t, it holds due to smooth-
ness that

f(xt) = f(xt−1 + η(zt − xt−1)) (3)

≥ f(xt−1) + η∇⊤
t−1(zt − xt−1)− η2

L

2
D2. (4)

Let t′ = argmint f(xt)− f(xt−1). Note that by telescoping over function-value differences across
successive iterates, we get

f(xt′)− f(xt′−1) ≤
1

T

(
f(xT)− f(x0)

)
≤ 2H

T
.

Combining with (4), and plugging in η, we get

∇⊤
t′−1(zt′ − xt′−1) ≤ ηLD2/2 +

2H

Tη

≤
√

2LD2H

T
.

To conclude the claim for the non-convex general case, observe that since zt′ = O(∇t′−1), it follows
by the oracle definition that

max
u∈K2

∇⊤
t′−1u ≤ ∇⊤

t′−1zt′ + ϵ0.

17

Gradient-dominated case. Let x∗ = argmaxx∈K f(x) and let ht = f(x∗)− f(xt).

ht ≤ ht−1 − ηt∇⊤
t−1(zt − xt−1) + η2t

L

2
D2

(by smoothness)

≤ ht−1 − ηt max
y∈K2

ηt∇⊤
t−1(y − xt−1) + η2t

L

2
D2 + ηtϵ0

(by oracle guarantee)

≤ ht−1 −
ηt
κ
(f(x∗)− f(xt−1)) + η2t

L

2
D2 + ηt

(
ϵ0 +

τ

κ

)
(by gradient domination)

=
(
1− ηt

κ

)
ht−1 + η2t

L

2
D2 + ηt

(
ϵ0 +

τ

κ

)
.

The theorem then follows from the following claim.

Claim 21. Let C ≥ 1. Let gt be a H-bounded positive sequence such that

gt ≤
(
1− σt

C

)
gt−1 + σ2

tD + σtE.

Then choosing σt = min{1, 2C
t } implies gt ≤ 2C2 max{2D,H}

t + CE.

F.3 Smoothness of value function (Lemma 16)

Proof of Lemma 16. Consider any two policies π, π′. Using the Performance Difference Lemma
(Lemma 3.2 in [2], e.g.) and Equation ??, we have

|V π′
−V π −∇V π(π′ − π)|

=
1

1− γ

∣∣∣Es∼dπ′
[
Qπ(·|s)⊤(π′(·|s)− π(·|s)

]
− Es∼dπ

[
Qπ(·|s)⊤(π′(·|s)− π(·|s)

] ∣∣∣
≤ 1

(1− γ)2
∥dπ

′
− dπ∥1∥π′ − π∥∞,1.

The last inequality uses the fact that maxs,a Q
π(s, a) ≤ 1

1−γ . It suffices to show ∥dπ′ −
dπ∥1 ≤ γ

1−γ ∥π
′ − π∥∞,1. To establish this, consider the Markov operator Pπ(s′|s) =∑

a∈A P (s′|s, a)π(a|s) induced by a policy π on MDP M . For any distribution d supported on S,
we have

∥(Pπ′
− Pπ)d∥1

=
∑
s′

∣∣∣∣∣∑
s,a

P (s′|s, a)d(s)(π′(a|s)− π(a|s)

∣∣∣∣∣
≤
∑
s′

P (s′|s, a)∥d∥1∥π′ − π∥∞,1

≤ ∥π′ − π∥∞,1.

Using sub-additivity of the l1 norm and applying the above observation t times, we have for any t

∥((Pπ′
)t − (Pπ)t)d∥1 ≤ t∥π′ − π∥∞,1.

18

Finally, observe that

∥dπ
′
− dπ∥1 ≤ (1− γ)

∞∑
t=0

γt∥((Pπ′
)t − (Pπ)t)d0∥1

≤ ∥π′ − π∥∞,1(1− γ)

∞∑
t=0

tγt

=
γ

1− γ
∥π′ − π∥∞,1.

F.4 Gradient domination (Lemma 18 and Lemma 19)

Proof of Lemma 18. Invoking Lemma 4.1 from [2] with µ = d0, we have

V ∗ − V π ≤
∥∥∥∥dπ∗

dπ

∥∥∥∥
∞

max
π0

(∇V π)⊤(π0 − π)

≤ C∞(max
π0

(∇V π)⊤π0 −max
π′∈Π

(∇V π)⊤π′

+max
π′∈Π

(∇V π)⊤(π′ − π)).

Finally, with the aid of Equation ??, observe that

max
π0

(∇V π)⊤π0 −max
π′∈Π

(∇V π)⊤π′

= min
π′∈Π

1

1− γ
Es∼dπ

[
max

a
Qπ(s, a)−Qπ(·|s)⊤π′

]
≤ 1

1− γ
E(Π,Π).

Proof of Lemma 19. Invoking Lemma 4.1 from [2] with µ = ν, we have

V ∗ − V π

≤ 1

1− γ

∥∥∥∥dπ∗

ν

∥∥∥∥
∞

max
π0

(∇V π
ν)⊤(π0 − π)

≤ 1

1− γ
D∞(max

π0

(∇V π
ν)⊤π0 −max

π′∈Π
(∇V π

ν)⊤π′

+max
π′∈Π

(∇V π
ν)⊤(π′ − π)).

