
A Appendix

Lemma 1 (Correctness of GETCAND2NDFDC). GETCAND2NDFDC(G,X, I,R) generates a set
of variables R′ with I ⊆ R′ ⊆ R such that R′ consists of all and only variables v that satisfies
the second condition of the FD criterion relative to (X,Y). Further, every subset Z ⊆ R′ satisfies
the second condition of the FD criterion relative to (X,Y), and every set Z with I ⊆ Z ⊆ R that
satisfies the second condition of the FD criterion relative to (X,Y) must be a subset of R′.

Proof. GETCAND2NDFDC iterates through every node v ∈ R. For each v, the function
TESTSEP(GX,X, v, ∅) is called in line 5 to check if ∅ is a separator of X and v in GX, i.e., whether
there exists an open BD path from X to v or not. If TESTSEP returns True, then there is no open BD
path from X to v and v satisfies the second condition of the FD criterion relative to (X,Y). In this
case, v is kept in R′. Otherwise, if TESTSEP returns False, then there exists an open BD path from
X to v. By definition, for every set Z that includes v, there exists an open BD path from X to Z. Z
violates the second condition of the FD criterion relative to (X,Y), and thus v is removed from R′.
A special case is when v ∈ I. GETCAND2NDFDC returns ⊥ because R′ will not include any subset
Z with I ⊆ Z that satisfies the second condition of the FD criterion relative to (X,Y).

At the end of the function, GETCAND2NDFDC has generated a set R′ that includes all and only
variables v that satisfies the second condition of the FD criterion relative to (X,Y). By definition,
there exists no BD path from X to Z if and only if there exists no BD path from every x ∈ X to
every v ∈ Z. Hence, every subset Z ⊆ R′ satisfies the second condition of the FD criterion relative
to (X,Y), and R′ contains all and only sets Z with I ⊆ Z ⊆ R that satisfies the second condition of
the FD criterion relative to (X,Y).

Proposition A.1 (Complexity of GETCAND2NDFDC). GETCAND2NDFDC runs in O(n(n+m))
time where n and m represent the number of nodes and edges in G.

Proof. GETCAND2NDFDC iterates through all variables in R of sizeO(n). For each variable v ∈ R,
the function TESTSEP is called, which takes O(n+m) time [42].

Proposition A.2 (Correctness of GETNEIGHBORS). Let G be an undirected graph and v a variable
in G. GETNEIGHBORS correctly outputs all observed neighbors N of v in G. GETNEIGHBORS runs
in O(n+m) time where n and m represent the number of nodes and edges in G.

Proof. GETNEIGHBORS computes N, all adjacent nodes of v in G that are observed. Also, all latent
adjacent nodes L of v need to be considered because there might exist some observed adjacent nodes
O of L where O belongs to observed neighbors of v. If L is empty, then all adjacent nodes of v are
observed, and thus GETNEIGHBORS returns N. Otherwise, GETNEIGHBORS performs BFS from L,
searching for all observed neighbors of L. The nodes v, N and L are marked as visited to guarantee
that the nodes will not be visited more than once.

When BFS is performed, one latent node u is popped from Q at a time. Then, all observed adjacent
nodes O of u (that have not been visited before) are computed and added to N. Further, there may
exist some latent adjacent nodes L′ of u that have not been visited, and then there may exist some
observed neighbors of L′ as well. Hence, L′ is inserted into Q and all nodes in L′ is marked as
visited. The procedure continues until Q becomes empty.

At the end of while loop, N must include all and only observed neighbors of v in G because all
observed adjacent nodes of v are added to N, and for all latent adjacent nodes L of v, all observed
neighbors of L are also added to N.

GETNEIGHBORS runs in O(n+m) time because, while performing BFS, every node and edge in G
will be visited at most once.

Proposition A.3 (Correctness of GETDEP). Let G be a causal graph, X,Y,R′ disjoint sets of
variables, and T a set of variables where T ⊆ R′. If there exists a set of variables Z′ ⊆ R′ \T such
that T ∪ Z′ satisfies the third condition of the FD criterion relative to (X,Y), GETDEP outputs Z′,
or outputs ⊥ if none exists, in O(n2(n + m)) time where n and m represent the number of nodes
and edges in G.
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1: function GETNEIGHBORS(v,G)
2: Output: N all observed neighbors of v in an undirected graph G.
3: N← observed adjacent nodes of v in G, mark v and all w ∈ N as visited
4: L← latent adjacent nodes of v in G, mark all w ∈ L as visited
5: Q← L
6: while Q 6= ∅ do
7: u← Q.POP()
8: O← observed adjacent nodes of u in G that have not been visited
9: N← N ∪O, mark all w ∈ O as visited

10: L← latent adjacent nodes of u in G that have not been visited
11: Q.INSERT(L), mark all w ∈ L as visited
12: end while
13: return N
14: end function

Figure 8: A function that outputs all observed neighbors of a given variable.

