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Abstract
Semantic segmentation has a broad range of applications, but its real-world impact
has been significantly limited by the prohibitive annotation costs necessary to
enable deployment. Segmentation methods that forgo supervision can side-step
these costs, but exhibit the inconvenient requirement to provide labelled examples
from the target distribution to assign concept names to predictions. An alternative
line of work in language-image pre-training has recently demonstrated the poten-
tial to produce models that can both assign names across large vocabularies of
concepts and enable zero-shot transfer for classification, but do not demonstrate
commensurate segmentation abilities.
We leverage the retrieval abilities of one such language-image pre-trained model,
CLIP, to dynamically curate training sets from unlabelled images for arbitrary
collections of concept names, and leverage the robust correspondences offered
by modern image representations to co-segment entities among the resulting col-
lections. The synthetic segment collections are then employed to construct a
segmentation model (without requiring pixel labels) whose knowledge of concepts
is inherited from the scalable pre-training process of CLIP. We demonstrate that our
approach, termed Retrieve and Co-segment (ReCo) performs favourably to conven-
tional unsupervised segmentation approaches while inheriting the convenience of
nameable predictions and zero-shot transfer. We also demonstrate ReCo’s ability
to generate specialist segmenters for extremely rare objects.

1 Introduction
The objective of semantic segmentation is to partition an image into coherent regions and to assign
to each region a semantic label. This task has myriad applications across domains such as medical
image analysis, autonomous driving, industrial process monitoring and wildlife tracking. However,
there are several key challenges that have hindered the deployment of existing semantic segmentation
approaches to date: (1) Cost: collecting manual pixel-level annotations is extraordinarily expen-
sive (e.g. 90 minutes per image for high quality labels [14]), limiting the use of fully-supervised
approaches; (2) Flexibility: supervised approaches have typically been trained with limited lists
of pre-defined categories and lack the ability to recognise rare or novel categories (such as those
described by free-form text); (3) Complexity of deployment: unsupervised segmentation methods
have dramatically reduced annotation costs, but still exhibit the inconvenience of requiring labelled
examples to assign names to predictions; (4) Data access: many existing approaches (both supervised
and unsupervised) are trained on the target data distribution, requiring both that this distribution is
known at training time (limiting flexibility) and that this data is accessible, which may not be the case
for legal/ethical reasons (e.g. medical image data).

There is a rich body of semantic segmentation literature that proposes solutions to subsets of these
challenges, but to our knowledge no existing work addresses their full combination. To tackle all
four challenges, we draw inspiration from two lines of recent research. The first line of research has
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Figure 1: We propose ReCo, a new framework for semantic segmentation zero-shot transfer without
pixel supervision. The figure depicts ReCo segmentations for COCO-Stuff [6], indicating promising
results in the challenging zero-shot transfer setting. We also illustrate results with unsupervised
adaptation to the target distribution (ReCo+), trading flexibility for improved segmentation quality.

shown that modern deep architectures (most notably vision transformers [18]) develop the ability
to infer the spatial extent of objects without pixel supervision [7, 60, 79, 86, 77, 55] and moreover
can establish semantically consistent correspondences across images [13, 24]. The second line of
research has demonstrated that large-scale visual-language pre-training [71, 35] produces models that
possess both a large vocabulary and remarkable zero-shot transfer potential—the ability to recognise
concepts on target datasets without access to the target data distribution during training.

In this work, we target a synthesis of these two approaches that draws on their respective strengths
for the semantic segmentation task. We first employ CLIP [71] to curate training sets from unlabelled
images for any desired list of concepts. We then exploit the robust semantic correspondences offered
by modern vision backbones to co-segment concepts among the resulting curated collections. Finally,
we use these co-segmented concepts to construct a segmentation model for the given concepts, without
requiring training. This framework, which we term Retrieve and Co-segment (ReCo), performs
favourably to existing unsupervised segmentation approaches while preserving the benefits of a wide
vocabulary, named predictions and zero-shot transfer exemplified by CLIP. Since ReCo utilises a
pre-trained image-language model, we call the task considered in this work unsupervised semantic
segmentation with language-image pre-training to differentiate it from conventional unsupervised
semantic segmentation task formulations.

