
A Appendix

A.1 Additional Discussion

Ethical Considerations and Societal Impact. In general, algorithms that are developed for high-
stakes domains, such as healthcare, should be carefully validated before deployment into real-world
settings. In our work, we consider the application of diagnosing disease based on chest X-rays, with
the goal of preventing a model from using a shortcut, S present in biased training data. The approach
assumes that C is invariant to S. While one may test the robustness of our approach in preventing the
use of many measurable shortcuts, such as patient age, sex, and race, there exists no exhaustive list of
such shortcuts. Thus, it is important to thoroughly validate such algorithms.

A.2 Derivation of the least squared solution for Section 3.1.3

Given X = [C, S, U ], Y = C + U , corr(C,U) ̸= 1, and C = S in D, a least squares linear
regression solution gives a prediction of Ŷ = (1− t)C + U + tS.
Proof. We know C + U is a solution because they give 0 loss. Since C = S in the dataset,
(1− t)C + tS + U is also a solution for any t ∈ R. Since U and C are not co-linear, the solution
has rank 2. By the rank nullity theorem, we know the null space has dimension 1 (because the
dimension of input is 3), thus its least squares solutions also has dimension of 1, which shows that
(1− t)C + tS + U are all the solutions that minimizes the loss.

The minimum L2 norm solution of this problem results in t = 0.5
Proof. Given the solution is (1−t)C+tS+U , we minimize the coefficient with L2 loss: argmint(1−
t)2 + t2 + 1, which solves to t = 0.5.

If we only use C for prediction (i.e., CBM), the solution will not achieve a loss of 0 since it ignores
U .

Proof. Even with infinite training data, fitting Y using C results in E(Y |C) = C +E(U |C). The L2

loss with Y is thus E((U − E(U |C))2), which is non-zero when C and U are not co-linear.

A.3 Introducing a shortcut in CUB dataset

To introduce σ as a shortcut, we correlate it with bird classes in the training dataset. Specifically, we
correlate σ to Y through C, using the following function:

1: function BIAS(X)
2: ss← linspace(0, 0.1, nσ)
3: if Uniform(0, 1) < T then
4: σ← ss[argmax(CBMO(X)) mod nσ]
5: else
6: σ← randomChoice(ss)
7: end if
8: return X +N(0, σ2)

The algorithm starts by uniformly spacing nσ levels of noise between 0 and 0.1 (line 2). Setting nσ

to 200 would be equivalent to each bird species having its own level of noise. To simulate a more
realistic setting, we arbitrarily set nσ = 10, allowing multiple birds to share a noise level. We show
in A.4 that varying nσ does not affect our results. We then use modular arithmetic to ensure that
each of the 200 bird types gets mapped onto one of the 10 noise levels. Then with probability T ,
we correlate σ with the bird class predicted from an oracle model CBMO. CBMO is similar to the
CBM baseline explained above, with the exception that it has oracle access to a noise free dataset at
training time (line 3-4) 2. By using predictions from CBMO rather than the true labels, we ensure
that σ contains information about Y through C. We test breaking this assumption later. Then with
probability 1 − T , we break the correlation between σ and Y by randomly choosing a noise level
(line 5-6). Finally we return an image with shortcut.

2We note that CBMO is not a valid baseline as it is trained on the clean dataset, while all baselines are
trained on the biased dataset. It simply serves as an approach to satisfy A2.
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(a) Test Accuracy (biased) violating A1 (b) Test Accuracy (biased) violating A2

Figure 4: (a) When A1 is broken by adding bias to how C is trained, the biased dataset performances
are constant across methods. Note that except for CBM, all methods performed about the same. (b)
When A2 is broken by replacing dimensions of C with random noise, the predictive power of CBM
decreases, yet other methods have similar performance on the biased dataset because they can learn
from X in addition to C.

(a) Test Acc (biased) (b) Test Acc (clean)

Figure 5: Results of relaxing A2 by making S more informative. Here, instead of generating S from
CBM, we correlate S with Y directly and sweep the value of T . This experiment demonstrates what
happens when S contains information beyond C and U .

