
Point Transformer V2: Grouped Vector Attention
and Partition-based Pooling

Xiaoyang Wu1 Yixing Lao2 Li Jiang3 Xihui Liu1 Hengshuang Zhao1∗
1The University of Hong Kong 2Intel Labs 3Max Planck Institute

{xywu3, hszhao}@cs.hku.hk

Abstract

As a pioneering work exploring transformer architecture for 3D point cloud under-
standing, Point Transformer achieves impressive results on multiple highly compet-
itive benchmarks. In this work, we analyze the limitations of the Point Transformer
and propose our powerful and efficient Point Transformer V2 model with novel
designs that overcome the limitations of previous work. In particular, we first
propose group vector attention, which is more effective than the previous version
of vector attention. Inheriting the advantages of both learnable weight encoding
and multi-head attention, we present a highly effective implementation of grouped
vector attention with a novel grouped weight encoding layer. We also strengthen
the position information for attention by an additional position encoding multiplier.
Furthermore, we design novel and lightweight partition-based pooling methods
which enable better spatial alignment and more efficient sampling. Extensive
experiments show that our model achieves better performance than its predecessor
and achieves state-of-the-art on several challenging 3D point cloud understanding
benchmarks, including 3D point cloud segmentation on ScanNet v2 and S3DIS
and 3D point cloud classification on ModelNet40. Our code will be available at
https://github.com/Gofinge/PointTransformerV2.

1 Introduction

Point Transformer (PTv1) [1] introduces the self-attention networks to 3D point cloud understanding.
Combining the vector attention [2] with a U-Net style encoder-decoder framework, PTv1 achieves
remarkable performance in several 3D point cloud recognition tasks, including shape classification,
object part segmentation, and semantic scene segmentation.

In this work, we analyze the limitations of Point Transformer (PTv1) [1] and propose a new elegant
and powerful backbone named Point Transformer V2 (PTv2). Our PTv2 improves upon PTv1 with
several novel designs, including the advanced grouped vector attention with improved position
encoding, and the efficient partition-based pooling scheme.

The vector attention layers in PTv1 utilize MLPs as the weight encoding to map the subtraction
relation of query and key into an attention weight vector that can modulate the individual channels
of the value vector. However, as the model goes deeper and the number of channels increases, the
number of weight encoding parameters also increases drastically, leading to severe overfitting and
limiting the model depth. To address this problem, we present grouped vector attention with a more
parameter-efficient formulation, where the vector attention is divided into groups with shared vector
attention weights. Meanwhile, we show that the well-known multi-head attention [3] and the vector
attention [2, 1] are degenerate cases of our proposed grouped vector attention. Our proposed grouped

∗Corresponding Author

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

ar
X

iv
:2

21
0.

05
66

6v
2

 [
cs

.C
V

]
 1

2
O

ct
 2

02
2

https://github.com/Gofinge/PointTransformerV2

vector attention inherits the merits of both vector attention and multi-head attention while being more
powerful and efficient.

Furthermore, point positions provide important geometric information for 3D semantic understanding.
Hence, the positional relationship among 3D points is more critical than 2D pixels. However, previous
3D position encoding schemes mostly follow the 2D ones and do not fully exploit the geometric
knowledge in 3D coordinates. To this end, we strengthen the position encoding mechanism by apply-
ing an additional position encoding multiplier to the relation vector. Such a design strengthens the
positional relationship information in the model, and we validate its effectiveness in our experiments.

Moreover, it is worth noting that the irregular, non-uniform spatial distributions of points are signif-
icant challenges to the pooling modules for point cloud processing. Previous point cloud pooling
approaches rely on a combination of sampling methods (e.g. farthest point sampling [4] or grid
sampling [5]) and neighbor query methods (e.g. kNN or radius query), which is time-consuming
and not spatially well-aligned. To overcome this problem, we go beyond the pooling paradigm of
combining sampling and query, and divide the point cloud into non-overlapping partitions to directly
fuse points within the same partition. We use uniform grids as partition divider and achieve significant
improvement.

In conclusion, we propose Point Transformer V2, which improves Point Transformer [1] from several
perspectives:

• We propose an effective grouped vector attention (GVA) with a novel weight encoding layer
that enables efficient information exchange within and among attention groups.

• We introduce an improved position encoding scheme to utilize point cloud coordinates better
and further enhance the spatial reasoning ability of the model.

• We design the partition-based pooling strategy to enable more efficient and spatially better-
aligned information aggregation compared to previous methods.

We conducted extensive analysis and controlled experiments to validate our designs. Our results
indicate that PTv2 outperforms predecessor works and sets the new state-of-the-art on various 3D
understanding tasks.

2 Related Works

Image transformers. With the great success of ViT [6], the absolute dominance of convolution in
vision tasks is shaken by Vision Transformer, which becomes a trend in 2D image understanding [7, 8,
9, 10]. ViT introduces the far-reaching scaled dot-product self-attention and multi-head self-attention
theory [3] in NLP into vision by considering image patches as tokens. However, operating global
attention on the entire image consumes excessive memory. To solve the memory consumption
problem, Swin Transformer [7] introduces the grid-based local attention mechanism to operate the
transformer block in a sequence of shifted windows.