Our contributions are three-fold: (1) We propose the ReCo framework, enabling open vocabulary
semantic segmentation, without pixel annotations or the need to provide labelled examples from the
target domain thereby enabling zero-shot transfer; (2) We compare our approach to prior work on stan-
dard semantic segmentation benchmarks (COCO-Stuff [6], Cityscapes [14], and KITTI-STEP [87]),
and further illustrate the ability of ReCo to segment rare concepts beyond these benchmarks; (3) For
cases when the target image distribution is available, we demonstrate that a simple extension of our
approach, ReCo+, can exploit this data access via unsupervised adaptation to bring further gains.

2 Related work
Our work is connected to several themes in the literature, which we describe next.

Unsupervised semantic segmentation. There has been considerable recent progress towards
unsupervised semantic segmentation with deep neural networks by leveraging ideas from self-
supervised learning. Learning objectives based on maximising mutual information between views [34,
61], metric learning across proposals [93, 82], equivariance and invariance constraints [12], distillation
of self-supervised feature correspondences [24] and cross modal cues (vision and LiDAR) [85] have
all shown their potential for this task.

One drawback of these approaches is a reliance on either nearest neighbour search on a held-out set
with pixel level annotations or the Hungarian algorithm [45] (optimally matching predictions against
ground-truth semantic masks) to produce segments with names. In contrast, by leveraging the ability
of a language-image model to name concepts, ReCo is independent of labelled examples during both
training and inference.

Weakly-supervised semantic segmentation. To reduce annotation costs, a number of works
have explored weaker cues such eye tracking [63], pointing [4, 70, 11], sparse pixel labels [78],
scribbles [49], web-queried samples [36], boxes [15, 42, 80], extreme clicks [64, 54], image-level
labels [95, 88, 19, 1, 8, 67, 69] and free-form text [90]. However, such approaches still require
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the weak annotation to be attached to the data used to train the segmentation model—by contrast,
ReCo can in principle train a segmenter from any unlabelled collection of images. ReCo also
bears a conceptual similarity with webly-supervised approaches [20] for semantic segmentation [36,
76]. These methods employ an image search engine such as Google to provide training samples
for concepts. However, their flexibility is limited (this approach cannot be applied to private or
commercially sensitive data, for example) and they lack the ability to leverage the knowledge of the
search engine itself during inference (we demonstrate that integrating the vision-language model into
the inference procedure brings significant gains in performance).

Zero-shot semantic segmentation with pretrained language/vision-language embeddings. A
diverse body of work has explored zero-shot semantic segmentation, broadly defined as the task
of segmenting categories for which no labels were provided during training (often termed zero-
label semantic segmentation [89]). The key idea underlying many of these works is to leverage
relationships encoded in pretrained word embeddings (such as word2vec [56] or GloVe [68]) to
enable generalisation to unseen categories [94, 5, 23, 89, 40, 29, 47, 65]. More recent work has
sought to leverage the vision-language embedding space learned by CLIP [71] to improve dense
prediction in various settings [96, 72, 46, 91, 17, 52]. We adopt a variation of DenseCLIP [96] as a
component of our framework. Additionally, differently from the above, we pursue the formulation
of zero-shot transfer popularised by CLIP [71] which evaluates performance on unseen datasets
rather than unseen categories. Consequently, unlike these works, our model has no access to either
labelled or unlabelled examples from the target data distribution (or pixel-level labels from the source
distribution, as investigated by [91]). We note one exception: in addition to their primary zero-shot
evaluations, DenseCLIP [96] also report an “annotation-free” evaluation without access to the target
dataset—we compare our approach with theirs under an equivalent setting.

Large-vocabulary/rare concept segmenters. To scale up the number of concepts that can be
segmented by a model several strategies based on captions [21], grounded text descriptions [39]
and annotation transfer [30, 32] have been explored. In a differing direction, various losses and
incremental learning techniques have been employed [31, 27] to better segment rare concepts. Unlike
ReCo, however, each of the above approaches still requires costly pixel-level annotations.