Proof. GETDEP constructs the graph G′ by starting from the subgraph over An(T ∪X ∪Y), and
then converting all bidirected edges A↔ B into a single latent node LAB and two edges LAB → A
and LAB → B. All outgoing edges of T are removed from G′ to create G′′, which is then moralized
to construct an undirected graphM. After, X is removed fromM. The construction ofM is based
on the property that T and Y are d-separated by X in G if and only if X is a T - Y node cut (i.e.,
removing X disconnects T from Y) in G0 = MORALIZE(GAn(T∪X∪Y)) [21]. The two tweaks: 1)
removing all outgoing edges of T from G′ before moralization, and 2) removing X fromM after
moralization are added to ensure that all paths from T to Y inM are the BD paths from T to Y that
cannot be blocked by X in G.

GETDEP performs BFS from T to Y inM. Whenever a node u is visited, GETDEP obtains the non-
visited, observed neighbors NR of u inM that belong to R′. All observed neighbors of u inM are
obtained by calling the function GETNEIGHBORS(u,M) (by Prop. A.2). Then,M is reconstructed
by moralizing the graph G′′ = G′T∪Z′∪NR that removes all outgoing edges of T∪Z′ ∪NR from G′,
and then removing X fromM after. All outgoing edges of NR are removed (in addition to those
of T ∪ Z′) to check if removing all outgoing edges of NR contributes to disconnecting BD paths
from T to Y that cannot be blocked by X in G. In other words, NR may belong to Z′ such that Z
satisfies the third condition of the FD criterion relative to (X,Y). Hence, NR is added to Z′.

However, there might exist some BD path π from w ∈ NR to y ∈ Y that cannot be blocked by X in
G. If π cannot be disconnected from w to y, then Z will violate the third condition of the FD criterion
relative to (X,Y). We need to check if there exists such π. GETDEP constructs a set NR′, a set
of all variables w in NR such that there exists an incoming arrow into w in G. Also, there might
exist some observed neighbors N′ of u inM that are still reachable from u, even after removing all
outgoing edges of T ∪ Z′ ∪NR (which is reflected by the construction ofM). Hence, the union N
of two sets, N′ and NR′, are inserted into Q to check if any node in N is reachable to Y.

The BFS continues until either a node y ∈ Y is visited, or no more node can be visited. We explain
further by each case.

1. A node y ∈ Y is visited. There exists no set Z′ such that Z = T ∪ Z′ satisfies the third
condition of the FD criterion relative to (X,Y). Let π be a BD path from t ∈ T to y inM
where all nodes in π are visited by performing BFS from t to y. Since all nodes in π are
visited, for all variables w ∈ R′ that intersect π, all outgoing edges of w must have been
removed in G′′ andM was constructed based on G′′. However, y was still reached, which
implies that removing all outgoing edges of w did not disconnect π from t to y. Removing
all outgoing edges of R′ will not disconnect π from t to y either. Thus, there exists no set
Z′ such that all BD paths from Z to Y are blocked by X in G. GETDEP returns ⊥.

2. No more node is left to be visited. All BD paths from T to Y that cannot be blocked by X
in G have been disconnected by removing all outgoing edges of Z while ensuring that there
exists no BD path from Z to Y that cannot be blocked by X in G. All BD paths from Z to
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Y are blocked by X, and thus Z satisfies the third condition of the FD criterion relative to
(X,Y). GETDEP returns the set Z′.

For the time complexity, MORALIZE runs in O(n2) time. MORALIZE checks over every pair of nodes
(of size O(n2)) and adds an undirected edge between each non-adjacent pair if both nodes share a
common child. Then, MORALIZE converts all directed edges into undirected edges where the number
of edges may be of O(n2) in the worst case scenario. The BFS takes O(n2(n + m)) time in total
since all nodes and edges may be visited at most once (i.e., O(n+m) entities) where visiting a single
node takes O(n2) time where the dominating factor is the runtime of MORALIZE. By Prop. A.2,
GETNEIGHBORS runs in O(n+m) time. Hence, GETDEP runs in O(n2(n+m)) time.

Lemma 2 (Correctness of GETCAND3RDFDC). GETCAND3RDFDC(G,X,Y, I,R′) in Step 2 of
Alg. 1 generates a set of variables R′′ where I ⊆ R′′ ⊆ R′. R′′ consists of all and only variables v
such that there exists a subset Z with I ⊆ Z ⊆ R′ and v ∈ Z that satisfies the third condition of the
FD criterion relative to (X,Y). Further, every set Z with I ⊆ Z ⊆ R that satisfies both the second
and the third conditions of the FD criterion must be a subset of R′′.

Proof. The proof consists of two parts.

1. R′′ consists of all and only variables v such that there exists a subset Z with I ⊆ Z ⊆ R′

and v ∈ Z that satisfies the third condition of the FD criterion relative to (X,Y).

GETCAND3RDFDC iterates through all variables v in R′. By Lemma 1, every set Z with
I ⊆ Z ⊆ R that satisfies the second condition of the FD criterion relative to (X,Y) must
be a subset of R′. For each v, if GETDEP returns ⊥, then for every set Z with Z ⊆ R′ and
v ∈ Z, Z violates the third condition of the FD criterion relative to (X,Y) (by Prop. A.3).
Hence, v is removed from R′′. All such v’s (i.e., v such that GETDEP had returned ⊥)
will be removed from R′′. If v ