A Missing privacy proofs

A.1 Proof of Lemma 2.3

We restate the lemma for convenience.

Lemma 2.3. Let $M_1: \mathbb{G} \to \mathcal{M}_1$ be a randomized algorithm that is (ϵ, δ) -DP. Suppose $B \subseteq \mathcal{M}_1$ is a set of "bad outcomes" with $\Pr[M_1(G) \in B] \leq \delta^*$ for any $G \in \mathbb{G}$. Further let $M_2: \mathbb{G} \times \mathcal{M}_1 \to \mathcal{M}_2$ be a deterministic algorithm such that for every fixed "non-bad" $m_1 \in \mathcal{M}_1 \setminus B$ we have $M_2(G, m_1) = M_2(G', m_1)$ for adjacent $G, G' \in \mathbb{G}$. Then the composed mechanism $\mathbb{G} \ni G \mapsto M_2(G, M_1(G)) \in \mathcal{M}_2$ is $(\epsilon, \delta + \delta^*)$ -DP.

The proof is routine:

Proof. Fix $G, G' \in \mathbb{G}$ and a set of outcomes $S_2 \subseteq \mathcal{M}_2$. Define

$$S_1^* := \{ m_1 \in \mathcal{M}_1 \setminus B : M_2(G, m_1) \in S_2 \}.$$

By assumption we have

$$S_1^* = \{ m_1 \in \mathcal{M}_1 \setminus B : M_2(G', m_1) \in S_2 \}. \tag{4}$$

Now we can write

$$\begin{split} \Pr\left[M_2(G,M_1(G)) \in S_2\right] &\leq \Pr\left[M_1(G) \in B\right] + \Pr\left[M_1(G) \not\in B \text{ and } M_2(G,M_1(G)) \in S_2\right] \\ &\leq \delta^* + \Pr\left[M_1(G) \in S_1^*\right] \\ &\stackrel{\mathrm{DP}}{\leq} \delta^* + e^\epsilon \cdot \Pr\left[M_1(G') \in S_1^*\right] + \delta \\ &\stackrel{\text{(4)}}{=} \delta^* + e^\epsilon \cdot \Pr\left[M_1(G') \not\in B \text{ and } M_2(G',M_1(G')) \in S_2\right] + \delta \\ &\leq \delta^* + e^\epsilon \cdot \Pr\left[M_2(G',M_1(G')) \in S_2\right] + \delta \,. \end{split}$$

A.2 Proof of Theorem 4.4

We restate the theorem for convenience.

Theorem 4.4. By a state let us denote the noised-agreement status of all edges in $E(G) \cup E(G')$ and heavy/light status of all vertices. Under a fixed state, consider Line 4 as a deterministic algorithm that, given G or G', outputs the final clustering. Then this clustering does not depend on whether the input graph is G or G', except on a set of states that arises with probability at most $\frac{3}{4}\delta$ (when steps before Line 4 are executed on either of G or G').

Let us analyze how adding a single edge (x, y) can influence the output of Line 4. Namely, we will show that it cannot, unless at least one of certain bad events happens. We will list a collection of these bad events, and then we will upper-bound their probability.

First, if x and y are not in noised agreement, then (x, y) was removed in Line 2 and the two outputs will be the same. In the remainder we assume that x and y are in noised agreement. Similarly, we can assume that $x, y \in H$ (otherwise they cannot be in noised agreement).

If x and y are both light, then similarly (x, y) will be removed in Line 4 and the two outputs will be the same.

If x and y are both heavy, then (x,y) will survive in \tilde{G} . It will affect the output if and only if it connects two components that would otherwise not be connected. However, intuitively this is unlikely, because x and y are heavy and in noised agreement and thus they should have common neighbors in \tilde{G} . Below (Lemma A.3) we will show that if no bad events (also defined below) happen, then x and y indeed have common neighbors in \tilde{G} .

If x is heavy and y is light, then similarly (x,y) will survive in \tilde{G} , and it will affect the output if and only if it connects two components that would otherwise not be connected and that each contain a heavy vertex. More concretely, we claim that if the outputs are not equal, then y must have a heavy neighbor $z \neq x$ (in \tilde{G}) that has no common neighbors with x (except possibly y). For otherwise:

- if y has a heavy neighbor $z \neq x$ that does have a common neighbor with x (that is not y), then x and y are in the same component in \tilde{G} regardless of the presence of (x, y),
- if y has no heavy neighbor except x, then (as light-light edges are removed) y only has at most x as a neighbor and therefore (x, y) does not influence the output.

Let us call such a neighbor z a bad neighbor. Below (Lemma A.4) we will show that if no bad events (also defined below) happen, then y has no bad neighbors.

Finally, if x is light and y is heavy: analogous to the previous point. We will require that x have no bad neighbor, i.e., neighbor $z \neq y$ that has no common neighbors with y.

Bad events. We start with two helpful definitions.

Definition A.1. We say that a vertex v is TV-light (Truly Very light) if $l(v) \ge (\lambda + \lambda')d(v)$, i.e., v lost a $(\lambda + \lambda')$ -fraction of its neighbors in Line 2.

Definition A.2. We say that two vertices u, v TV-disagree (Truly Very disagree) if $|N(u)\triangle N(v)| \ge (\beta + \beta') \max(d(u), d(v))$.

Recall from Section 3 that we can set $\lambda' = \beta' = 0.1$.

Our bad events are the following:

- 1. x and y TV-disagree but are in noised agreement,
- 2. x is TV-light but is heavy,
- 3. the same for y,
- 4. $x \in H$ but $d(x) < T_1$,
- 5. the same for y,
- 6. for each $z \in N(y) \setminus \{x, y\}$:

6a. y and z do not TV-disagree, and z is TV-light but is heavy, (or)

6b. y and z TV-disagree, but are in noised agreement.

7. similarly for each $z \in N(x) \setminus \{x, y\}$.

Recall that we can assume that $x, y \in H$, so if bad event 4 does not happen, we have

$$d(x) \ge T_1 \tag{5}$$

and similarly for y and bad event 5.

Heavy-heavy case. Let us denote the neighbors of a vertex v in \tilde{G} by $\tilde{N}(v)$; also here we adopt the convention that $v \in \tilde{N}(v)$.

Lemma A.3. If x and y are heavy and bad events 1–5 do not happen, then $|\tilde{N}(x) \cap \tilde{N}(y)| \geq 3$, i.e., x and y have another common neighbor in \tilde{G} .

Proof. Recall that we can assume that x and y are in noised agreement (otherwise the two outputs are equal). Since bad event 1 does not happen, x and y do not TV-disagree, i.e.,

$$|N(x)\triangle N(y)| < (\beta + \beta') \max(d(x), d(y)).$$

From this we get $\min(d(x),d(y)) \geq (1-\beta-\beta')\max(d(x),d(y))$ and thus $d(x)+d(y)=\min(d(x),d(y))+\max(d(x),d(y))\geq (2-\beta-\beta')\max(d(x),d(y))$ and so

$$|N(x)\triangle N(y)| < \frac{\beta + \beta'}{2 - \beta - \beta'} (d(x) + d(y)).$$

Since x is heavy but bad event 2 does not happen, x is not TV-light, i.e., $l(x) < (\lambda + \lambda')d(x)$. Moreover, $l(x) = |N(x) \setminus \tilde{N}(x)|$ because x is heavy (so there are no light-light edges incident to it). We use bad event 3 similarly for y.

We will use the following property of any two sets A, B:

$$|A \cap B| = \frac{|A| + |B| - |A \triangle B|}{2}.$$

Taking these together, we have

$$\begin{split} |\tilde{N}(x) \cap \tilde{N}(y)| &\geq |N(x) \cap N(y)| - |N(x) \setminus \tilde{N}(x)| - |N(y) \setminus \tilde{N}(y)| \\ &= \frac{d(x) + d(y) - |N(x) \triangle N(y)|}{2} - l(x) - l(y) \\ &\geq \frac{1 - \beta - \beta'}{2 - \beta - \beta'} (d(x) + d(y)) - (\lambda + \lambda') (d(x) + d(y)) \\ &= \left(\frac{1 - \beta - \beta'}{2 - \beta - \beta'} - \lambda - \lambda'\right) (d(x) + d(y)) \\ &\geq 3 \,, \end{split}$$

where the last inequality follows since

$$\frac{1-\beta-\beta'}{2-\beta-\beta'} - \lambda - \lambda' \geq \frac{1-0.2-0.1}{2} - 0.2 - 0.1 = 0.05 > 0$$

and as, by (5), we have $d(x) + d(y) \ge 2T_1$, and T_1 is large enough:

$$T_1 \ge \frac{1.5}{\frac{1-\beta-\beta'}{2-\beta-\beta'} - \lambda - \lambda'}.$$
 (6)

Heavy–light case. Without loss of generality assume that x is heavy and y is light. Recall that a bad neighbor of y is a vertex $z \in \tilde{N}(y) \setminus \{x,y\}$ that is heavy and has no common neighbors with x (except possibly y).

Lemma A.4. If x is heavy, y is light, and bad events do not happen, then y has no bad neighbors.

Proof. Suppose that a vertex $z \in \tilde{N}(y) \setminus \{x,y\}$ is heavy; we will show that z must have common neighbors with x.

Since $z \in \tilde{N}(y)$, we have that y and z must be in noised agreement (otherwise (y, z) would have been removed). Since bad event 6b does not happen, y and z do not TV-disagree, i.e.,

$$|N(y)\triangle N(z)| < (\beta + \beta') \max(d(y), d(z))$$

which also implies that $d(z) \ge (1 - \beta - \beta')d(y)$.

Since bad event 6a does not happen, and y and z do not TV-disagree, and z is heavy, thus z is not TV-light, i.e., $l(z) < (\lambda + \lambda')d(z)$.

As in the proof of Lemma A.3, since bad events 1 and 2 do not happen, we have

$$|N(x)\triangle N(y)| < (\beta + \beta') \max(d(x), d(y)),$$

which also implies that $d(x) \ge (1 - \beta - \beta')d(y)$ and $l(x) < (\lambda + \lambda')d(x)$. Similarly as in that proof, we write

$$\begin{split} |\tilde{N}(x) \cap \tilde{N}(z)| &\geq |N(x) \cap N(z)| - |N(x) \setminus \tilde{N}(x)| - |N(z) \setminus \tilde{N}(z)| \\ &= \frac{d(x) + d(z) - |N(x) \triangle N(z)|}{2} - l(x) - l(z) \\ &\geq \frac{d(x) + d(z) - |N(x) \triangle N(y)| - |N(y) \triangle N(z)|}{2} - l(x) - l(z) \\ &\geq \frac{d(x) + d(z) - (\beta + \beta')(d(x) + d(z))}{2} - (\lambda + \lambda')(d(x) + d(z)) \\ &= (1 - \beta - \beta' - 2(\lambda + \lambda')) \frac{d(x) + d(z)}{2} \\ &\geq (1 - \beta - \beta' - 2(\lambda + \lambda')) \frac{d(x) + (1 - \beta - \beta')d(y)}{2} \\ &\geq (1 - \beta - \beta' - 2(\lambda + \lambda')) \frac{2 - \beta - \beta'}{2} T_1 \\ &\geq 2, \end{split}$$

where the second-last inequality follows as, by (5), we have $d(x), d(y) \ge T_1$, and the last inequality follows because

$$1 - \beta - \beta' - 2(\lambda + \lambda') \ge 1 - 0.2 - 0.1 - 2 \cdot (0.2 + 0.1) \ge 0.1 > 0$$

and T_1 is large enough:

events.

$$T_1 \ge \frac{2 \cdot 2}{\left(1 - \beta - \beta' - 2(\lambda + \lambda')\right)\left(2 - \beta - \beta'\right)}.$$
 (7)

Fact A.5. Let $A, c, d \ge 0$. If $d \ge \frac{\ln\left(\frac{c/2}{\delta}\right)}{A}$, then $\frac{1}{2}\exp(-A \cdot d) \le \frac{\delta}{\delta}$.