Co-segmentation which aims to segment common regions among a collection of images, has been
widely studied with classical computer vision approaches [73, 59, 83, 3, 38, 84]. The topic has been
revisited with deep learning using shared encoder networks [9, 48, 2, 51], iterative refinement [92]
and weak (class-label) supervision [28]. While ReCo can in principle make use of any unsupervised
co-segmentation algorithm, we find that a simple correlation strategy works well, and thus we adopt
it for our approach.

3 Method
In this section, we first formalise the task of unsupervised semantic segmentation with language-
image pre-training (Sec. 3.1). We then introduce the ReCo framework (Sec. 3.2) which enables
zero-shot transfer for semantic segmentation with arbitrary categories. We describe a language-based
gating mechanism to enhance segmentation quality (Sec. 3.3), and a pseudo-labelling scheme, ReCo+,
which adapts to a target distribution using predictions from ReCo (Sec. 3.4).

3.1 Unsupervised semantic segmentation with language-image pre-training

Let us denote by x ∈ R3×h×w an image of interest. Let Ω = {1, . . . , h−1}×{1, . . . , w−1} denote
its spatial domain and ω ∈ Ω a pixel location. The objective of unsupervised semantic segmentation
with language-image pre-training (USLIP) is to assign to each pixel location ω ∈ Ω a category,
c ∈ C, that falls among one of |C| mutually exclusive target categories. The key characteristic
distinguishing USLIP from traditional unsupervised segmentation is that in order to tackle the task, a
model may assume access to pre-training corpus of paired image and text data, without pixel-level
supervision. We distinguish this approach from weakly-supervised learning in that it does not rely
on weak human annotations (e.g., image-level labels) during training for a downstream task (i.e.,
segmentation).

3.2 Retrieve and Co-segment (ReCo)
The inputs to ReCo are a collection of unlabelled images, and a list of text descriptions of concepts
to be segmented. Through a combination of image retrieval and co-segmentation across the image
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Figure 2: In this work, we propose ReCo, a framework for open vocabulary semantic segmentation
zero-shot transfer utilising a language-image pre-training model (i.e., CLIP). Top: (1) Given a
large-scale unlabelled dataset and a category to segment, we first curate an archive of k images from
the unlabelled collection using CLIP [71]. (2) Using a pre-trained visual encoder (e.g., MoCov2 [25],
DeiT-S/16-SIN [60]), we extract dense features from the archive images, which are used to generate
a reference image embedding for the given category via a co-segmentation process. Bottom: (3)
During inference, the reference image embedding is employed to produce an initial segmentation of
the target concept which is refined with DenseCLIP. ⊗ and ⊙ denote inner product and Hadamard
product, respectively. See Sec. 3 for details.

collection, ReCo constructs a segmenter for the given concepts on the fly. During inference, this seg-
menter is applied without fine-tuning to images from a target distribution of interest, thus supporting
the zero-shot transfer. The interaction of these three stages is illustrated in Fig. 2 and discussed in
more detail below.

Curating exemplars through image retrieval. The first hypothesis underpinning our approach
is that it is possible to construct a sufficiently large and diverse unlabelled image collection that
contains examples (or closely related examples) of any concept we wish to segment. We consider
this hypothesis to be reasonable in light of the fact that recent research has produced a number of
diverse datasets spanning billions of images [53, 22, 35, 75].

To make use of this hypothesis for segmentation, we employ a vision-language model to curate an
archive of images for each concept of interest. In this work, we use CLIP [71], a model comprising
an image encoder and a text encoder that enables efficient image retrieval for free-form text queries.
In more detail, for a given text query describing a concept c the CLIP text encoder ψT produces
an embedding ψT (c) ∈ Re which can be compared against the embeddings produced by the image
encoder ψI for each image x in the unlabelled collection U : {ψI(x) ∈ Re : x ∈ U}. We then
build an archive from the k images that form nearest neighbours for each concept c. While a more
sophisticated strategy (for instance, adjusting the archive size according to concept difficulty or
prevalence) is possible with ReCo, we found that this simple approach worked well, and so we
adopt it here. Note that, thanks to mature approximate nearest neighbour search techniques [37], this
archive construction process can be readily applied to a collection U containing billions of images.