Point cloud understanding. Learning-based methods for processing 3D point clouds can be classi-
fied into the following types: projection-based, voxel-based, and point-based networks. An intuitive
way to process irregular inputs like point clouds is to transform irregular representations into regular
ones. Projection-based methods project 3D point clouds into various image planes and utilize 2D
CNN-based backbones to extract feature representations [11, 12, 13, 14]. An alternative approach
operates convolutions in 3D by transforming irregular point clouds into regular voxel representa-
tions [15, 16]. Those voxel-based methods suffer from inefficiency because of the sparsity of point
clouds until the introduction and implementation of sparse convolution [17, 18]. Point-based methods
extract features directly from the point cloud rather than projecting or quantizing irregular point
clouds onto regular grids in 2D or 3D [19, 4, 20, 5]. The recently proposed transformer-based
point cloud understanding approaches, introduced in the next paragraph, are also categorized into
point-based methods.

Point cloud transformers. Transformer-based networks belong to the category of point-based
networks for point cloud understanding. During the research upsurge of vision transformers, at almost
the same period, Zhao et al. [1] and Guo et al. [21] published their explorations of applying attention
to point cloud understanding, becoming pioneers in this direction. The PCT [21] proposed by Guo
et al. performs global attention directly on the point cloud. Their work, similar to ViT, is limited

2

Unpooling

U! U"U"U!

γ

U" U#

MLP

Δ𝑃

+

Softmax

𝑘

𝑟
𝑤

𝑉𝑞

ℝ$ → ℝ%
AGG

𝑓& 𝑓'	 ∈ 𝑀(𝑝&)𝑝& 𝑝'

𝑓&)

𝜔

U! U"U"U!

γ

U" U#

MLPMLP

Δ𝑃

+

Gouped AGGSoftmax

𝑘

𝑟

𝑤

𝑉𝑞

⊙

𝜔
ℝ$ → ℝ*

𝑓&

𝑓&)

𝑓'	 ∈ 𝑀(𝑝&)𝑝& 𝑝'

PTv1

PTv2

Pooling

Figure 1: Comparison of the attention, position encoding, and pooling mechanisms between PTv1 and
PTv2. Top-left: the vector attention (Sec. 3.1) with position encoding (Sec. 3.3) in PTv1 . Bottom-left:
our grouped vector attention (Sec. 3.2, denoted by red) with improved position encoding (Sec. 3.3,
denoted by blue) in PTv2. Top-right: the sampling-based pooling and interpolation-based unpooling
in PTv1. Bottom-right: our partition-based pooling and unpooling in PTv2 (Sec. 3.4).

by memory consumption and computational complexity. Meanwhile, based on the vector attention
theory proposed in SAN [2], Point Transformer [1] proposed by Zhao et al. directly performs local
attention between each point and its adjacent points, which alleviated the memory problem mentioned
above. Point Transformer achieves remarkable results in multiple point cloud understanding tasks
and state-of-art results for several competitive challenges. In this work, we analyze the limitations
of the Point Transformer [1], and propose several novel architecture designs for the attention and
pooling module, to improve the effectiveness and efficiency of the Point Transformer. Our proposed
model, Point Transformer V2, performs better than the Point Transformer across a variety of 3D
scene understating tasks.

3 Point Transformer V2

We analyze the limitations of Point Transformer V1 (PTv1) [1] and propose our Point Transformer V2
(PTv2), including several improved modules upon PTv1. We begin by introducing the mathematical
formulations and revisiting the vector self-attention used in PTv1 in Sec. 3.1. Based on the observation
that the parameters of PTv1 increases drastically with the increased model depth and channel size,
we propose our powerful and efficient grouped vector attention in Sec. 3.2. Further, we introduce our
improved position encoding in Sec. 3.3 and the new pooling method in Sec. 3.4. We finally describe
our network architecture in Sec. 3.5.

3.1 Problem Formulation and Background

Problem formulation. Let M = (P,F) be a 3D point cloud scene containing a set of points
xi = (pi,fi) ∈M, where pi ∈ R3 represents the point position, and fi ∈ Rc represents the point
features. Point cloud semantic segmentation aims to predict a class label for each point xi, and the
goal of scene classification is to predict a class label for each sceneM.M(p) denotes a mapping
function that maps the point at position p to a subset ofM denoted as “reference set”. Next, we
revisit the self-attention mechanism used in PTv1 [1].

3

Local attention. Conducting the global attention [6, 21] over all points in a scene is computationally
heavy and infeasible for large-scale 3D scenes. Therefore, we apply local attention where the attention
for each point xi works within a subset of points, i.e., reference point set,M(pi).

Shifted-grid attention [7], where attention is alternatively applied over two sets of non-overlapping
image grids, has become is a common practice [22, 23, 24, 25] for image transformers. Similarly,
the 3D space can be split into uniform non-overlapping grid cells, and the reference set is defined as
the points within the same grid, i.e.,M(pi) = {(pj ,fj) | pj in the same grid cell as pi}. However,
such attention relies on a cumbersome shift grid operation to achieve a global receptive field, and it
does not work well on point clouds where the point densities within different grids are not consistent.

PTv1 adopts neighborhood attention, where the reference point set is a local neighborhood of the
given point, i.e.,M(pi) = {(pj ,fj) | pj ∈ Neighborhood(pi)}. Specifically, the neighborhood
point setM(pi) is defined as the k nearest neighboring (kNN) points of pi in PTv1. Our experiments
(Sec. 4.3) show that neighborhood attention is more effective than shifted-grid attention, so our
approach adopts the neighborhood attention.

