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A Training Procedure of Mix and Reason (MiRe)

Algorithm 1 depicts the complete training procedure of Mix and Reason (MiRe). To facilitate a better
understanding, we further highlight three aspects regarding our training process.

• The semantic topology is a domain-agnostic concept. In practice, we first instantiate this
concept in each domain via the relation graph. Then, we enforce its robustness by encourage
the invariance of topological relations among different graphs. As we always uses mini-batch
SGD for optimization, the mini-batch samples will progressively refine the intra-domain
relation graph and inter-domain structural invariance.

• The word ‘reasoning’ in our paper indicates that we perform intra-domain and inter-domain
relational reasoning via the constructed graphs and their corresponding learning process.

• In Eq. (3), we build a intra-domain relation graph based on the whole data from one
domain. This relation graph is iteratively updated by samples in each mini-batch based
on feature aggregation defined in Eq. (4). In Eq. (6), we build a inter-domain bipartite
graph based on the whole data from any two different domains. This bipartite graph is
updated by a contrastive consistency loss (i.e. Eq. (7)). In that sense, the intra-domain
and inter-domain relation graphs are cascaded, where the intra-domain graph perceives
the topological structure in each domain while inter-domain relation graph ensures the
structural invariance among different domains.

B Additional Discussion

Motivation of CDM. In real-world datasets, we assume that each category may have distinct
contexts [18], namely, hybrid context generalization. In that sense, the activation maps Md generated
by domain classification loss might not utilize the random and unique contexts (differ in each category
or even each instance) as their classification evidences. By contrast, we observe that Md focuses on
the foreground regions, which characterize the dominant difference between domains. For example, in
PACS datasets, the major difference among these domains is that the foreground objects are collected
from various styles (object style instead of whole image style), which is crucial for semantically
characterizing a category. The activation maps Mc generated by object classification helps to achieve
foreground and background separation, while Md helps to enhance the completeness of depicting
foregrounds. Hence, we choose to merge these two activation maps in practice.
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Algorithm 1 Training Procedure of Mix and Reason (MiRe), |Dn| denotes number of samples in the
n-th domain, I is the iteration times, B is the mini-batch training set.

Require: N (N ≥ 2) source domains Ds = {D1,D2, ...,DN}
1: Category-aware Data Mixing (CDM):
2: Training a class predictor and a domain predictor based on Ds

3: for n = 1 to N do
4: for i = 1 to |Dn| do
5: Compute Mc based on the class predictor and Md based on the domain predictor
6: Merging Mc and Md by Eq. (1), output: Mf

7: for j = 1 to N (j ̸= n) do
8: Randomly select an image xj from domain Dj

9: Apply Gaussian blur to xj , output: x′
j

10: Randomly crop a patch from x′
j and resize it to the same scale of xj , output: xcropj

11: Mix xi and xcropj by Eq. (2), output: xmixi

12: end for
13: end for
14: end for
15: Output the augmented source domains D̂s

16: Adaptive Semantic Topology Refinement (ASTR):
17: Train a vanilla DeepAll model based on D̂s

18: Compute the initial global anchor features Cglobal

(0) in each domain based on the DeepAll model
19: Compute the initial adjacency matrix in each domain by Eq. (3)
20: for I = 1 to MaxIter do
21: Randomly and uniformly sample a batch of samples B from D̂s

22: for i = 1 to |B| do
23: Perform feature aggregation by Eq. (4)
24: Update the corresponding global anchor feature by Eq. (5)
25: end for
26: Update the adjacency matrix by Eq. (3) based on the updated global anchor features
27: Build inter-domain bipartite graphs by Eq. (6)
28: Compute the contrastive consistency loss by Eq. (7)
29: Compute the overall loss by Eq. (8)
30: end for

C Additional Experiments

C.1 DomainBed

DomainBed [6] is a newly established testbed for domain generalization including seven multi-domain
datasets and fourteen baseline algorithms. Considering that the evaluation protocol established by
DomainBed is computationally expensive, which requires about 4,142 models for per DG algorithm.
Hence, we choose the five real-world and challenging datasets as the main evaluation benchmarks,
i.e., PACS, VLCS, Office-Home, TerraInc and DomainNet.

The baseline algorithms can be divided into five categories: (i) Empirical Risk Minimization:
Standard Empirical Risk Minimization (ERM) [20]; (ii) Domain-Specific Representation Learn-
ing: Group Distributionally Robust Optimization (GroupDRO) [17], Marginal Transfer Learning
(MTL) [2], Adaptive Risk Minimization (ARM) [22]; (iii) Meta-learning: Meta-Learning for DG
(MLDG) [9]; (iv) Cross-Domain Invariance: Invariant Risk Minimization (IRM) [1], Deep Corre-
lation Alignment (CORAL) [19], Maximum Mean Discrepancy (MMD) [11], Domain Adversarial
Neural Networks (DANN) [5], Class-conditional DANN (CDANN) [13], Variance Risk Extrapolation
(VREx) [8]; (v) Augmentation: Interdomain Mixup (Mixup) [21], Representation Self Challenging
(RSC) [7], Style-Agnostic Networks (SagNet) [14].