Co-segmentation with seed pixels. The second hypothesis underpinning our approach is that modern
vision-language models such as CLIP are capable of constructing archives of high purity (i.e. a high
ratio of the archive images contain the concept of interest) provided that such exemplars exist in
the underlying image collection U (our first hypothesis). Our second hypothesis, which we validate
through experiments in Sec. 4, enables the use of co-segmentation to obtain concept segments.

Concretely, given the k images comprising the archive for category c constructed by CLIP, we aim
to segment regions corresponding to concepts that re-occur across the images. Since we expect
the archive to be of high purity, and since modern visual backbones provide consistent semantic
correspondences across images [24], we adopt a strategy of first identifying a seed pixel in each
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image that we are confident belongs to the target category, c. Intuitively, good seed pixels are ones
that have close neighbours (i.e. strong support) across each of the archive images, since we assume
that: (i) the target concept is common to all images in the archive, (ii) our visual backbone will
produce consistent features for pixels belonging to the same concept. We then use these seed pixels
to construct a reference embedding that can be used to classify pixels belonging to c.

In detail, we first extract dense features for each image in the archive using a pre-trained image
encoder ϕI :

{F1, . . . , Fk} = {ϕI(x1), . . . , ϕI(xk)} (1)

where Fi ∈ Rd×h×w denotes (spatially) dense features for the ith image with height h, width w and
d channels. Each such feature is L2-normalised along its channel dimension.1 Note that any image
encoder ϕI can be employed here (it need not be CLIP).

We identify seed pixels in four steps: First, we construct an adjacency matrix Akhw×khw among
all features in the archive. Here, each of the k × k submatrices, Aij ∈ Rhw×hw, encodes pairwise
similarities between features from image i and image j for i, j ∈ {1, ..., k}. Second, we aim to
identify, for each pixel in the archive, the similarity of its nearest neighbour among each of the k
images. To do so, we apply a max operator along the columns of each submatrix (reducing the hw
colums of each submatrix to 1 and reducing the overall adjacency matrix dimensions to khw × k).
Third, we aim to identify the average support that each pixel has among the k archive images. For this,
we apply a mean operator over the columns of each submatrix such that each row of the resulting
khw × 1 matrix encodes the mean maximum similarity across k images. Finally, we identify the
seed pixel locations by applying an argmax operator to each of the k submatrices of size hw × 1,
yielding the spatial indices of the features in each image with highest average maximum similarity
across the archive.

To construct a classifier for concept c, we simply average the embeddings of the k seed pixels from
its archive and L2-normalise the resultant vector to produce the reference embedding fc ∈ Rd.

Inference. To localise instances of the category in a new image xnew, we first compute the dot-
product between fc and the L2-normalised dense features Fnew from the new image, and pass the
result through a sigmoid:

P c
new = σ(fc · Fnew) ∈ [0, 1]h×w (2)

where P c
new denotes an initial estimate of the probability map corresponding to category c.

To refine this probability map, we draw inspiration from recent work [96, 72] showing that dense
visual CLIP features can be usefully correlated against a given CLIP text embedding. Concretely,
we employ the DenseCLIP mechanism of Zhou et al. [96] to highlight regions of the input that are
salient for the target category c as follows. For image xnew, we extract features Vnew ∈ Rev×h×w

from the last self-attention layer values of the CLIP image encoder (here ev denotes the value feature
dimension), project the features into the joint space Re with the CLIP image encoder’s final linear
projection and L2-normalise the result. We then compute the CLIP text embedding ψT (c) ∈ Re

for the target concept c and L2-normalise it before producing a saliency map Sc
new ∈ [0, 1]h×w by

applying the text embedding as a 1 × 1 convolution to the visual features and applying a sigmoid
activation function to the result. Note that our use of a sigmoid activation function differs from the
softmax used by [96], since we process each concept independently.

Our final probability map for category c is produced by the Hadamard product of these estimates:

P̄ c
new = P c

new ⊙ Sc
new (3)

In case of multiple categories predictions, we concatenate all the category prediction maps and apply
argmax to the category dimension. As a simple post-processing step, we also experiment with
the effect of applying a CRF [44] (similarly to [24]). Pseudocode for ReCo can be found in the
supplementary material.