Scalar attention and vector attention. Given a point xi = (pi,fi) ∈ M, we apply linear projec-
tions or MLPs to project the point features fi to the feature vectors of query qi, key ki, and value vi,
each with ch channels. The standard scalar attention (SA) operated on the point xi and its reference
point setM(pi) can be represented as follows,

wij = 〈qi,kj〉/
√
ch, f attn

i =
∑

xj∈M(pi)

Softmax(wi)jvj , (1)

The attention weights in the above formulation are scalars computed from the scaled dot-product [3]
between the query and key vectors. Multi-head scalar attention (MSA) [3] is an extension of SA
which runs several scalar attentions in parallel. MSA is widely applied in transformers, and we will
show in Sec. 3.2 that MSA is a degenerate case of our proposed grouped vector attention.

Instead of the scalar attention weights, PTv1 applies vector attention, where the attention weights are
vectors that can modulate the individual feature channels. In SA, the scalar attention is computed by
the scaled dot-product between the query and key vectors. In vector attention, a weight encoding
function encodes the relation between query and key to a vector. The vector attention [2] is formulated
as follows,

wij = ω(γ(qi,kj)), f attn
i =

∑
xj∈M(pi)

Softmax(Wi)j � vj , (2)

where � is the Hadamard product. γ is a relation function (e.g., subtraction). ω : Rc 7→ Rc is a
learnable weight encoding (e.g., MLP) that computes the attention vectors to re-weight vj by channels
before aggregation. Fig. 2 (a) shows a method using vector attention with linear weight encoding.

3.2 Grouped Vector Attention

In vector attention, as the network goes deeper and there are more feature encoding channels, the
number of parameters for the weight encoding layer increases drastically. The large parameter size
restricts the efficiency and generalization ability of the model. In order to overcome the limitations of
vector attention, we introduce the grouped vector attention, as illustrated in Fig. 1 (left).

Attention groups. We divide channels of the value vector v ∈ Rc evenly into g groups (1 ≤ g ≤ c).
The weight encoding layer outputs a grouped attention vector with g channels instead of c channels.
Channels of v within the same attention group share the same scalar attention weight from the
grouped attention vector. Mathematically,

wij = ω(γ(qi,kj)), fattn
i =

M(pi)∑
xj

g∑
l=1

c/g∑
m=1

Softmax(Wi)jlv
lc/g+m
j , (3)

where γ is the relation function and ω : Rc 7→ Rg is the learnable grouped weight encoding defined
in the next paragraph. The second equation in Eq. 3 is the grouped vector aggregation. Fig. 2
(a) presents a vanilla GVA implemented by a fully connected weight encoding, the number of the
grouped weight encoding function parameters reduced compared with the vector attention (Fig. 2
(b)), leading to a more powerful and efficient model.

4

(a) VA - Linear (b) GVA - Linear (c) GVA - MSA (d) GVA – Grouped Linear

𝛾(𝒒, 𝒌)

𝒘

𝒗

𝛾(𝒒, 𝒌)

𝒘

𝒗

𝛾(𝒒, 𝒌)

𝒘

𝒗

𝛾(𝒒, 𝒌)

𝒘

𝒗

Figure 2: Comparison of various weight encoding functions. Each square represents a scalar, and
each row of them represents a vector. The three rows represent relation vector, weight vector, and
value vector from top to bottom. The attention groups are separated by dash lines. For demonstration,
we assume the feature dimension is 4 and the number of attention groups (applicable to b, c, d) is 2.
Lines with different colors refer to different operations, blue lines represent learnable parameters act
on input relation scalar, while red lines represent multiply by the input relation scalar. Orange lines
identify which value feature is affected by the input scalar weight.

GVA is a generalized formulation of VA and MSA. Our GVA degenerates to vector attention (VA)
when g = c, and it degenerates to multi-head self-attention (MSA) if ω in Eq. 3 is defined as follows,

ω(r) = r

11×cg 01×cg · · · 01×cg
01×cg 11×cg · · · 01×cg

...
...

. . .
...

01×cg 01×cg · · · 11×cg

︸ ︷︷ ︸

g × cg

T

1
√
cg
, (4)

where cg = c/g and r ∈ R1×c.

Grouped linear. Inspired by the weight encoding function of MSA, we design the grouped linear
layer ζ(r) : Rc 7→ Rg where different groups of the input vector are projected with different
parameters independently. Grouped linear further reduce the number of parameters in the weight
encoding function. Our final adopted grouped weight encoding function is composed of the grouped
linear layer, normalization layer, activation layer, and a fully connected layer to allow inter-group
information exchange. Mathematically,

ζ(r) = r

p1 01×cg · · · 01×cg

01×cg p2 · · · 01×cg
...

...
. . .

...
01×cg 01×cg · · · pg

︸ ︷︷ ︸

g × cg

T

, (5)

ω(r) = Linear ◦ Act ◦ Norm(ζ(r)), (6)

where cg = c/g, p1, . . . ,pg ∈ Rc
g are learnable parameters, and ◦ represents function composition.

3.3 Position Encoding Multipler

Different from the discrete, regular-grid pixels in 2D images, points in the 3D point cloud are
unevenly distributed in a continuous Euclidean Metric space, making the spatial relationship in 3D
point cloud much more complicated than 2D images. In transformers and attention modules, the
spatial information is obtained with the position encoding δbias(pi − pj) added to the relation vector
γ(qi,kj) as a bias.

