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In this supplementary material, we first discuss the role of supervisory signals for ReCo and alternative
approaches, and the datasets used in our work (Appendix A). Next we provide further details
of experiments conducted in the main paper together with hyperparameters for training ReCo+
in Appendix B. We then report additional ablations investigating the influence of common category
selection for context elimination, reducing ambiguity in category name, architectural chioces for
CLIP and DenseCLIP, and the number of seed pixels considered for computing a reference image
embedding in Appendix C. Finally, we provide additional qualitative results in Sec. D to illustrate
both successful and failure cases for our method.

A Discussion of supervision and data

A.1 Supervisory signals for ReCo and prior work

In the main paper, we compare to previous methods that are typically described as unsupervised. In
practice, however, many methods (including ours) either implicitly or explicitly engage humans in
the data curation process at some stage.

Supervision used by ReCo. (1) Similarly to prior work, our experiments make use of datasets
constructed from photographs taken by humans for both training and evaluation. These photographs
are naturally biased towards content that humans find interesting and are typically well-framed (with
a concept of interest featuring prominently) or taken from a vantage point that offers a convenient
scene overview (e.g. a roof-mounted camera on a vehicle driving on public roads). By training
and evaluating on such data, our experimental results likely provide an optimistic assessment of
performance when contrasted with other distributions (e.g. the video feed received by an autonomous
mobile robot). (2) For our comparisons to prior work, we use the ImageNet training subset without
labels to curate archives. However, in practice, this dataset is not free from human involvement: it
was curated by human workers who were asked to verify that each image contains a particular synset
category (see [5] for a discussion of the collection process). While annotators were encouraged to
select images regardless of occlusions, the number of objects and clutter in the scene, this process
nevertheless produced a relatively clean dataset with fairly object-centric images. (3) Several of
our experiments make use of DeiT-SIN [13], which is trained on stylised ImageNet [6] with labels.
We don’t believe that this supervision is critical, since in Fig. 4 of the main paper, we showed that
ResNet50-MoCov2 [8] which does not use labels achieves similar performance (less than 1 mIoU
difference on PASCAL-Context [12]). Moreover, we note that previous unsupervised methods to
which we compare (e.g. [10, 3]) initialise their approach from supervised ImageNet training with the
convention that unsupervised in this context denotes the fact that no pixel-level supervision is used.
(4) By using CLIP [17], we also make use of a different kind of supervision, namely images paired
with alt-text scraped from the web. Empirically, this data source has been shown to be extremely
scalable and to enable generalisation to very large numbers of concepts [17, 11, 16]. Nevertheless,
the creation of the original alt-text image descriptions (mostly) derives from a human source, and
therefore provides a form of human supervision. In contrast to using ImageNet classification labels,
this source of supervision is indispensable to ReCo.

We believe that the key factors to be considered when discussing the question of supervision are
scalability and generalisation. We are typically not interested in unsupervised methods for their own
sake, but rather because they offer the ability to cheaply scale up machine learning to larger training
data sets that improve performance, and to build methods that go beyond the functionality afforded by
labelled datasets (e.g. new classes, new tasks etc.). Subject to the caveats (e.g. human photographer
bias) outlined above, we believe ReCo has the flexibility to scale up far beyond the experimental
comparisons conducted in this work without requiring any changes to the underlying framework.

A.2 Discussion of consent in used datasets

In this work, we work primarily with widely used Computer Vision benchmarks: ImageNet [5],
PASCAL-Context [12], Cityscapes [4], COCO-Stuff [1], KITTI-STEP [21]. For these datasets, we
do not conduct an independent investigation of consent beyond the considerations of the authors that
released these datasets. For our final exploratory studies which make use of LAION-5B [18], we
manually verified that no humans were present in the archives that were curated by ReCo.
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A.3 Discussion on whether data contains personally identifiable information or offensive
content

We do not release any data as part of this work. By working with widely used Computer Vision
benchmarks, we also restrict ourselves to imagery that is available in the public domain. We therefore
believe that the risk that our work builds on harmful content or contributes to the leakage of personal
information is low.

One exception to this is our use of the LAION-5B dataset for qualitative studies. We manually
verified that no personally identifiable information or harmful content (as judged by the authors) was
present in the archives curated by ReCo.

A.4 Dataset licenses

Here we describe the terms/licenses of datasets used in our paper. For images in PASCAL-Context
and COCO dataset, we comply with the Flickr Terms of Use and the Creative Commons Attribution
4.0 License for the COCO-Stuff annotations. For Cityscapes and ImageNet1K, we follow the terms
stated on their official website1 and the Attribution-NonCommercial-ShareAlike 3.0 Unported (CC
BY-NC-SA 3.0) licence for KITTI-STEP.

B Experiment details

Here we provide pseudocode for ReCo and details of experiments conducted in the main paper.

B.1 Pseudocode for ReCo

In Alg. 1, we describe the pseudocode for the core of ReCo (to maintain readability, language-guided
co-segmentation and context elimination are omitted since these follow a similar structure).