3.3 Language-guided co-segmentation and context elimination
Even when an archive has high purity, co-segmenting the target concept c from the collection of
images can be challenging due to the potential presence of distractor categories c̃ that often co-occur

1For clarity purposes, we assume that all images share the same spatial extent (and thus their dense features
also do). However, the proposed co-segmentation approach can be applied to images with different resolutions.
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Figure 3: Sample visualisations of the co-segmentation approach used by ReCo. We display
the top 5 ranked images among an archive of 50 retrieved images for a given concept. Highlighted
regions are shown in red. For both things (left) and stuff (right) categories, ReCo reliably recognises
appropriate regions. Best viewed in colour.

with c. For example, cars often co-occur with roads and likewise aeroplanes with sky. To minimise
the risk of the co-segmentation algorithm anchoring on unintended categories, we introduce two
mechanisms into the co-segmentation procedure, namely, language-guided co-segmentation and
context elimination.
Language-guided co-segmentation. Specifically, for each xi in the archive, we first compute the
corresponding saliency map Sc

i ∈ [0, 1]h×w using DenseCLIP. We then vectorise this map and
use it to filter the co-segmentation similarities by replacing each row of Aj,i with the Hadamard
product of itself with vec(Sc

i ) ∈ [0, 1]1×hw (where vec(·) denotes vectorisation) for each submatrix
j = {1, ..., k}. Intuitively, this serves to act as a gate that preserves similarities only for pixels
identified by CLIP as salient for the target concept.
Context elimination. To reduce the influence of widely co-occurring distractors, we select a few
common background categories c̃ that frequently appear in images (e.g., tree, sky, road) and compute
their reference embeddings fc̃ as described in the seeding procedure of Sec. 3.2. We then use the
resulting attention maps P c̃

i produced by these reference embeddings to suppress regions of common
background context in the subsequent co-segmentation processes for different categories. This is
done similarly as above, by vectorising and replacing each row of Aj,i with the Hadamard product
of itself with vec(1 − P c̃

i ) ∈ [0, 1]1×hw for each submatrix j = {1, ..., k}. If a target concept c is
identical to one of the common background categories c̃, we replace fc with the corresponding fc̃.

3.4 ReCo+: Fine-tuning ReCo with pseudo-labels
The ReCo framework outlined above requires no training and no access to the target distribution.
However, it is possible to consider a simple extension to this idea when access to the target image
distribution is available. Our proposed extension, ReCo+, simply trains a segmentation architecture
(e.g., DeepLabv3+ [10]) with the segmentation masks from ReCo as pseudo-masks.

4 Experiments
In this section, we start by describing the datasets used for our experiments (Sec. 4.1) and implemen-
tation details (Sec. 4.2). Then, we conduct an ablation study (Sec. 4.3) and compare our model to
state-of-the-art methods for unsupervised semantic segmentation with and without language-image
pre-training (Sec. 4.4). Finally, we showcase our model’s ability to segment rare-category objects
(Sec. 4.5).

4.1 Datasets
For our ablation study, we use the ImageNet1K [16] validation set to curate archive for concepts
of interest. The dataset covers 1K classes with 50 images for each class. To measure segmentation
performance in the zero-shot transfer setting, we use the PASCAL-Context [58] validation set for
evaluation, which has 5,104 images of 59 categories excluding the background class.

To compare with previous unsupervised segmentation methods, we use the ImageNet1K training set
to construct the reference embedding for the concept we wish to segment. The dataset has 1K classes
with 1.2M images. We evaluate on standard benchmarks including the Cityscapes [14] validation
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split, which has 500 urban scene images of 27 categories, KITTI-STEP [87] validation set, which
is composed of 2,981 urban scene images of 19 categories, and COCO-Stuff [6] validation split,
which has 4,172 images of 171 low-level thing and stuff categories excluding background class.
Following [12, 24], we use the 27 mid-level categories for evaluation. For unsupervised adaptation
with ReCo+ (Sec. 3.2), we train on ReCo pseudo-labels on the Cityscapes training set with 2,975
images, KITTI-STEP training set which contains 5,027 images, and the COCO-Stuff10K subset
which has 9,000 images for each respective benchmark. We emphasise that no ground-truth labels
are used for training.