Due to the generalization limitation of vector attention in PTv1 mentioned in Sec. 3.2, adding more
position encoding capacity to vector attention will not help to improve the performance. In PTv2, the
grouped vector attention has an effect of reducing overfitting and enhancing generalization. With
grouped vector attention restricting the capacity of the attention mechanism, we strengthen the
position encoding with an additional multiplier δmul(pi − pj) to the relation vector, which focuses
on learning complex point cloud positional relations. As shown in Fig. 1 (left), our improved position

5

encoding is as follows,

wij = ω(δmul(pi − pj)� γ(qi,kj) + δbias(pi − pj)), (7)

where � is the Hadamard product. δmul, δbias : Rd 7→ Rd are two MLP position encoding functions,
which take relative positions as input. Position encoding multiplier compliments group vector
attention to achieve a good balance of network capacity.

3.4 Partition-based Pooling

Traditional sampling-based pooling procedures adopted by other point-based methods use a com-
bination of sampling and query methods. In the sampling stage, farthest point sampling [4] or grid
sampling [5] is used to sample points reserved for the following encoding stage. For each sampled
point, a neighbor query is performed to aggregate information from the neighboring points. In
these sampling-based pooling procedures, the query sets of points are not spatially-aligned since the
information density and overlap among each query set are not controllable. To address the problem,
we propose a more efficient and effective partition-based pooling approach, as shown in Fig. 1.

Pooling. Given a point set M = (P,F), we partition M into subsets [M1,M2, ...,Mn′] by
separating the space into non-overlapping partitions. We fusion each subset of pointsMi = (Pi,Fi)
from a single partition as follows,

f ′i = MaxPool({fjU | fj ∈ Fi}), p′i = MeanPool({pj | pj ∈ Pi}), (8)

where (p′i,f
′
i) is the position and features of pooling point aggregated form subsetMi, and U ∈

Rc×c′ is the linear projection. Collecting the pooling points from n′ subsets gives us the point set
M′ = {p′i,f ′i}n

′

i=1 for the next stage of encoding. In our implementation, we use uniform grids to
partition the point cloud space, and thus our partition-based pooling is also called grid pooling.

Unpooling. The common practice of unpooling by interpolation is also applicable to partition-based
pooling. Here we introduce a more straightforward and efficient unpooling method. To unpool the
fused point setM′ back toM, the point locations inM are record from the pooling process, and we
only need to obtain the features for each point inM. With the help of the grid-based partitioning
[M1,M2, ...,Mn′] during the pooling stage, we can map point feature to all points from the same
subset,

fup
i = f ′j , if (pi,fi) ∈Mj . (9)

3.5 Network Architecture

Backbone structure. Following previous works [18, 1], we adopt the U-Net architecture with skip
connections. There are four stages of encoders and decoders with block depths [2, 2, 6, 2] and
[1, 1, 1, 1], respectively. The grid size multipliers for the four stages are [x3.0, x2.5, x2.5, x2.5],
representing the expansion ratio over the previous pooling stage. The attention is conducted in a
local neighborhood, described in “neighborhood attention” in Sec. 3.1. In Sec. 4.3 we compare the
neighborhood attention with shift-grid attention.

The initial feature dimension is 48, and we first embed the input channels to this number with a basic
block with attention groups of 6. Then, we double this feature dimension and attention groups each
time entering the next encoding stage. For the four encoding stages, the feature dimensions are [96,
192, 384, 384], and the corresponding attention groups are [12, 24, 48, 48].

Output head. For point cloud semantic segmentation, we apply an MLP to map point features
produced by the backbone to the final logits for each point in the input point set. For point cloud
classification, we apply global average pooling over the point features produced by the encoding
stages to obtain a global feature vector, followed by an MLP classifier for prediction.

4 Experiments

To validate the effectiveness of the proposed method, we conduct experimental evaluations on ScanNet
v2 [44] and S3DIS [45] for semantic segmentation, and ModelNet40 [46] for shape classification.
Implementation details are available in the appendix.

6

Table 1: Semantic segmentation on ScanNet v2.

Method Input Val Test

PointNet++ [4] point 53.5 55.7
3DMV [26] point - 48.4
PanopticFusion [27] point - 52.9
PointCNN [28] point - 45.8
PointConv [29] point 61.0 66.6
JointPointBased [30] point 69.2 63.4
PointASNL [31] point 63.5 66.6
SegGCN [32] point - 58.9
RandLA-Net [33] point - 64.5
KPConv [5] point 69.2 68.6
JSENet [34] point - 69.9
FusionNet [35] point - 68.8
SparseConvNet [17] voxel 69.3 72.5
MinkUNet [18] voxel 72.2 73.6

PTv1 [1] point 70.6 -
PTv2 (ours) point 75.4 75.2

Table 2: Semantic segmentation on S3DIS Area 5.