B.2 Prompt engineering

To obtain the text embedding for a concept, we ensemble the textual features from 85 templates,
e.g., “a photo of the {concept}” and “there is a {concept} in the scene”
following [22].

B.3 Details of ablation study to assess CLIP retrieval performance

We observe that two of the ImageNet1K class labels are not unique—they occur twice with different
meanings (e.g., “crane” is used to represent both bird and machine), which makes retrieval inference
and evaluation ambiguous. Therefore, we exclude those classes and use the remaining 996 categories
for the experimental results reported in Fig. 4 (left) of the main paper.

B.4 Hyperparameters for ReCo+ training

As described in Sec. 4.2 (in the main paper), we adopt DeepLabv3+2 [2] with ResNet101 encoder [9]
for ReCo+ and train the network with standard data augmentations such as random scaling and
horizontal flip following [14, 19]. In detail, for geometric transformations, we use random scaling
with a range of [0.5, 2.0], random crop with a crop size 320×320 pixels, and random horizontal flip
with a probability of 0.5. For the photometric augmentations, we apply colour jittering3 with 0.8, 0.8,
0.8, 0.2, and 0.8 for brightness, contrast, saturation, hue and probability parameters respectively. We
also employ Gaussian blurring with a kernel size of 10% of min(H,W ) where min(H,W ) returns
the length of the shorter side of an image.

1https://www.cityscapes-dataset.com/license and https://www.image-net.org/download.
php for Cityscapes and ImageNet1K respectively.

2We use the code for DeepLabv3+ from https://github.com/VainF/DeepLabV3Plus-Pytorch.
3We use ColorJitter function in torchvision package [15].
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Algorithm 1 Pseudocode for the core of ReCo (using PyTorch-like syntax)
Input. a CLIP image encoder ψI , a CLIP text encoder ψT , an image encoder ϕI , an image collection
U , a concept c, the number of co-segmented images k
Output. a reference image embedding ref_emb and a prediction of the concept c in a new image

# retrieve images
image_emb = l2_normalize(ψI(U), dim=1) # NxC
text_emb = l2_normalize(ψT (c), dim=0) # C
scores = mm(image_emb, text_emb) # N
indices = argmax(scores)[:k] # k
images = U[indices] # kx3xHxW

# co-segment
F = l2_normalize(ϕI(images), dim=1) # kxCxhxw
F_flat = F.permute(1,0,2,3).view(C,k*h*w) # Cxkhw
A = mm(F_flat.T, F_flat) # adjacency matrix, khwxkhw

grid = zeros((k*h*w, k))
start_col = 0 # start column index
for i in range(k):

end_col = start_col + h*w # end column index
grid[:,i] = max(A[:,start_col:start_col+end_col], dim=1)
start_col = end_col

avg_grid = mean(grid, dim=1) # khw

seed_features = []
start_row = 0 # start row index
for i in range(k):

end_row = start_row + h*w # end row index
index_1d = argmax(avg_grid[start_row:end_row])
start_row = end_row
index_2d = [index_1d//w,index_1d%w]
seed_features.append(F[i,:,index_2d[0],index_2d[1]])

seed_features = stack(seed_features, dim=0) # k×C
ref_emb = l2_normalize(seed_features.mean(dim=0), dim=0) # C

# inference
F_new = l2_normalize(ϕI(new_image), dim=0) # Cxhxw
prediction = sigmoid(mm(ref_emb, F_new)) # hxw

mm:matrix multiplication.
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✗ ✗ ✗ ✗ ✗ 5.7
✓ ✗ ✗ ✗ ✗ 10.9
✓ ✓ ✗ ✗ ✗ 12.0
✓ ✓ ✓ ✗ ✗ 10.8
✓ ✓ ✓ ✓ ✗ 11.4
✓ ✓ ✓ ✓ ✓ 12.3

parking vegetation mIoU→parking lot →tree

✗ ✗ 15.4
✗ ✓ 16.0
✓ ✗ 18.6
✓ ✓ 19.3

Table 1: Effect of context category choices and reducing label ambiguity. Left: We find that
suppressing 5 frequently appearing categories brings performance gain on PASCAL-Context [12].
Right: We observe that specifying the meaning of a class more concretely helps segmentation
performance of ReCo on Cityscapes [4]. For both cases, input images are resized and center-cropped
to 320×320 following [7].
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Model CLIP arch. DenseCLIP arch. mIoU

ReCo (ours)
ResNet50 ResNet50 20.3
ViT-B/32 ResNet50 20.3
ViT-L/14@336px ResNet50x16 22.0

# seed pixels mIoU Acc.

1 22.0 65.4
5 22.2 64.9

10 22.1 62.9
50 21.7 57.5

100 20.4 51.0

Table 2: Effect of architecture choices (left) and the number of seed pixels (right) on performance
of ReCo on the Cityscapes validation set.