Noting that we reproduce the results of ERM [20] (i.e., DeepAll in main paper) in our experiments for
fair comparisons. Following evaluation protocols established in [6], we report results using training
domain as validation set for model selection. The experimental results are shown in Table 1, where
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we can observe that our MiRe consistently outperforms all baseline methods, demonstrating the
versatility and robustness of MiRe on different DG benchmarks and evaluation protocols.

Table 1: Domain generalization results (%) on DomainBed [6] benchmark. We highlight the best
results and the second best results. The backbone network is ResNet-50.

Method PACS VLCS Office-Home TerraInc DomainNet Average

ERM [20] 85.5 77.5 66.5 46.1 40.9 63.3
ERM (reproduced) 84.5 77.2 66.6 45.9 40.1 62.9

IRM [1] 83.5 78.6 64.3 47.6 33.9 61.6
GroupDRO [17] 84.4 76.7 66.0 43.2 33.3 60.7

Mixup [21] 84.6 77.4 68.1 47.9 39.2 63.4
MLDG [9] 84.9 77.2 66.8 47.8 41.2 63.6

CORAL [19] 86.2 78.8 68.7 47.7 41.5 64.5
MMD [11] 84.7 77.5 66.4 42.2 23.4 58.8
DANN [5] 83.7 78.6 65.9 46.7 38.3 62.6

CDANN [13] 82.6 77.5 65.7 45.8 38.3 62.0
ARM [22] 85.1 77.6 64.8 45.5 35.5 61.7
RSC [7] 85.2 77.1 65.5 46.6 38.9 62.7
MTL [2] 84.6 77.2 66.4 45.6 40.6 62.9

SagNet [14] 86.3 77.8 68.1 48.6 40.3 64.2
VREx [8] 84.9 78.3 66.4 46.4 33.6 61.9

MiRe (Ours) 87.2 78.4 69.5 49.3 45.8 66.0

C.2 Semantic Segmentation

To additionally investigate the out-of-distribution generalization performance of the formulated
structural invariance, we conduct experiments on a challenging out-of-domain segmentation task
(GTA5 → Cityscapes), i.e., train a segmentation model on GTA5 and directly test it on Cityscapes.
GTA5 [16] is a synthetic dataset generated from Grand Theft Auto 5 game engine. Cityscapes [4] is
a real-world dataset collected from different cities in primarily Germany. Following the common
practice of previous cross-domain semantic segmentation methods [10], we utilize DeepLab-v2 [3]
segmentation network with ResNet101 backbone. Mean Intersection over Union (mIOU) and mean
Accuracy (mAcc) of all object categories are used for evaluation. We remove the CDM module and
bipartite graph learning head from MiRe and plug the rest components into the segmentation model,
i.e., MiRe∗.

Table 2: Experiment results of semantic segmentation from GAT5 to Cityscapes.
Method Reference mIOU (%) mAcc (%)
DeepAll - 37.0 51.5
pAdaIN [15] CVPR 2021 38.3 52.1
Mixstyle [23] ICLR 2021 40.3 53.8
DSU [12] ICLR 2022 43.1 57.0
MiRe∗ Ours 44.0 58.5

Table 2 displays the quantitative segmentation results on Cityscapes. Figure 1 provides qualitative
segmentation results on Cityscapes. As can be seen, the property of structural invariance is robust to
different scenarios and significantly outperforms the baseline methods.

C.3 Visualization

We visualize the relations (edge weights) of semantic anchors (nodes) on the PACS dataset. As
shown in figure 2, we can observe that those semantically similar anchors will be assigned with larger
weights, while those dissimilar anchors will be assigned with small weights. More importantly, such
relations will be generalizable across domains, fitting the human intelligence that humans are talented
at comparing and reasoning when learning new concepts.
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DeepAllUnseen Domain MixStyle OursDSU Ground Truth

Figure 1: The visualization results of different DG methods on Cityscapes (unseen domain).

Figure 2: The visualization results of edge weights on the PACS dataset.

C.4 Hyperparameters

We respectively testify the robustness of three hyperparameters (i.e., the threshold in Eq. (1), ξ in
Eq. (7) and λ in Eq. (8)) on the PACS and Office-Home datasets. The results are shown in Table 3,
Table 4, and Table 5. From the table, we can see that the out-of-domain generalization performance
of our method is relatively insensitive to the variations of these hyperparameters.

Table 3: The robustness of threshold in Eq. (1).
Threshold PACS Office-Home Avg

0.05 83.8 65.9 74.9
0.10 84.2 66.1 75.2
0.15 84.5 66.0 75.3
0.20 84.8 66.2 75.5
0.25 84.7 66.2 75.5
0.30 84.4 66.1 75.3
0.35 84.0 65.5 74.8
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Table 4: The robustness of ξ in Eq. (7).
ξ PACS Office-Home Avg

0.3 83.5 65.8 74.7
0.7 84.6 66.0 75.3
1.0 84.8 66.2 75.5
1.5 84.5 66.1 75.3
2.0 84.1 65.7 74.9

Table 5: The robustness of λ in Eq. (8).
λ PACS Office-Home Avg

0.01 83.4 65.7 74.6
0.05 84.0 66.0 75.0
0.08 84.7 66.2 75.5
0.10 84.8 66.2 75.5
0.12 84.8 66.1 75.5
0.15 84.6 66.0 75.3
0.20 84.3 65.6 75.0
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