Method Input OA mAcc mIoU

PointNet [19] point - 49.0 41.1
SegCloud [36] point - 57.4 48.9
TanConv [37] point - 62.2 52.6
PointCNN [28] point 85.9 63.9 57.3
PointWeb [20] point 87.0 66.6 60.3
HPEIN [38] point 87.2 68.3 61.9
GACNet [39] point 87.8 - 62.9
PAT [40] point - 70.8 60.1
ParamConv [41] point - 67.0 58.3
SPGraph [42] point 86.4 66.5 58.0
SegGCN [32] point 88.2 70.4 63.6
MinkUNet [18] voxel - 71.7 65.4
PAConv [43] point - - 66.6
KPConv [5] point - 72.8 67.1

PTv1 [1] point 90.8 76.5 70.4
PTv2 (ours) point 91.1 77.9 71.6

4.1 Semantic Segmentation

Data and metric. For semantic segmentation, we experiment on ScanNet v2 [44] and S3DIS [45].
The ScanNet v2 dataset contains 1,513 room scans reconstructed from RGB-D frames. The dataset is
divided into 1,201 scenes for training and 312 for validation. Point clouds for the model input are
sampled from vertices of reconstructed meshes, and each sampled point is assigned a semantic label
from 20 categories (wall, floor, table, etc.). The S3DIS dataset for semantic scene parsing consists
of 271 rooms in six areas from three different buildings. Following a common protocol [36, 4, 1],
area 5 is withheld during training and used for testing. Different from ScanNet v2, points of
S3DIS are densely sampled on the mesh surfaces and annotated into 13 categories. Following a
standard protocol [4], we use mean class-wise intersection over union (mIoU) as the evaluation
metric for validation and test set of ScanNet v2. And we use mean class-wise intersection over union
(mIoU), mean of class-wise accuracy (mAcc), and overall point-wise accuracy (OA) for evaluating
performance on S3DIS area5.

Performance comparison. Table 1 and Table 2 show the results of our PTv2 model compared
with previous methods on ScanNet v2 and S3DIS, respectively. Our PTv2 model outperforms prior
methods in all evaluation metrics. Notably, PTv2 significantly outperforms PTv1 [1] by 4.8% mIoU
on the ScanNet v2 validation set.

Visualization. The qualitative results of point cloud semantic segmentation are shown in Fig. 3 and
Fig. 4. Our PTv2 model is able to predict semantic segmentation results that are quite close the
ground-truth. It is worth noting that our model can capture the detailed structure information and
predict the correct semantics for challenging scenarios. For example, in the S3DIS scenes with chairs,
PTv2 is able to cleanly predict the chair legs and armrests.

4.2 Shape Classification

Data and metric. We test our proposed PTv2 model for 3D point cloud classification on ModelNet40
dataset. The ModelNet40 [46] dataset consists of 12,311 CAD models belonging to 40 object
categories. 9,843 models are split out for training, and the rest 2,468 models are reserved for testing.
Following the common practice in the community, we report the class-average accuracy (mAcc) and
overall accuracy (OA) on the test set.

Performance comparison. We test our PTv2 model and compare it with previous models on the
ModelNet40 dataset for shape classification. Results are shown in Table 3, demonstrating that our
proposed PTv2 model achieves state-of-the-art performance on ModelNet40 shape classification.

7

Input Ground truth PTv2 Input Ground truth PTv2

floor wall cabinet bed chair sofa table windowdoor bookshelf picture

counter desk curtain refrigerator bathtub shower curtain toilet other furnituresink

Figure 3: Visualization of semantic segmentation results on ScanNet v2.
Input Ground truth PTv2 Input Ground truth PTv2

ceiling floor wall beam column window door chairtable bookcase board cluttersofa

Figure 4: Visualization of semantic segmentation results on S3DIS.

4.3 Ablation Study

We conduct ablation studies to examine the effectiveness of each module in our design. The ablation
study results are reported on ScanNet v2 validation set.

Attention type. We first investigate the effects of different attention designs. We experiment with
two types of local attention introduced in Sec. 3.1, namely shifted-grid attention and neighborhood
attention [1]. Then, to validate the effectiveness of our proposed grouped vector attention (denoted as
“GVA”), we compare it with the commonly-used multi-head self-attention (denoted as “MSA”). We
use the vanilla position encoding in PTv1 [1] and our proposed partition-based pooling scheme in all of
the experiments in Table 4. It shows neighborhood attention performs significantly better than shifted-
grid attention, indicating that the neighborhood attention is better suited for point clouds which are
non-uniformly distributed. Moreover, our proposed grouped vector attention consistently outperforms
the commonly-used multi-head self-attention with both shifted-grid attention and neighborhood
attention. So our grouped vector attention is not only more efficient, but also more effective, than
multi-head self-attention. The comparison between GVA and MSA indicates the effectiveness of the
learnable parameters in the grouped linear layer of the grouped weight encoding in Sec. 3.2.

Weight encoding. We study the effects of different weight encoding functions ω in Table 6. The
weight encoding functions are introduced in Sec. 3.1 and Sec. 3.2, and different attention mechanisms
adopt different weight encoding functions. We use the vanilla position encoding in PTv1 [1] and
our proposed grid pooling scheme in all of the experiments in Table 6. We experimented with the
following weight encoding functions: (1) The weight encoding for multi-head scalar attention in Eq. 4,
denoted as “MSA”. (2) Weight encoding as a linear layer denoted as “L”. (3) The grouped linear layer,
which is ζ in Eq. 5, denoted as “GL”. (4) The linear layer followed by batch normalization, activation,
and another linear layer, denoted as “L+N+A+L”. (5) The grouped linear layer, followed by batch
normalization, activation, and a linear layer, denoted as “GL+N+A+L”. (5) is also the grouped
weight encoding function used for our grouped vector attention, introduced as ω in Eq. 5. Results
in Table 6 demonstrate that our grouped weight encoding function outperforms other compared
designs. Specifically, comparing (1), (3) and (5), GL slightly outperforms MSA but adding additional
inter-group information exchange combined with proper normalization and activation can boost
the performance to be better than MSA. Moreover, the comparison between (5) and (4) and the
comparison between (3) and (2) both indicate that our grouped linear layer outperforms the naive
linear layer, even though the grouped linear layer has g times fewer parameters and requires less
computing than the linear layer.