C Additional ablation studies

C.1 Choices of context categories

As described in Sec. 3.3 (main paper), we propose to suppress the commonly appearing categories,
e.g., sky, which co-occur with other classes, e.g., aeroplanes. To achieve this, we manually pick 5
frequently appearing classes in PASCAL-Context dataset [12] and investigate the effect of different
combinations of such categories. In Tab. 1 (left) we observe that suppressing the tree and sky
categories yields a notable performance gain, while eliminating all five categories performs best. For
this reason, we apply the context elimination strategy with these five categories in the main paper.

C.2 Category name rephrasing to reduce ambiguity

We observe that it is important to specify a concept concretely to obtain retrieved images exhibiting
similar visual appearance. For instance, in Cityscapes dataset, parking and vegetation can be rephrased
to less ambiguous concepts parking lot and tree respectively based on their descriptions4 in the paper
accompanying the dataset [4]. As can be seen in Tab. 1 (right), ReCo gains benefits in performance
on Cityscapes by replacing the category names with less abstract concepts. This sensitivity is a
consequence of our co-segmentation algorithm, which locates pixels that share similar visual features
across multiple images. Thus we use the rephrased label names throughout the experiments in the
paper.

In addition to the limitations listed in the main paper, this dependence on concrete/specific concept
names can be considered a limitation of our approach (albeit one that is readily mitigated). However,
we believe it is a reasonable requirement for methods that operate in the zero-shot transfer setting.
Unlike fine-tuning methods that learn to associate abstract text descriptions to visual concepts by
seeing examples from the target distribution, ReCo relies entirely on an adequate text description to
disambiguate the concept. Since many computer vision datasets have been constructed with training
and testing splits with the assumption that methods would make use of the training set, we believe
it is probable that category names were not designed to be uniquely descriptive (hence the use of
“parking” as a category in Cityscapes, which could be either a verb or a noun). Indeed, there may
have been little perceived need to construct unambiguous category names when examples from the
training set implicitly provide disambiguation of the concept.

C.3 Effect of architectural choices for CLIP and DenseCLIP

For the experiments in the main paper, we use ViT-L/14@336px and ResNet50x16 for image retrieval
and DenseCLIP inference respectively. As these models are relatively heavier than commonly
used architectures such as ResNet50 or ViT-B/32, we evaluate ReCo with lighter encoders on the
Cityscapes validation split in Tab. 2 (left). Specifically we use either ResNet50 or ViT-B/32 for image
retrieval and ResNet50 for DenseCLIP inference. As can be seen, adopting a lighter model slightly
decreases the performance, but still outperforms previous state-of-the-art methods (e.g., 16.3 mIoU
for D&S [20]).

4“Horizontal surfaces that are intended for parking and separated from the road, either via elevation or via a
different texture/material, but not separated merely by markings.” for parking and “Trees, hedges, and all kinds
of vertically growing vegetation.” for vegetation.
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Figure 1: Additional visualisations of our co-segmentation method used for ReCo. For visualisa-
tion purpose, we show the top 5 images from 50 retrieved images in each archive for a category. Left:
Successful cases. Right: Typical failure cases. Highlighted regions are shown in red. Best viewed in
colour.

C.4 Effect of the number of seed pixels

While we pick one seed pixel per image by default as decribed in Sec. 3, we investigate how the
number of seed pixels selected for an image affects performance of ReCo. For this, we evaluate ReCo
on Cityscapes with each reference image embedding computed by averaging 1, 5, 10, 50, and 100
seed pixel(s) for an image. As can be seen in Tab. 2 (right), using one or five seed pixel(s) per image
shows the best performance in terms of pixel accuracy and mIoU and picking more pixels tends to
hurt the performance.

D Additional visualisations

D.1 Co-segmentation with seed pixels

In Fig. 1, we visualise examples of the co-segmentation with seed pixels on ImageNet2012, which is
used for an index dataset for ReCo in the main paper. On the left, we show successful cases where the
co-segmentation highlights regions corresponding to a given concept (i.e., sheep, building, and zebra).
On the right, we display examples of two typical failure cases: partial segmentation (i.e., bicycle
and cup) and highlighting an object commonly co-occurring with a given concept (i.e., baseball
glove). For bicycles, their frames are less highlighted compared to the wheels. Similarly, the body
parts of the cups are less likely to be emphasised than the handles. In case of baseball gloves, the
co-segmentation locates a part of a baseball, which often appears with a baseball glove. We believe
these failure cases are caused by the property of our co-segmentation algorithm, which focuses on
regions with less variance in visual features (e.g., texture and shape) appearing in multiple images of
an archive.

D.2 Predictions of ReCo and ReCo+

In Fig. 2, we show more visualisation samples on the COCO-Stuff benchmark. Successful and failure
cases are shown on the left and right, respectively. We note that ReCo tends to fail in predicting small
objects, e.g., people in the bus, and so does ReCo+ which is trained on the ReCo’s predictions as
pseudo-labels. We conjecture that this is related to the stride of the image encoder used for ReCo,
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Figure 2: Additional visualisations on COCO-Stuff. Left: Successful cases. Right: Typical failure
cases. White pixels denote ignored regions.

which is 16×16 for the case of DeiT-S/16-SIN [13]. It could therefore potentially be improved by
using an encoder with a smaller stride at the cost of increased computational burden.
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