Finally, to demonstrate our model’s ability to segment rare concepts, we use the LAION-5B
dataset [75] with 5 billion images as a large collection of images that we expect to satisfy our
first hypothesis, namely that it will have coverage of rare concepts. To assess performance, we use
the FireNet dataset [62] which has 1,452 images spanning rare fire safety-related classes. For our
experiment, we select the fire extinguisher class as an example of a concept that is important but
rare in vision datasets (it is not contained in ImageNet1K [74], for example) and evaluate ReCo on
263 images containing at least one instance of the category. As a further proof of concept, we also
demonstrate co-segmentations of the Antikythera mechanism (a historical item that does not appear
in WordNet [57], or any labelled vision datasets that we are aware of).

4.2 Implementation details
Here, we describe the hyperparameters used to train ReCo+, inference details and evaluation metrics.
Our implementation is based on the PyTorch library [66] and made publicly available.2

ReCo+ Training. While ReCo does not require training, we train ReCo+ based on the
DeepLabv3+ [10] segmentation architecture with a ResNet101 [26] backone on the predictions
from ReCo as described in 3.2. All training images are resized and center-cropped to 320×320 pixels
and data augmentations such as random scaling, cropping, and horizontal flipping are applied with
random color jittering and Gaussian blurring. We use the Adam optimiser [43] with an initial learning
rate of 5× 10−4 and a weight decay of 2× 10−4 with the Poly learning rate schedule as in [50, 10].
Training consists of 20K gradient iterations with a batch size of 8 and takes about 5 hours on a single
24GB NVIDIA P40 GPU.

Inference. For each benchmark, we pre-compute reference image embeddings for a list of categories
for the benchmark and store the embeddings to form a classifier. Whenever DenseCLIP is employed,
we use the ResNet50x16 model (following [96]) to construct a saliency map for each image. Unless
otherwise stated, for the COCO-Stuff and Cityscapes benchmarks, we resize and center crop the
input images to 320×320 pixels as in [24]. For the KITTI-STEP validation set, we use the original
resolution of each image as in [41]. For the FireNet benchmark, we resize the shorter side of images
to 512 pixels and predict a single class of fire extinguisher by thresholding the predicted heatmap
with probability of 0.5.

Evaluation metrics. Following the common practice [34, 12, 24], we report pixel accuracy (Acc.)
and mean intersection-over-union (mIoU).

4.3 Ablation studies
Ability of CLIP to curate archives. We begin by assessing the validity of our second hypothesis—
namely that CLIP is capable of achieving high purity archives from unlabelled images. To this end,
we evaluate the retrieval performance of different CLIP models on the ImageNet1K validation set
when constructing different archive sizes. In detail, for each archive size, k, we compute the precision
of the top-k retrieved images based on whether the the ground-truth image-labels match the query
text. As can be seen in Fig. 4 (left), all CLIP models achieve solid retrieval performance, suggesting
their potential for curating high purity archives as part of ReCo. Since ViT-L/14@336px performs
best, we employ this as our retrieval model in the remaining experiments.

Influence of archive size and visual encoder used for co-segmentation. In Fig. 4 (right) we illustrate
the effect of using different pre-trained architectures, e.g. MoCov2 [25], DINO [7], CLIP [71], DeiT-
SIN [60], as the archive size (and thus the number of images used for co-segmentation) changes. The
y-axis depicts segmentation performance for ReCo with these configurations on the PASCAL-Context
benchmark. We observe that using larger archives tends to improve performance (likely due to their
reasonably high purity) albeit non-monotonically, and that features from DeiT-SIN perform best. We

2Code available at https://github.com/NoelShin/reco
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Figure 4: Ablation studies. Left: Image retrieval performance of different CLIP models on the
ImageNet1K validation set with k ranging from 5 to 50. ViT-L/14@336px performs particularly
strongly, suggesting the ability to curate archives of high purity. Right: Co-segmentation performance
on PASCAL-Context validation set as we vary the archive size and choice of visual encoders. We
observe a general trend towards improved performance with increasing archive size for all encoders.