8

Table 3: Shape classification on ModelNet40.

Method mAcc (%) OA (%)

PointNet [19] 86.0 89.2
PointNet++ [4] - 91.9
PointCNN [28] 88.1 92.5
PointConv [29] - 92.5
KPConv [5] - 92.9
DGCNN [47] 90.2 92.9
RS-CNN [48] - 92.9
PointASNL [31] - 92.9
DensePoint [49] - 93.2
PosPool [50] - 93.2
GBNet [51] 91.0 93.8
PCT [21] - 93.2
PA-DGC [43] - 93.9
CurveNet [52] - 94.2

PTv1 [1] 90.6 93.7
PTv2 (ours) 91.6 94.2

Table 4: Attention type ablation.

Local Type Mechanism Type mIoU (%)

Shifted-Grid MSA 71.6
GVA 72.5

Neighborhood MSA 73.9
GVA 75.0

Table 5: Pooling method ablation.

Pooling
Method

Pooling
Ratio

Grid Size
Multipliers

mIoU
(%)

FPS 1/4 - 74.4
1/6 - 72.9

Grid

~1/4 [×3.0,×2.0,×2.0,×2.0] 75.2
~1/4 [×4.0,×2.0,×2.0,×2.0] 75.0
~1/6 [×3.0,×2.5,×2.5,×2.5] 75.4
~1/6 [×4.0,×2.5,×2.5,×2.5] 74.7

Table 6: Weight encoding ablation.

ID Weight encoding mIoU
(%)

(1) MSA 73.9
(2) L 73.8
(3) GL 74.1
(4) L+N+A+L 74.7
(5) GL+N+A+L (ours) 75.0

Table 7: Module design ablation.

ID GVA PE
Mul

Grid
Pool

Map
Unpool

mIoU
(%)

I 72.3
II ! 73.8
III ! ! 74.4
IV ! ! ! 74.9
V ! ! ! ! 75.4

Pooling methods. In Sec. 3.4 we discuss the potential limitations of the sampling-based pooling in
PTv1 and propose a new pooling and unpooling scheme based on non-overlapping partitions. We
also name a simple and effective grid-based implement of our partition-based pooling as grid pooling.
To further examine the superiority of our method, we experiment with different pooling-unpooling
schemes in Table 5.

For our partition-based pooling implemented by a grid, the base grid size is 0.02 meters, which is
identical to the voxelization grid size during data pre-processing. The grid size multipliers are the grid
size expansion ratio over the previous pooling stage. For example, [×4.0,×2.0,×2.0,×2.0] means
that the grid sizes are: [0.08, 0.16, 0.32, 0.64] meters, respectively. We choose a relatively large value
for initial grid sizes (×3.0 and ×4.0) to provide sufficiently large receptive fields, which is analogous
to the common practice in image transformers [6]. For subsequent pooling stages, we observe that
×2.0 grid size increase results in an approximate pooling ratio of 4 for the point cloud, while ×2.5
grid size increase results in an approximate pooling ratio of 6. We choose the same sampling ratio of
4 and 6 for sampling-based pooling to ensure a fair comparison.

The results in Table 5 illustrate that our partition-based pooling achieves higher mIoU than the
sampling-based method. For sampling-based pooling with farthest point sampling, the performance
decreases significantly when the sampling ratio increases from 4 to 6. However, for our partition-based
pooling implemented by grid, we observe that initial grid size and subsequent grid size multipliers do
not significantly affect the overall performance, so we can use larger grid sizes to reduce the number
of points in each stage to save memory.

Module design. We ablate different modules introduced in our PTv2: grouped vector attention
(VGA), position encoding multiplier (PE Mul), partition-based pooling implemented by grid (Grid
Pool), and partition map unpooling (Map Unpool) and the results are illustrated in Table 7. The
model adopts in Experiment I is PTv1 [1], which serves as a baseline result of our design. Benefiting
from structural parameter adjustments and better data processing, which are also shared with the
rest of the experiments, our baseline result increased from 70.6% to 72.3%. Experiment II to V add
each of our proposed components in turns, gradually increasing our baseline result to 75.4%. The
increasing mIOU indicates the effectiveness of each component.

9

Table 8: Model performance and amortized latency with different pooling methods.

FPS-kNN [4] Grid-kNN [5] Grid pooling (ours)
Pooling Rate 1/4 1/6 ~1/4 ~1/6 ~1/4 ~1/6

Time (ms) 1007 785 389 356 318 266
mIoU (%) 74.4 72.9 74.1 73.4 75.2 75.4

Table 9: Model parameters and amortized latency of several networks.

1© 2© 3© 4© 5© 6©
PTv1 1© + GVA (L) 1© + GVA (GL) 1© + GVA (GL-N-A-L) 4© + GP 5© + PEM

Params (M) 11.4 9.8 9.6 9.6 9.6 12.8
Time (ms) 1023 991 951 971 220 266
mIoU (%) 72.3 73.0 73.2 74.2 75.0 75.4

4.4 Model Complexity and Latency

We further conduct model complexity and latency studies to examine the superior efficiency of several
design in our work. We record the amortized forward time for each scan in the ScanNet v2 validation
set with batch size 4 on a single TITAN RTX.