Proof. A straightforward calculation.

Claim A.6. The probability of bad event 1, conditioned on bad events 4 and 5 not happening, is at most $\delta/8$.

Bounding the probability of bad events. Roughly, our strategy is to union-bound over all the bad

Proof. Start by recalling that by (5), d(x), $d(y) \ge T_1$. We have that the sought probability is at most

$$\Pr\left[\mathcal{E}_{x,y} < -\beta' \cdot \max(d(x), d(y))\right] \le \frac{1}{2} \exp\left(-\frac{\beta' \cdot \max(d(x), d(y))}{\mathcal{E}}\right)$$

where we use \mathcal{E} to denote the magnitude of $\mathcal{E}_{x,y}$, i.e.,

$$\mathcal{E} = \max\left(1, \frac{\gamma\sqrt{\max(d(x), d(y)) \cdot \ln(1/\delta_{\text{agr}})}}{\epsilon_{\text{agr}}}\right).$$

We will satisfy both

$$\frac{1}{2}\exp\left(-\beta'\cdot \max(d(x),d(y))\right) \leq \frac{\delta}{8}$$

and

$$\frac{1}{2} \exp \left(-\frac{\epsilon_{\text{agr}} \cdot \beta' \cdot \max(d(x), d(y))}{\gamma \sqrt{\max(d(x), d(y)) \cdot \ln(1/\delta_{\text{agr}})}} \right) \le \frac{\delta}{8}.$$

For the former, by applying Fact A.5 (for c=8, $A=\beta'$ and $d=\max(d(x),d(y))$) we get that it is enough to have $\max(d(x),d(y))\geq \frac{\ln(4/\delta)}{\beta'}$, which holds when T_1 is large enough:

$$T_1 \ge \frac{\ln(4/\delta)}{\beta'} \,. \tag{8}$$

For the latter, we want to satisfy

$$\frac{1}{2} \exp \left(-\frac{\epsilon_{\mathrm{agr}} \cdot \beta' \cdot \sqrt{\max(d(x), d(y))}}{\gamma \sqrt{\ln(1/\delta_{\mathrm{agr}})}} \right) \leq \frac{\delta}{8} \,.$$

Use Fact A.5 (for c=8, $A=\frac{\epsilon_{\rm agr}\cdot\beta'}{\gamma\sqrt{\ln(1/\delta_{\rm agr})}}$ and $d=\sqrt{\max(d(x),d(y))}$) to get that it is enough to have

$$\sqrt{\max(d(x),d(y))} \geq \frac{\ln(4/\delta) \cdot \gamma \cdot \sqrt{\ln(1/\delta_{\mathrm{agr}})}}{\epsilon_{\mathrm{agr}} \cdot \beta'} \,,$$

which is true when T_1 is large enough:

$$T_1 \ge \left(\frac{\ln(4/\delta) \cdot \gamma}{\epsilon_{\text{agr}} \cdot \beta'}\right)^2 \cdot \ln(1/\delta_{\text{agr}}).$$
 (9)

Claim A.7. The probability of bad event 2, conditioned on bad events 4 and 5 not happening, is at most $\delta/32$.

Proof. Start by recalling that by (5), $d(x) \ge T_1$. If x is TV-light but heavy, then we must have $Y_x < \lambda' \cdot d(x)$. We have that the sought probability is at most

$$\frac{1}{2} \exp\left(-\frac{\lambda' \cdot d(x) \cdot \epsilon}{8}\right)$$

and by Fact A.5 (with c=32, d=d(x) and $A=\frac{\lambda'\cdot\epsilon}{8}$) this is at most $\delta/32$ because $d(x)\geq T_1$ and T_1 is large enough:

$$T_1 \ge \frac{8\ln(16/\delta)}{\lambda' \cdot \epsilon} \,. \tag{10}$$

Claim A.8. The probability of bad event 4 is at most $\delta/32$.

Proof. For bad event 4 to happen, we must have $Z_x \geq T_0 - T_1 = \frac{8\ln(16/\delta)}{\epsilon}$; as $Z_x \sim \text{Lap}(8/\epsilon)$, this happens with probability $\frac{1}{2} \exp(-\ln(16/\delta)) = \delta/32$.

The following two facts are more involved versions of Fact A.5.

Fact A.9. Let
$$A, d \geq 0$$
. If $d \geq \frac{1.6 \ln\left(\frac{4}{\delta A}\right)}{A}$, then $\frac{1}{2} \exp(-A \cdot d) \leq \frac{\delta}{8d}$.

Proof. We use the following analytic inequality: for $\alpha, x > 0$, if $x \ge 1.6 \ln(\alpha)$, then $x \ge \ln(\alpha x)$. We substitute $x = A \cdot d$ and $\alpha = \frac{4}{\delta A}$. Then by the analytic inequality, $A \cdot d \ge \ln\left(\frac{4d}{\delta}\right)$. Negate and then exponentiate both sides.

Fact A.10. Let
$$A, d \ge 0$$
. If $\sqrt{d} \ge \frac{2.8 \cdot \left(1 + \ln\left(\frac{2}{\sqrt{\delta}A}\right)\right)}{A}$, then $\frac{1}{2} \exp(-A \cdot \sqrt{d}) \le \frac{\delta}{8d}$.

Proof. We use the following analytic inequality: for $\alpha, x > 0$, if $x \geq 2.8(\ln(\alpha) + 1)$, then $x \geq 2\ln(\alpha x)$. We substitute $x = A\sqrt{d}$ and $\alpha = \frac{2}{\sqrt{\delta}A}$. Then by the analytic inequality, $A \cdot \sqrt{d} \geq \ln\left(\frac{4d}{\delta}\right)$. Negate and then exponentiate both sides.