Again, with the aid of Equation ??, observe that

max
π0

(∇V π
ν)⊤π0 −max

π′∈Π
(∇V π

ν)⊤π′

= min
π′∈Π

1

1− γ
Es∼dπ

ν

[
max

a
Qπ(s, a)−Qπ(·|s)⊤π′

]
≤ 1

1− γ
Eν(Π,Π).

F.5 Supervised linear optimization guarantees

Proof of Claim 10. The internal boosting subroutine of Algorithm 1, that is presented in Algorithm
5, is an instantiation of Algorithm 3 from [19], specializing the decision set to be ∆A. To note the
equivalence, note that in [19] the algorithm is stated assuming that the center-of-mass of the decision

19

set is at the origin (after a coordinate transform); correspondingly, the update rule in Algorithm 1 can
be written as

(π̃n − π) = (1− η2,n)(π̃n−1 − π) +
η2,n
α

(At,n − π).

For any state s, π(·|s) = 1
A1|A| corresponds to the center-of-mass of ∆A. Finally, note that

maximizing f⊤x over x ∈ K is equivalent to minimizing (−f)⊤x over the same domain. Therefore,
we can apply previous result on boosting for statistical learning from [19] (Theorem 13). Note that
Q̂π(s, ·) produced by Algorithm 3 satisfies ∥Q̂π(s, ·)∥ = |A|

1−γ . Let Dt be the distribution induced by
the trajectory sampler in round t. This yields the bound in the claim.

Proof of Claim 17. Lemma 11 allows us to restate the guarantees from Claim 10 in terms of linear
optimization over functional gradients. The conclusion thus follows immediately by combining
Lemma 11 and Theorem 10.

F.6 Online linear optimization guarantees (Claim 20)

Proof of Claim 20. In a similar vein to the proof of Claim 17, here we state the a result on boosting
for online convex optimization (OCO) from [19] (Theorem 6), the counterpart of Theorem ?? for the
online weak learning case.

Theorem 22. Let β =
√

1
αN , and η2,n = min{ 2

n , 1}. Then, for any t, Γ[π̃t,m,N] produced by
Algorithm 5 satisfies

max
π∈Π

M∑
m=1

[
Q̂⊤

t,mπ(st,m)
]
−

M∑
m=1

[
Q̂⊤

t,mΓ[π̃m,N](st,m)
]

≤ 2|A|
(1− γ)α

(
2M√
N

+RW(M)

)
.

Next we invoke online-to-batch conversions. Note that in Algorithm 5, (st,m, Q̂t,m) for any fixed
t is sampled i.i.d. from the same distribution. Therefore, we can apply online-to-batch results, i.e.
Theorem 9.5 in [17], on Theorem 22 to get

max
π∈Π

E(s,Q)∼Dt

[
Q⊤π(s)

]
− E(s,Q)∼Dt

[
Q⊤π′

t(s)
]

≤ 2|A|
(1− γ)α

(
2√
N

+
RW(M)

M
+

√
16 log δ−1

M

)
.

We finally invoke Lemma 11.

F.7 Remaining proofs (Claim 21)

Proof of Claim 21. Let T ∗ = argmaxt{t : t ≤ 2C}. For any t ≤ T ∗, we have σt = 1 and
gt ≤ H ≤ 2C2H

t . For t ≥ T ∗, we proceed by induction. The base case (t = T ∗) is true by the

previous display. Now, assume gt−1 ≤ 2C2 max{2D,H}
t−1 + CE for some t > T ∗.

gt ≤
(
1− 2

t

)(
2C2 max{2D,H}

t− 1
+ CE

)
+

4C2D

t2
+

2CE

t

≤ CE + 2C2 max{2D,H}
(

1

t− 1

(
1− 2

t

)
+

1

t2

)
= CE + 2C2 max{2D,H} t

2 − 2t+ t− 1

t2(t− 1)

≤ CE + 2C2 max{2D,H} t(t− 1)

t2(t− 1)
.

20

	Introduction
	Challenges and techniques
	Our contributions
	Related work

	Preliminaries
	Weak learning

	Algorithm & Main Results
	Policy aggregation
	Main results
	Trajectory sampler

	Sketch of the analysis
	Experiments
	Conclusions
	Notation: List of Symbols
	Appendix
	RL Boosting via Weak Online Learning
	Analysis for Boosting with Weak Supervised Learning (Proof of Theorem 7)
	Analysis for Boosting with Weak Online Learning (Proof of Theorem 15)
	Proofs of Supporting Claims
	Guarantees on the sampling algorithm
	Non-convex Frank-Wolfe method (Theorem 9)
	Smoothness of value function (Lemma 16)
	Gradient domination (Lemma 18 and Lemma 19)
	Supervised linear optimization guarantees
	Online linear optimization guarantees (Claim 20)
	Remaining proofs (Claim 21)