Pooling methods. Table 8 shows the forward time and mIoU of PTv2 with different pooling methods
and pooling ratios. We compare our pooling method with two classical sampling-based pooling
methods: FPS-kNN and Grid-kNN. FPS-kNN pooling [4, 1] uses farthest point sampling (FPS) to
sample a specified number of points and then query k nearest neighbor points for pooling. We call
the pooling method in Strided KPConv [5] Grid-kNN pooling, as it uses a uniform grid to sample
points and then applies the kNN method to index neighbors. This leads to uncontrollable overlaps of
the pooling receptive fields. As shown in the table, our grid pooling method is not only faster but also
achieves higher mIoUs.

Module design. Table 9 summarizes comparisons of model complexity, time consumption, and
evaluation performances on ScanNet v2 validation set. Meanwhile, we drop the first batch of
forwarding time for GPU preparation. In Table 9, GVA refers to grouped vector attention. L refers to
grouped weight encoding implemented by a single Linear. GL refers to grouped weight encoding
implemented by a Grouped Linear. GL-N-A-L refers to the grouped linear layer, followed by batch
normalization, activation, and a linear layer as grouped weight encoding function. GP refers to
partition-based pooling implemented by grid. PEM refers to the position encoding multiplier. To
ensure fair comparison, PTv1 is set to be the same depth and feature dimensions as our model
architecture of PTv2. By comparing experiment 1© and 2©, we can study the effect of GVA. The same
spirit goes on for experiment 3©, 4©, and 5©, where each experiments adds one additional module, so
that we can study the effect of the added module respectively.

Comparing experiments 1©, 2©, 3©, and 4©, the introduction of grouped vector attention (GVA)
with grouped weight encoding dramatically improves the model performance and slightly reduces
execution time. The comparison between 4© and 5© indicates that the grid pooling strategy can
significantly speed up the network and further enhance the generalization ability of our model.
Position encoding multiplier is the only design that increases the number of model parameters, but
experiment 6© demonstrates its effectiveness in improving performance. Meanwhile, our model is still
lightweight compared to voxel-based backbones, such as MinkUNet42 [18] with 37.9M parameters.

5 Conclusion

We propose Point Transformer V2 (PTv2), a powerful and efficient transformer-based backbone
for 3D point cloud understanding. Our work makes several non-trivial improvements upon Point
Transformer V1 [1], including the grouped vector attention, improved position encoding, and partition-
based pooling. Our PTv2 model achieves state-of-the-art performance on point cloud classification
and semantic segmentation benchmarks.

Acknowledgements
This work is supported in part by HKU Startup Fund and HKU Seed Fund for Basic Research. We
also appreciate the supporting of computing resources by SmartMore Corporation.

10

References
[1] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip Torr, and Vladlen Koltun. Point transformer. In ICCV, 2021.

1, 2, 3, 6, 7, 8, 9, 10, 14, 15, 16

[2] Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Exploring self-attention for image recognition. In CVPR,
2020. 1, 3, 4

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017. 1, 2, 4

[4] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In NeurIPS, 2017. 2, 6, 7, 9, 10, 15, 16

[5] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François Goulette, and
Leonidas J Guibas. Kpconv: Flexible and deformable convolution for point clouds. In ICCV, 2019. 2, 6, 7,
9, 10, 15, 16

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR, 2021.
2, 4, 9

[7] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. ICCV, 2021. 2, 4

[8] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, and
Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions.
In ICCV, 2021. 2

[9] Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming Zhang, Nenghai Yu, Lu Yuan, Dong Chen, and
Baining Guo. Cswin transformer: A general vision transformer backbone with cross-shaped windows.
arXiv:2107.00652, 2021. 2

[10] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In ECCV, 2020. 2

[11] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik G. Learned-Miller. Multi-view convolutional
neural networks for 3d shape recognition. In ICCV, 2015. 2

[12] Bo Li, Tianlei Zhang, and Tian Xia. Vehicle detection from 3d lidar using fully convolutional network. In
RSS, 2016. 2

[13] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-view 3d object detection network for
autonomous driving. In CVPR, 2017. 2

[14] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. Pointpillars:
Fast encoders for object detection from point clouds. In CVPR, 2019. 2

[15] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural network for real-time object
recognition. In IROS, 2015. 2

[16] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and Thomas Funkhouser. Semantic
scene completion from a single depth image. In CVPR, 2017. 2

[17] Benjamin Graham, Martin Engelcke, and Laurens van der Maaten. 3d semantic segmentation with
submanifold sparse convolutional networks. In CVPR, 2018. 2, 7

[18] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets: Minkowski
convolutional neural networks. In CVPR, 2019. 2, 6, 7, 10

[19] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In CVPR, 2017. 2, 7, 9

[20] Hengshuang Zhao, Li Jiang, Chi-Wing Fu, and Jiaya Jia. Pointweb: Enhancing local neighborhood features
for point cloud processing. In CVPR, 2019. 2, 7

[21] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R Martin, and Shi-Min Hu. Pct:
Point cloud transformer. Computational Visual Media, 2021. 2, 4, 9

11

[22] Bowen Cheng, Alexander G. Schwing, and Alexander Kirillov. Per-pixel classification is not all you need
for semantic segmentation. In NeurIPS, 2021. 4

[23] Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, and Rohit Girdhar. Masked-
attention mask transformer for universal image segmentation. In CVPR, 2022. 4

[24] Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu.
Simmim: A simple framework for masked image modeling. In CVPR, 2022. 4

[25] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M. Ni, and Heung-Yeung
Shum. Dino: Detr with improved denoising anchor boxes for end-to-end object detection. arXiv preprint
arXiv:2203.03605, 2022. 4