Claim A.11. For any $z \in N(y) \setminus \{x, y\}$, the probability of bad event 6a for z, conditioned on bad events 4 and 5 not happening, is at most $\frac{\delta}{8d(y)}$.

Proof. The proof is similar as for Claim A.7 but somewhat more involved as d(y) appears also in the probability bound.

When z is TV-light but heavy, we must have $Y_z < -\lambda' \cdot d(z)$. When y and z do not TV-disagree, we have $d(z) \geq (1-\beta-\beta')d(y)$. Thus, if bad event 6a happens, we must have $Y_z < -\lambda' \cdot (1-\beta-\beta')d(y)$. Thus the sought probability is at most

$$\Pr\left[Y_z < -\lambda' \cdot (1 - \beta - \beta')d(y)\right] = \frac{1}{2} \exp\left(-\frac{\lambda' \cdot (1 - \beta - \beta')d(y) \cdot \epsilon}{8}\right).$$

By Fact A.9 (invoked for d=d(y) and $A=\frac{\lambda'\cdot(1-\beta-\beta')\cdot\epsilon}{8}$), this is at most $\frac{\delta}{8d(y)}$ because $d(y)\geq T_1$ by (5) and T_1 is large enough:

$$T_1 \ge \frac{1.6 \ln \left(\frac{4 \cdot 8}{\delta \lambda' \cdot (1 - \beta - \beta') \cdot \epsilon} \right) \cdot 8}{\lambda' \cdot (1 - \beta - \beta') \cdot \epsilon}. \tag{11}$$

Claim A.12. For any $z \in N(y) \setminus \{x, y\}$, the probability of bad event 6b for z, conditioned on bad events 4 and 5 not happening, is at most $\frac{\delta}{8d(y)}$.

Proof. The proof is similar as for Claim A.6 but somewhat more involved as d(y) appears also in the probability bound. Start by recalling that by (5), $d(y) \ge T_1$. We have that the sought probability is at most

$$\Pr\left[\mathcal{E}_{y,z} < -\beta' \cdot \max(d(y), d(z))\right] \le \frac{1}{2} \exp\left(-\frac{\beta' \cdot \max(d(y), d(z))}{\mathcal{E}}\right)$$

where we use $\mathcal E$ to denote the magnitude of $\mathcal E_{y,z}$, i.e.

$$\mathcal{E} = \max\left(1, \frac{\gamma\sqrt{\max(d(y), d(z)) \cdot \ln(1/\delta_{\text{agr}})}}{\epsilon_{\text{agr}}}\right).$$

We will satisfy both

$$\frac{1}{2}\exp\left(-\beta'\cdot\max(d(y),d(z))\right) \le \frac{1}{2}\exp\left(-\beta'\cdot d(y)\right) \le \frac{\delta}{8d(y)} \tag{12}$$

and

$$\frac{1}{2} \exp\left(-\frac{\epsilon_{\operatorname{agr}} \cdot \beta' \cdot \max(d(y), d(z))}{\gamma \sqrt{\max(d(y), d(z)) \cdot \ln(1/\delta_{\operatorname{agr}})}}\right) \le \frac{1}{2} \exp\left(-\frac{\epsilon_{\operatorname{agr}} \cdot \beta' \cdot \sqrt{d(y)}}{\gamma \sqrt{\ln(1/\delta_{\operatorname{agr}})}}\right) \le \frac{\delta}{8d(y)}. \quad (13)$$

For the former, by applying Fact A.9 (for $A = \beta'$ and d = d(y)) we get that (12) holds because $d(y) \ge T_1$ and T_1 is large enough:

$$T_1 \ge \frac{1.6 \ln \left(\frac{4}{\delta \cdot \beta'}\right)}{\beta'} \,. \tag{14}$$

For the latter, by applying Fact A.10 (for $A = \frac{\epsilon_{\text{agr}} \cdot \beta'}{\gamma \sqrt{\ln(1/\delta_{\text{agr}})}}$ and d = d(y)) we get that (13) holds because $d(y) \geq T_1$ and T_1 is large enough:

$$T_{1} \ge \left(\frac{2.8\left(1 + \ln\left(\frac{2}{\sqrt{\delta A}}\right)\right)}{A}\right)^{2} = \left(\frac{2.8\left(1 + \ln\left(\frac{2\gamma\sqrt{\ln(1/\delta_{\mathrm{agr}})}}{\sqrt{\delta \epsilon_{\mathrm{agr}} \cdot \beta'}}\right)\right)\gamma\sqrt{\ln(1/\delta_{\mathrm{agr}})}}{\epsilon_{\mathrm{agr}} \cdot \beta'}\right)^{2}. \quad (15)$$

Now we may conclude the proof of Theorem 4.4. We use the property that if A, B are events, then $\Pr[A \cup B] \leq \Pr[A] + \Pr[B \mid \text{not } A]$ (with A being bad events 4 or 5). By Claim A.8, the probability of bad events 4 or 5 is at most $\delta/16$. Conditioned on these not happening, bad event 1 is handled by Claim A.6 and bad events 2–3 are handled by Claim A.7; these incur $\delta/8 + 2 \cdot \delta/32$, in total $\delta/4$ so far. Next, there are d(y) bad events of type 6a (and the same for 6b), thus we get $2 \cdot d(y) \cdot \frac{\delta}{8d(y)} = \delta/4$ by Claims A.11 and A.12; and we get the same from bad events 7a and 7b. Summing everything up yields $\frac{3}{4}\delta$.

B Proofs Missing from Section 5

B.1 Proof of Lemma 5.1

First, we prove the following claim.

Lemma B.1. Let $\overline{\beta^L}$, $\overline{\beta^U} \in \mathbb{R}_{\geq 0}^{V \times V}$ and $\overline{\lambda^L}$, $\overline{\lambda^U} \in \mathbb{R}_{\geq 0}^{V}$ such that $\overline{\beta^U} \geq \overline{\beta^L}$ and $\overline{\lambda^U} \geq \overline{\lambda^L}$. Let E_{rem} be a subset of edges. Then, the following holds:

- (A) If v is light in $ALG-CC(\overline{\beta^U}, \overline{\lambda^U}, E_{rem})$, then v is light in $ALG-CC(\overline{\beta^L}, \overline{\lambda^L}, E_{rem})$.
- (B) If v is heavy in $ALG-CC(\overline{\beta^L}, \overline{\lambda^L}, E_{rem})$, then v is heavy in $ALG-CC(\overline{\beta^U}, \overline{\lambda^U}, E_{rem})$.
- (C) If an edge e is removed in $ALG-CC(\overline{\beta^U}, \overline{\lambda^U}, E_{rem})$, then e is removed in $ALG-CC(\overline{\beta^L}, \overline{\lambda^L}, E_{rem})$ as well.
- (D) If an edge e remains in $ALG-CC(\overline{\beta^L}, \overline{\lambda^L}, E_{rem})$, then e remains in $ALG-CC(\overline{\beta^U}, \overline{\lambda^U}, E_{rem})$ as well.

Proof. Observe that $|N(u)\triangle N(v)| \leq \overline{\beta^L}_{u,v} \max\{d(u),d(v)\}$ implies $|N(u)\triangle N(v)| \leq \overline{\beta^U}_{u,v} \max\{d(u),d(v)\}$ as $\overline{\beta^L}_{u,v} \leq \overline{\beta^U}_{u,v}$. Hence, if u and v are in agreement in ALG-CC($\overline{\beta^U},\overline{\lambda^U},E_{\rm rem}$), then u and v are in agreement in ALG-CC($\overline{\beta^U},\overline{\lambda^U},E_{\rm rem}$) as well. Similarly, if u and v are not in agreement in ALG-CC($\overline{\beta^U},\overline{\lambda^U},E_{\rm rem}$), then u and v are not in agreement in ALG-CC($\overline{\beta^U},\overline{\lambda^U},E_{\rm rem}$) as well. These observations immediately yield Properties (A) and (B).

To prove Properties (C) and (D), observe that an edge $e = \{u,v\}$ is removed from a graph if u and v are not in agreement, or if u and v are light, or if $e \in E_{\text{rem}}$. From our discussion above and from Property (A), if e is removed from ALG-CC($\overline{\beta^U}, \overline{\lambda^U}, E_{\text{rem}}$), then e is removed from ALG-CC($\overline{\beta^L}, \overline{\lambda^L}, E_{\text{rem}}$) as well. On the other hand, $e \notin E_{\text{rem}}$ remains in ALG-CC($\overline{\beta^L}, \overline{\lambda^L}, E_{\text{rem}}$) if u and v are in agreement, and if u or v is heavy. Property (B) and our discussion about vertices in agreement imply Property (D).

As a corollary, we obtain the proof of Lemma 5.1.

Lemma 5.1. Let $\overline{\beta^L}, \overline{\beta^U} \in \mathbb{R}_{\geq 0}^{V \times V}$ and $\overline{\lambda^L}, \overline{\lambda^U} \in \mathbb{R}_{\geq 0}^V$ such that $\overline{\beta^U} \geq \overline{\beta^L}$ and $\overline{\lambda^U} \geq \overline{\lambda^L}$.

- (i) If u and v are in the same cluster of ALG-CC($\overline{\beta^L}$, $\overline{\lambda^L}$, E_{rem}), then u and v are in the same cluster of ALG-CC($\overline{\beta^U}$, $\overline{\lambda^U}$, E_{rem}).
- (ii) If u and v are in different clusters of ALG-CC($\overline{\beta^U}$, $\overline{\lambda^U}$, E_{rem}), then u and v are different clusters of ALG-CC($\overline{\beta^L}$, $\overline{\lambda^L}$, E_{rem}).

Proof. (i) Consider a path P between u and v that makes them being in the same cluster/component in $ALG\text{-}CC(\overline{\beta^L}, \overline{\lambda^L}, E_{rem})$. Then, by Lemma B.1 (D) P remains in $ALG\text{-}CC(\overline{\beta^U}, \overline{\lambda^U}, E_{rem})$ as well. Hence, u and v are in the same cluster of $ALG\text{-}CC(\overline{\beta^U}, \overline{\lambda^U}, E_{rem})$.

(ii) Follows from Property (i) by contraposition.

B.2 Proof of Lemma 5.3

We begin by proving the following claim.

¹Also, by contraposition, Property (D) follows from Property (C) and Property (B) follows from Property (A).

Lemma B.2. Let ALG-CC' be a version of ALG-CC that does not make singletons of light vertices on Line 4 of Algorithm 2. Let $\overline{\beta} \in \mathbb{R}^{V \times V}_{\geq 0}$ and $\overline{\lambda} \in \mathbb{R}^{V}_{\geq 0}$ be two constant vectors, i.e., $\overline{\beta} = \beta \overline{1}$ and $\overline{\lambda} = \lambda \overline{1}$. Assume that $5\beta + 2\lambda < 1$. Then, it holds

$$cost(ALG-CC'(\overline{\beta}, \overline{\lambda}, E_{\leq T})) \leq O(OPT/(\beta\lambda)) + O(n \cdot T/(1 - 4\beta)^3),$$

where OPT denotes the cost of the optimum clustering for the input graph.

Proof. Consider a non-singleton cluster C output by $ALG-CC'(\overline{\beta}, \overline{\lambda}, \emptyset)$. Let u be a vertex in C. We now show that for any $v \in C$, such that u or v is heavy, it holds that $d(v) \geq (1 - 4\beta)d(u)$. To that end, we recall that in [CALM⁺21] (Lemma 3.3 of the arXiv version) it was shown that

$$|N(u)\triangle N(v)| \le 4\beta \max\{d(u), d(v)\}. \tag{16}$$

Assume that $d(u) \ge d(v)$, as otherwise $d(v) \ge (1 - 4\beta)d(u)$ holds directly. Then, from Eq. (16) we have

$$d(u) - d(v) \le |N(u)\triangle N(v)| \le 4\beta d(u),$$

further implying

$$d(v) \ge (1 - 4\beta)d(u).$$

Moreover, this provides a relation between d(v) and d(u) even if both vertices are light. To see that, fix any heavy vertex z in the cluster. Any vertex u has $d(u) \le d(z)/(1-4\beta)$ and also $d(u) \ge (1-4\beta)d(z)$. This implies that if u and v belong to the same cluster than $d(u) \ge (1-4\beta)^2 d(v)$, even if both u and v are light.

Let $E_{\leq T}$ be a subset (any such) of edges incident to vertices with degree at most T. We will show that forcing ALG-CC' to remove $E_{\leq T}$ does not affect how vertices of degree at least $T/(1-4\beta)^3$ are clustered by ALG-CC'. To see that, observe that a vertex x having degree at most T and a vertex y having degree at least $T/(1-\beta)+1$ are not in agreement. Hence, forcing ALG-CC' to remove $E_{\leq T}$ does not affect whether vertex y is light or not.

However, removing $E_{\leq T}$ might affect whether a vertex z with degree $T/(1-\beta) < T/(1-4\beta)$ is light or not. Nevertheless, from our discussion above, a vertex y with degree at least $T/(1-4\beta)^3$ is not clustered together with z by ALG-CC $'(\beta,\lambda,\emptyset)$, regardless of whether z is heavy or light.

This implies that the cost of clustering vertices of degree at least $T/(1-4\beta)^3$ by ALG-CC $'(\beta,\lambda,E_{\leq T})$ is upper-bounded by $\mathrm{cost}(\mathsf{ALG-CC}'(\overline{\beta},\overline{\lambda},\emptyset)) \leq O(OPT/(\beta\lambda))$. Notice that the inequality follows since ALG-CC $'(\overline{\beta},\overline{\lambda},\emptyset)$ is a $O(1/(\beta\lambda))$ -approximation of OPT and $\beta<0.2$.

It remains to account for the cost effect of $\mathrm{ALG\text{-}CC'}(\overline{\beta}, \overline{\lambda}, E_{\leq T})$ on the vertices of degree less than $T/(1-4\beta)^3$. This part of the analysis follows from the fact that forcing $\mathrm{ALG\text{-}CC'}$ to remove $E_{\leq T}$ only reduces connectivity compared to the output of $\mathrm{ALG\text{-}CC'}$ without removing $E_{\leq T}$. That is, in addition to removing edges even between vertices that might be in agreement, removal of $E_{\leq T}$ increases a chance for a vertex to become light. Hence, the clusters of $\mathrm{ALG\text{-}CC'}$ with removals of $E_{\leq T}$ are only potentially further clustered compared to the output of $\mathrm{ALG\text{-}CC'}$ without the removal. This means that $\mathrm{ALG\text{-}CC'}$ with the removal of $E_{\leq T}$ potentially cuts additional "+" edges, but it does not include additional "-" edges in the same cluster. Given that only vertices of degree at most $T/(1-4\beta)^3$ are affected, the number of additional "+" edges cut is $O(n \cdot T/(1-4\beta)^3)$.

This completes the analysis.

Lemma 5.3. Let Algorithm 1' be a version of Algorithm 1 that does not make singletons of light vertices on Line 4. Assume that $5\beta + 2\lambda < 1/1.1$ and also assume that β and λ are positive constants. With probability at least $1 - n^{-2}$, Algorithm 1' provides a solution which has O(1) multiplicative and $O\left(n \cdot \left(\frac{\log n}{\epsilon} + \frac{\log^2 n \cdot \log(1/\delta)}{\min(1, \epsilon^2)}\right)\right)$ additive approximation.

Proof. We now analyze under which condition noised agreement and $\hat{l}(v)$ can be seen as a slight perturbation of β and λ . That will enable us to employ Lemmas 5.2 and B.2 to conclude the proof of this theorem.

Analyzing noised agreement. Recall that a noised agreement (Definition 3.1) states

$$|N(u)\triangle N(v)| + \mathcal{E}_{u,v} < \beta \cdot \max(d(u), d(v)).$$

This inequality can be rewritten as

$$|N(u)\triangle N(v)| < \left(1 - \frac{\mathcal{E}_{u,v}}{\beta \cdot \max(d(u), d(v))}\right)\beta \cdot \max(d(u), d(v)).$$

As a reminder, $\mathcal{E}_{u,v}$ is drawn from $\operatorname{Lap}(C_{u,v}\cdot\sqrt{\max(d(u),d(v))\ln(1/\delta)}/\epsilon_{\operatorname{agr}})$, where $C_{u,v}$ can be upper-bounded by $C=\sqrt{4\epsilon_{\operatorname{agr}}+1}+1$. Let $b=C\cdot\sqrt{\max(d(u),d(v))\ln(1/\delta)}/\epsilon_{\operatorname{agr}}$. From Fact 2.5 we have that

$$\Pr\left[|\mathcal{E}_{u,v}| > 5 \cdot b \cdot \log n\right] \le n^{-5}.$$

Therefore, with probability at least $1 - n^{-5}$ we have that

$$\left|\frac{\mathcal{E}_{u,v}}{\beta \cdot \max(d(u),d(v))}\right| \leq \frac{5 \cdot \log n \cdot C \cdot \sqrt{\max(d(u),d(v))\ln(1/\delta)}}{\epsilon_{\mathrm{agr}} \cdot \beta \cdot \max(d(u),d(v))} = \frac{5 \cdot \log n \cdot C \cdot \sqrt{\ln(1/\delta)}}{\epsilon_{\mathrm{agr}} \cdot \beta \cdot \sqrt{\max(d(u),d(v))}}$$

Therefore, for $\max(d(u),d(v)) \geq \frac{2500 \cdot C^2 \cdot \log^2 n \cdot \log(1/\delta)}{\beta^2 \cdot \epsilon_{\mathrm{agr}}^2}$ we have that with probability at least $1-n^{-5}$ it holds

$$1 - \frac{\mathcal{E}_{u,v}}{\beta \cdot \max(d(u), d(v))} \in [9/10, 11/10].$$