The choice of T determines how biased the training dataset is (i.e., the correlation between S and Y ),
with T = 1 being the most biased and T = 0 being not biased. To ensure that the shortcut is easy to
learn, we keep T = 1 for all experiments except when we explore CCM’s sensitivity to assumptions,
described later.

A.4 Additional CUB results

Q: Test accuracy of CUB experiments on the biased dataset?

In the main text, we showed that CCM methods perform well when shortcuts are violated. Here we
present the result of methods on the biased dataset when A1 and A2 are broken in Figure 4a and
Figure 4b respectively. Overall, CBM approaches perform worse on the biased dataset because it
lacks the ability to learn U , while all other approaches perform similarly.

Q: What if S carries information outside of C ∪ U?

The second way to break A2 is to directly correlate S with Y on line 4 of the BIAS function. We
sweep T to control the correlation between S and Y . As shown in Figure 5, as T increases, the
performance on the biased test set increase as well, but not the clean dataset performance, confirming
that S contains information outside of C and U . We also observe that CCM RES performs worse
than the standard model on both the biased and portions of the clean dataset. In contrast, CCM
EYE is consistently better than STD(X) on the clean dataset and comparable to it on the biased
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(a) Test Acc (biased) (b) Test Acc (clean)

Figure 6: Results of sweeping λ. Without sacrificing test accuracy on the biased dataset (λ ≤ 10−4

in this case for the CUB dataset), increasing λ boosts performance on the clean test set, justifying our
choice of hyperparameter for CCM EYE.

(a) Test Acc (biased) (b) Test Acc (clean)

Figure 7: Results of sweeping number of noises (nσ). Regardless of nσ , CCM EYE and CCM RES
outperform baselines on the clean dataset, while maintaining similar performance on the biased
dataset.

dataset. Moreover, STD(C,X) is comparable to CCM EYE until the shortcut is the strongest (i.e.,
T = 1). This makes sense because when shortcuts are weak compared to C, they are not taken by
STD(C,X).

Q: How does λ affect model performance?

Since CCM EYE has an additional parameter λ, we want to understand its effect on model perfor-
mance. Figure 6 summarizes the results on the CUB dataset. Fixing test accuracy on the biased
dataset (e.g., λ ≤ 10−4), increasing the EYE penalty monotonically increases model performance on
the clean dataset. This means that credible model’s principle (i.e., increasing alignment with expert
without sacrificing performance) could help mitigate the use of shortcut when A1 and A2 hold.

Q: How does CCM responds to different levels of shortcut?

Figure 7 shows that regardless of nσ , CCM outperforms baselines.

A.5 Additional MIMIC results

We include more results of the MIMIC dataset in Figure A.5, Figure A.5, and Figure A.5. Each plot
varies the training distribution (noted by the black line) used to train the models and compares their
results on different test distributions. Note that CCM EYE consistently outperforms baselines models
when the training and testing distribution are close. It only performs worse against CBM when the
testing distribution is very different from the training.

17



(a) (b)

Figure 8: Result of the MIMIC-CXR experiment for different training distributions (correlations
between male and edema are 0.7 and 0.76 respectively). CCM EYE consistently outperforms
baselines models when the training and testing distribution are close. It only performs worse against
CBM when the testing distribution is very different from the training.

(a) (b)

Figure 9: Result of the MIMIC-CXR experiment for different training distributions (correlations
between male and edema are 0.81 and 0.85 respectively). CCM EYE consistently outperforms
baselines models when the training and testing distribution are close. It only performs worse against
CBM when the testing distribution is very different from the training.

A.6 Experiments on the Physionet Challenge dataset

The Physionet Challenge 2012 dataset [38] is a publicly available benchmark dataset from Gold-
berger et al. [39] in which one aims to predict in-hospital mortality using electronic health record
collected in intensive care units for 4, 000 patients. Our preprocessing follows Wang et al. [15],
obtaining a feature set of size 130. In addition to the features, we have 15 variables corresponding to
the Simplified Acute Physiology Score (SAPS-I) that are developed by physicians to predict ICU
mortality in patients greater than the age of 15 [40]. We use those features along with age as C. This
mimics setting where the true concepts are learned based on medical knowledge.