DenseCLIP LGC CE CRF Acc. mIoU

✗ ✗ ✗ ✗ 16.8 5.7
✓ ✗ ✗ ✗ 41.1 21.8
✓ ✓ ✗ ✗ 43.1 23.1
✓ ✗ ✓ ✗ 49.7 26.0
✓ ✓ ✓ ✗ 50.9 26.6
✓ ✓ ✓ ✓ 51.6 27.2

Table 1: Influence of ReCo components for zero-shot transfer on PASCAL-Context [58]. We
observe that integrating DenseCLIP during inference, Language-guided co-segmentation (LGC),
Context elimination (CE), and CRF [44] post-processing each contribute to improved performance.
All comparisons use a DeiT-SIN visual backbone for co-segmentation and ViT-L/14@336px for
archive curation.

therefore use DeiT-SIN with an archive size of k=50 for the remaining experiments unless otherwise
stated. See Fig. 3 for qualitative examples of our co-segmentation results.

Influence of ReCo framework components. We next assess the effect of employing DenseCLIP
during inference, the language-guided co-segmentation and context elimination components of ReCo
which seek to improve the quality of co-segmentation achieved across each archive to boost down-
stream segmentation performance. When applying context elimination, we select tree, sky, building,
road, and person as common background concepts appearing in natural images to be suppressed.
In Tab. 1, we show the effect of three of these strategies, together with the effect of applying a
CRF [44] as post-processing. We observe that integrating DenseCLIP into the inference procedure
brings a significant gain in performance which we believe is driven by the notable robustness of CLIP
features under zero-shot transfer [71]. In addition, language-guided co-segmentation and context
elimination further boost co-segmentation performance, while the CRF brings a small gain. We
therefore use each of these strategies (including CRF post-processing) in the remaining experiments.
4.4 Comparison to state-of-the-art unsupervised methods
We compare ReCo and ReCo+ to state-of-the-art unsupervised semantic segmentation models
with and without vision-language pre-training on standard benchmarks, including COCO-Stuff [6],
Cityscapes [14] and KITTI-STEP [87] under both zero-shot transfer and unsupervised adaptation
(training without labels on the target distribution). For COCO-Stuff, we observe that the mid-level
categories used for evaluation are somewhat abstract for retrieval (for instance, one mid-level category
is “outdoor objects”, which may include many low-level categories beyond the target hierarchy). To
avoid introducing ambiguity to the co-segmentation procedure, we instead directly use the low-level
categories and then merge the predictions into the mid-level categories. Additionally, we rephrase
two category names to reduce ambiguity (parking to parking lot and vegetation to tree) in Cityscapes
and KITTI-STEP based on the descriptions found in [14]. A detailed discussion can be found in the
supplementary material.

As shown in Tab. 2, ReCo strongly outperforms prior models on all benchmarks for zero-shot transfer.
Under an unsupervised adaptation protocol, ReCo+ outperforms the state-of-the-art by a large margin
on the Cityscapes and KITTI-STEP. On COCO-Stuff, ReCo+ achieves slightly lower pixel accuracy
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Model Acc. mIoU

Zero-shot transfer
DenseCLIP‡ [96] 32.3 19.8
ReCo‡ (Ours) 46.6 27.2

Unsupervised adaptation
IIC [34] 21.8 6.7
MDC [12] 32.2 9.8
PiCIE [12] 48.1 13.8
PiCIE + H [12] 50.0 14.4
STEGO [24] 56.9 28.2
ReCo+‡ (Ours) 54.5 33.0

Model Acc. mIoU

Zero-shot transfer
DenseCLIP⋆‡ [96] 35.9 10.0
MDC⋆† [12] - 7.0
PiCIE⋆† [12] - 9.7
D&S⋆† [85] - 16.2
ReCo⋆‡ (Ours) 65.4 22.0

Unsupervised adaptation
IIC [34] 47.9 6.4
MDC [12] 40.7 7.1
PiCIE [12] 65.5 12.3
STEGO [24] 73.2 21.0
ReCo+‡ (Ours) 83.7 24.2

Model Acc. mIoU

Zero-shot transfer
DenseCLIP‡ [96] 34.1 15.3
ReCo‡ (Ours) 70.6 29.8

Unsupervised adaptation
SegSort [33] 69.8 19.2
HSG [41] 73.8 21.7
ReCo+‡ (Ours) 75.3 31.9

Table 2: Comparison to state-of-the art approaches on COCO-Stuff (left), Cityscapes (middle),
and KITTI-STEP (right) validation sets. ⋆Evaluated at the original resolution. †Models trained
on Waymo Open [81] (reported from [85]). ‡Models that leverage a language-image pre-training
model to assign a concept name to a prediction. The best score for each metric under each protocol is
highlighted in bold. We observe that ReCo and ReCo+ perform strongly relative to prior work under
zero-shot transfer and unsupervised adaptation protocols, respectively.