Analyzing noised l(v). As a reminder, $\hat{l}(v) = l(v) + Y_v$, where Y_v is drawn from $\text{Lap}(8/\epsilon)$. The condition $\hat{l}(v) > \lambda d(v)$ can be rewritten as

$$l(v) > \left(1 - \frac{Y_v}{\lambda d(v)}\right) \lambda d(v).$$

Also, we have

$$\Pr\left[|Y_v| > \frac{40\log n}{\epsilon}\right] < n^{-5}.$$

Hence, if $d(v) \geq \frac{400 \log n}{\lambda \epsilon}$ then with probability at least $1 - n^{-5}$ we have that

$$1 - \frac{Y_v}{\lambda d(v)} \in [9/10, 11/10].$$

Analyzing noised degrees. Recall that noised degree $\hat{d}(v)$ is defined as $\hat{d}(v) = d(v) + Z_v$, where Z_v is drawn from $\text{Lap}(8/\epsilon)$. From Fact 2.5 we have

$$\Pr\left[|Z_v| > \frac{40\log n}{\epsilon}\right] < n^{-5}.$$

Hence, with probability at least $1-n^{-5}$, a vertex of degree at least $T_0+40\log n/\epsilon$ is in H defined on Line 1 of Algorithm 1. Also, with probability at least $1-n^{-5}$ a vertex with degree less than $T_0-40\log n/\epsilon$ is not in H.

Combining the ingredients. Define

$$T' = \max\left(\frac{400\log n}{\lambda \epsilon}, \frac{2500 \cdot C^2 \cdot \log^2 n \cdot \log(1/\delta)}{\beta^2 \cdot \epsilon_{\text{agr}}^2}\right)$$

Our analysis shows that for a vertex v such that $d(v) \ge T'$ the following holds with probability at least $1 - 2n^{-5}$:

- (i) The perturbation by $\mathcal{E}_{u,v}$ in Definition 3.1 can be seen as multiplicatively perturbing $\overline{\beta}_{u,v}$ by a number from the interval [-1/10, 1/10].
- (ii) The perturbation of l(v) by Y_v can be seen as multiplicatively perturbing $\overline{\lambda}_v$ by a number from the interval [-1/10, 1/10].

Let $T = T_0 + \frac{40 \log n}{\epsilon}$. Let $T_0 \ge T' + \frac{40 \log n}{\epsilon}$. Note that this imposes a constraint on T_1 , which is

$$T_1 \ge T' + \frac{40\log n}{\epsilon} - \frac{8\log(16/\delta)}{\epsilon}.$$
 (17)

Then, following our analysis above, each vertex in H has degree at least T', and each vertex of degree at least T is in H. Let $E_{\leq T}$ be the set of edges incident to vertices which are not in H; these edges are effectively removed from the graph. Observe that for a vertex u which do not belong to H it is irrelevant what $\overline{\beta}_{u,\cdot}$ values are or what $\overline{\lambda}_u$ is, as all its incident edges are removed. To conclude the proof, define $\overline{\beta^L} = 0.9 \cdot \beta \cdot \overline{1}, \overline{\beta^U} = 1.1 \cdot \beta \cdot \overline{1}, \overline{\lambda^L} = 0.9 \cdot \lambda \cdot \overline{1}, \text{ and } \overline{\lambda^U} = 1.1 \cdot \lambda \cdot \overline{1}.$ By Lemma 5.2 and Properties (i) and (ii) we have that

$$\operatorname{cost}(\operatorname{Algorithm} 1') \leq \operatorname{cost}(\operatorname{ALG-CC}(\overline{\beta^L}, \overline{\lambda^L}, E_{\leq T})) + \operatorname{cost}(\operatorname{ALG-CC}(\overline{\beta^U}, \overline{\lambda^U}, E_{\leq T})).$$

By Lemma B.2 the latter sum is upper-bounded by $O(OPT/(\beta\lambda)) + O(n \cdot T/(1-4\beta)^3)$. Note that we replace the condition $5\beta + 2\lambda$ in the statement of Lemma B.2 by $5\beta + 2\lambda < 1/1.1$ in this lemma so to account for the perturbations. Moreover, we can upper-bound T by

$$T \le O\left(\frac{\log n}{\lambda \epsilon} + \frac{\log^2 n \cdot \log(1/\delta)}{\beta^2 \cdot \min(1, \epsilon^2)}\right).$$

In addition, all discussed bound hold across all events with probability at least $1 - n^{-2}$. This concludes the analysis.

B.3 Proof of Lemma 5.4

Lemma 5.4. Consider all lights vertices defined in Line 4 of Algorithm 1. Assume that $5\beta + 2\lambda < 1/1.1$. Then, with probability at least $1 - n^{-2}$, making as singleton clusters any subset of those light vertices increases the cost of clustering by $O(\text{OPT}/(\beta \cdot \lambda)^2)$, where OPT denotes the cost of the optimum clustering for the input graph.

Proof. Consider first a single light vertex v which is not a singleton cluster. Let C be the cluster of \hat{G}' that v initially belongs to. We consider two cases. First, recall that from our proof of Lemma 5.3 that, with probability at least $1-n^{-2}$, we have that $0.9\lambda \leq \overline{\lambda}_v \leq 1.1\lambda$ and $0.9\beta \leq \overline{\beta}_{u,v} \leq 1.1\beta$, where $\overline{\lambda}$ and $\overline{\beta}$ are inputs to ALG-CC.

Case 1: v has at least $\overline{\lambda}_v/2$ fraction of neighbors outside C. In this case, the cost of having v in C is already at least $d(v) \cdot \overline{\lambda}_v/2 \ge d(v) \cdot 0.9 \cdot \lambda/2$, while having v as a singleton has cost d(v).