Here, we define shortcut variables to be variables correlated with the 15 SAPS-I variables and age. In
other words, S is composed of all non C features that have a correlation with features in C above
a certain threshold. Other features are regarded as U as their value is not causally related to the
shortcuts. This setup mimics the setting in which shortcuts are correlated with known risk factors,
motivated in Wang et al. [15].

Model Training: Following Wang et al. [15], we train linear models on this dataset with the Adam
optimizer [41]. We randomly reserve 25% of patients as the test set. Of the remaining data, we
randomly split 25% for validation and the rest for training. We train baseline models as well as
our models using the full set of features and duplicate features in C for STD(C,X) to increase its
chance to use C.
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(a) (b)

(c)

Figure 10: Result of the MIMIC-CXR experiment for different training distributions (correlations
between male and edema are 0.9, 0.95, and 1 respectively). CCM EYE consistently outperforms
baselines models when the training and testing distribution are close. It only performs worse against
CBM when the testing distribution is very different from the training.

Figure 11: Treating features correlated with C as shortcuts in the Physionet Challenge 2012 dataset,
we measure the performance when shortcuts break (set to 0). As expected, when shortcuts are
highly correlated with C, CCM EYE outperforms all baselines. Even when shortcuts are not highly
correlated with C (violating A2), CCM EYE is only second to CBM. In contrast, CCM RES has
trouble beating the baselines because U is correlated with S.

Evaluation We test model performance by setting the value for shortcut variables to 0, making
them uninformative at test time. If a model is robust to S, this change shouldn’t affect its prediction
accuracy. The biased dataset performance is reported when no shortcuts are “zeroed out”. This
happens with a correlation threshold of 1 as no features other than C have a perfect correlation with
features in C.

Result: CCM EYE outperforms all other baselines in Figure 11. CCM EYE does not use features
that are highly correlated with C, thus eliminating the use of S. In contrast, CCM RES does not do
as well even when C and S are highly correlated (A2). This happens because U is correlated with S
(yet not causally related). For example, if we fix the correlation threshold at 0.8 for shortcuts, 57% of
variables in U have at least 0.1 correlation with a variable in S.
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Figure 12: Saliency maps for 3 randomly selected images from the CUB dataset. In the first column,
we show the original images from the dataset. Along the row following the image, we show the
saliency map produced using integrated gradient [42] for our methods and baselines. Note that
the visualizations are ineffective at highlighting the shortcut for this task (i.e., noise), even though
baseline methods are very senstive to the degree of noise as shown in Table 1. It is also hard to tell the
difference in attribution across methods as they all correctly concentrate on the bird and do not focus
on the background. This result shows that visual grounding/feature attribution can be ineffective at
resolving shortcuts. We need techniques like CCMs to make robust predictions.

A.7 Input feature attribution cannot identify shortcuts in our settings

Identifying shortcuts in images can be hard, especially when they are not tied to a salient location in
an image. For example, in our settings for the bird and the chest x-ray datasets, it is unclear how to
pinpoint noise or the patient sex on an image (for the same reason that it is hard to specify important
regions in an image to focus on). Indeed, when we visualize where models are focusing on for
both the CUB and the MIMIC-CXR dataset in Figure 12 and Figure 13 respectively on randomly
chosen images, the visualization does not highlight the shortcuts. In fact, it appears that the least
robust model, STD(X), has similar attribution compared to the other models. Here the attributions
on image pixels are obtained by summing the absolute value of integrated gradient [42] (a popular
feature attribution method) across the image’s RGB channels.
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Figure 13: Saliency maps for 3 randomly selected images from the MIMIC-CXR dataset. In the
first column, we show the original images from the dataset. Along the row following the image, we
show the saliency map produced using integrated gradient [42] for our methods and baselines. Note
that the visualizations are ineffective at highlighting the shortcut for this task (i.e., patient sex), even
though baseline methods are very senstive to the sex of a patient as shown in Figure 3. This result
shows that visual grounding/feature attribution can be ineffective at resolving shortcuts. We need
techniques like CCMs to make robust predictions.
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