Figure 5: Co-segmentations of rare concepts. Left: fire extinguisher. Right: Antikythera mech-
anism. We show selected samples from ReCo archives for each concept, together with their co-
segmentations. In each case, ReCo successfully identifies the regions associated with the concept.

compared to [24] but a considerably higher mIoU. In Fig. 1, we visualise the sample predictions of
our models on COCO-Stuff.

4.5 Segmenting rare concepts
By virtue of inheriting CLIP’s diverse knowledge of nameable visual concepts, ReCo exhibits the
ability to segment rare categories. We first demonstrate this ability for fire extinguisher objects,
which have important fire-safety implications but seldom appear in popular semantic segmentation
benchmarks. To assess performance, we evaluate segmentation quality on the FireNet dataset (as
described in Sec. 4.1) and achieve reasonable performance on pixel accuracy (93.3) and IoU (44.9)
metrics. In Fig. 5 (left) we visualise the co-segmentation produced by ReCo across sample images
container fire extinguishers. As an additional demonstration (Fig. 5, right), we also show co-
segmentations for images containing the views of the (unique) Antikythera mechanism. In both cases,
we observe that ReCo is capable of co-segmenting the concept of interest without labelled examples.

5 Limitations
Our work has several limitations: (1) There may be cases for which our first hypothesis does not
hold—concepts so rare that they do not appear in billion-image scale datasets. In such cases, e.g. “a
purple elephant with square orange feet wearing an inverted cowboy hat in front of the Doge’s
Palace”, ReCo will struggle. (2) During inference, we make use of a visual encoder and a pre-trained
language-image model, i.e., CLIP (a computationally heavy model). Future work could address this
with training a light student network which distills knowledge from both models. (3) We employ
ImageNet as the unlabelled image collection for our primary investigations, which is known to exhibit
an object-centric bias. While qualitative results suggest that ReCo can learn from extremely diverse
data [75], a more comprehensive empirical evaluation would strengthen this result. (4) Models like
CLIP are expensive to train and are consequently updated infrequently. If a new concept emerges
(e.g. a new product) after CLIP was trained, ReCo will be unable to build an archive to enable
co-segmentation for this concept. (5) Although our work is unsupervised in the sense that it is
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not trained on pixel-level annotation, the ablation studies on PASCAL-Context have guided the
development of our method, and thus it benefits from a form of indirect supervision. As a result, our
design likely contains choices that subtly favour performance on the evaluation tasks.

6 Broader impact
Semantic segmentation is a dual use technology. It enables many applications with the potential for
significant positive societal impact across domains in medical imaging, wildlife monitoring, improved
fault detection in manufacturing processes etc. However, it is also vulnerable to abuse: it may enable
unlawful surveillance or invasions of privacy, for example. By removing the requirement to collect
pixel masks for concepts of interests, ReCo lowers the barrier to entry for any individual that wish to
make practical use of segmentation, but makes no distinction on the ethical implications of the use
case, positive or negative.

ReCo makes use of large-scale, unlabelled image collections. By their nature, such images are subject
to minimal curation and sanitisation, and thus may contain not only biases across demographics, but
also content that does not align with the ethical values of the user. Consequently, we emphasise that
ReCo represents a research proof of concept that is not appropriate for real-world usage without
extensive additional analysis of the specific deployment context in which it will be used and, in
particular, safeguards to moderate the archive curation process.

7 Conclusion
In this work, we introduced the ReCo framework for semantic segmentation zero-shot transfer. By
drawing on the strengths of large-scale language-image pre-training and modern visual backbones,
ReCo attains the ability to segment rare concepts and to directly assign names to concepts without
labelled examples from the target distribution. In addition, experimental comparisons demonstrate
that ReCo strongly outperforms existing zero-shot transfer approaches that forgo pixel supervision.
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