[26] Angela Dai and Matthias Nießner. 3dmv: Joint 3d-multi-view prediction for 3d semantic scene segmenta-
tion. In ECCV, 2018. 7

[27] Gaku Narita, Takashi Seno, Tomoya Ishikawa, and Yohsuke Kaji. Panopticfusion: Online volumetric
semantic mapping at the level of stuff and things. In IROS, 2019. 7

[28] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn: Convolution on
x-transformed points. NeurIPS, 2018. 7, 9

[29] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep convolutional networks on 3d point clouds.
In CVPR, 2019. 7, 9

[30] Hung-Yueh Chiang, Yen-Liang Lin, Yueh-Cheng Liu, and Winston H Hsu. A unified point-based framework
for 3d segmentation. In 3DV, 2019. 7

[31] Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, and Shuguang Cui. Pointasnl: Robust point clouds
processing using nonlocal neural networks with adaptive sampling. In CVPR, 2020. 7, 9

[32] Huan Lei, Naveed Akhtar, and Ajmal Mian. Seggcn: Efficient 3d point cloud segmentation with fuzzy
spherical kernel. In CVPR, 2020. 7

[33] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo, Zhihua Wang, Niki Trigoni, and Andrew
Markham. Randla-net: Efficient semantic segmentation of large-scale point clouds. In CVPR, 2020. 7

[34] Zeyu Hu, Mingmin Zhen, Xuyang Bai, Hongbo Fu, and Chiew-lan Tai. Jsenet: Joint semantic segmentation
and edge detection network for 3d point clouds. In ECCV, 2020. 7

[35] Feihu Zhang, Jin Fang, Benjamin Wah, and Philip Torr. Deep fusionnet for point cloud semantic segmenta-
tion. In ECCV, 2020. 7

[36] Lyne Tchapmi, Christopher Choy, Iro Armeni, JunYoung Gwak, and Silvio Savarese. Segcloud: Semantic
segmentation of 3d point clouds. In 3DV, 2017. 7

[37] Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-Yi Zhou. Tangent convolutions for dense
prediction in 3d. In CVPR, 2018. 7

[38] Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-Wing Fu, and Jiaya Jia. Hierarchical point-edge
interaction network for point cloud semantic segmentation. In ICCV, 2019. 7

[39] Lei Wang, Yuchun Huang, Yaolin Hou, Shenman Zhang, and Jie Shan. Graph attention convolution for
point cloud semantic segmentation. In CVPR, 2019. 7

[40] Jiancheng Yang, Qiang Zhang, Bingbing Ni, Linguo Li, Jinxian Liu, Mengdie Zhou, and Qi Tian. Modeling
point clouds with self-attention and gumbel subset sampling. In CVPR, 2019. 7

[41] Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei Pokrovsky, and Raquel Urtasun. Deep parametric
continuous convolutional neural networks. In CVPR, 2018. 7

[42] Loic Landrieu and Martin Simonovsky. Large-scale point cloud semantic segmentation with superpoint
graphs. In CVPR, 2018. 7

[43] Mutian Xu, Runyu Ding, Hengshuang Zhao, and Xiaojuan Qi. Paconv: Position adaptive convolution with
dynamic kernel assembling on point clouds. In CVPR, 2021. 7, 9

[44] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias Nießner.
Scannet: Richly-annotated 3d reconstructions of indoor scenes. In CVPR, 2017. 6, 7, 14

12

[45] Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang, Ioannis Brilakis, Martin Fischer, and Silvio Savarese.
3d semantic parsing of large-scale indoor spaces. In CVPR, 2016. 6, 7, 14

[46] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao.
3d shapenets: A deep representation for volumetric shapes. In CVPR, 2015. 6, 7, 14

[47] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. TOG, 2019. 9

[48] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong Pan. Relation-shape convolutional neural network
for point cloud analysis. In CVPR, 2019. 9

[49] Yongcheng Liu, Bin Fan, Gaofeng Meng, Jiwen Lu, Shiming Xiang, and Chunhong Pan. Densepoint:
Learning densely contextual representation for efficient point cloud processing. In ICCV, 2019. 9

[50] Ze Liu, Han Hu, Yue Cao, Zheng Zhang, and Xin Tong. A closer look at local aggregation operators in
point cloud analysis. In ECCV, 2020. 9

[51] Shi Qiu, Saeed Anwar, and Nick Barnes. Geometric back-projection network for point cloud classification.
TMM, 2021. 9

[52] Tiange Xiang, Chaoyi Zhang, Yang Song, Jianhui Yu, and Weidong Cai. Walk in the cloud: Learning
curves for point clouds shape analysis. In ICCV, 2021. 9

13

	1 Introduction
	2 Related Works
	3 Point Transformer V2
	3.1 Problem Formulation and Background
	3.2 Grouped Vector Attention
	3.3 Position Encoding Multipler
	3.4 Partition-based Pooling
	3.5 Network Architecture

	4 Experiments
	4.1 Semantic Segmentation
	4.2 Shape Classification
	4.3 Ablation Study
	4.4 Model Complexity and Latency

	5 Conclusion
	A Experiment Details
	A.1 Model Architecture
	A.2 Experiment Setting

	B Additional Quantitative Results
	B.1 Depths of Decoder Blocks
	B.2 Ablation Study on Position Encoding Multiplier
	B.3 Comparison of Pooling Methods