Case 2: v has less than $\overline{\lambda}_v/2$ fraction of neighbors outside C. Since v is not in agreement with at least $\overline{\lambda}_v$ fraction of its neighbors, this case implies that at least $\overline{\lambda}_v/2 \ge 0.9 \cdot \lambda/2$ fraction of those neighbors are in C. We now develop a charging arguments to derive the advertised approximation.

Let $x \in C$ be a vertex that v is not in a agreement with. Then, for a fixed x and v in the same cluster of \hat{G}' , there are at least $O(d(v)\beta)$ vertices z (incident to x or v, but not to the other vertex) that the current clustering is paying for. In other words, the current clustering is paying for edges of the form $\{z,x\}$ and $\{z,v\}$; as a remark, z does not have to belong to C. Let Z(v) denote the multiset of all such edges for a given vertex v. We charge each edge in Z(v) by $O(1/(\beta\lambda))$.

On the other hand, making v a singleton increases the cost of clustering by at most d(v). We now want to argue that there is enough charging so that we can distribute the cost d(v) (for making v a singleton cluster) over Z(v) and, moreover, do that for all light vertices v simultaneously. There are at least $O(\beta \cdot d(v) \cdot \lambda \cdot d(v))$ edges in Z(v); recall that Z(v) is a multiset. We distribute uniformly the cost d(v) (for making v a singleton) across Z(v), incurring $O(1/(\beta \cdot \lambda \cdot d(v)))$ cost per an element of Z(v).

Now it remains to comment on how many times an edge appears in the union of all $Z(\cdot)$ multisets. Edge $z_e = \{x,y\}$ in included in $Z(\cdot)$ when x and its neighbor, or y and its neighbor are considered. Moreover, those neighbors belong to the same cluster of \hat{G}' and hence have similar degrees (i.e., as shown in the proof of Lemma B.2, their degrees differ by at most $(1-4\beta)^2$ factor). Hence, an edge $z_e \in Z(v)$ appears O(d(v)) times across all $Z(\cdot)$, which concludes our analysis.

C Lower bound

In this section we show that any private algorithm for correlation clustering must incur at least $\Omega(n)$ additive error in the approximation guarantee, regardless of its multiplicative approximation ratio. The following is a restatement of Theorem 1.2.

Theorem C.1. Let A be an (ϵ, δ) -DP algorithm for correlation clustering on unweighted complete graphs, where $\epsilon \leq 1$ and $\delta \leq 0.1$. Then the expected cost of A is at least n/20, even when restricted to instances whose optimal cost is 0.

Proof. Fix an even number n=2m of vertices and consider the fixed perfect matching $(1,2), (3,4), \ldots, (2m-1,2m)$. For every vector $\tau \in \{0,1\}^m$ we consider the instance I_τ obtained by having plus-edges (2i-1,2i) for those $i=1,\ldots,m$ where $\tau_i=1$ (and minus-edges for i with $\tau_i=0$, as well as everywhere outside this perfect matching). Note that this instance is a complete unweighted graph and has optimal cost 0.

For $\tau \in \{0,1\}^m$ and $i \in \{1,...,m\}$ define $p_{\tau}^{(i)}$ to be the marginal probability that vertices 2i-1 and 2i are in the same cluster when $\mathcal A$ is run on the instance I_{τ} .

Finally, for $\sigma \in \{0,1\}^{m-1}$, $i \in \{1,...,m\}$ and $b \in \{0,1\}$ let $\sigma[i \leftarrow b]$ be the vector σ with the bit b inserted at the i-th position to obtain an m-dimensional vector (note that σ is (m-1)-dimensional). Note that $I_{\sigma[i \leftarrow 0]}$ and $I_{\sigma[i \leftarrow 1]}$ are adjacent instances. Thus (ϵ, δ) -privacy gives

$$p_{\sigma[i\leftarrow 1]}^{(i)} \le e^{\epsilon} \cdot p_{\sigma[i\leftarrow 0]}^{(i)} + \delta \tag{18}$$

for all i and σ .

Towards a contradiction assume that A achieves expected cost at most 0.05n = 0.1m on every instance I_{τ} . In particular, the expected cost on the matching minus-edges is at most 0.1m, i.e.,

$$0.1m \ge \sum_{i:\tau_i=0} p_{\tau}^{(i)}$$
.

Summing this up over all vectors $\tau \in \{0,1\}^m$ we get

$$2^{m} \cdot 0.1m \ge \sum_{\tau \in \{0,1\}^{m}} \sum_{i:\tau_{i}=0} p_{\tau}^{(i)} = \sum_{i} \sum_{\sigma \in \{0,1\}^{m-1}} p_{\sigma[i \leftarrow 0]}^{(i)}$$
(19)

and similarly since the expected cost on the matching plus-edges is at most 0.1m, we get

$$\begin{split} 2^m \cdot 0.1m &\geq \sum_{\tau \in \{0,1\}^m} \sum_{i:\tau_i = 1} (1 - p_{\tau}^{(i)}) \\ &= \sum_i \sum_{\sigma \in \{0,1\}^{m-1}} (1 - p_{\sigma[i \leftarrow 1]}^{(i)}) \\ &\stackrel{(18)}{\geq} \sum_i \sum_{\sigma \in \{0,1\}^{m-1}} (1 - e^{\epsilon} \cdot p_{\sigma[i \leftarrow 0]}^{(i)} - \delta) \\ &= (1 - \delta) \cdot m \cdot 2^{m-1} - e^{\epsilon} \cdot \sum_i \sum_{\sigma \in \{0,1\}^{m-1}} p_{\sigma[i \leftarrow 0]}^{(i)} \\ &\stackrel{(19)}{\geq} (1 - \delta) \cdot m \cdot 2^{m-1} - e^{\epsilon} \cdot 2^m \cdot 0.1m \\ &\geq 0.45 \cdot m \cdot 2^m - 0.1e \cdot 2^m \cdot m \,. \end{split}$$

Dividing by $2^m \cdot m$ gives $0.1 \ge 0.45 - 0.1e$, which is a contradiction.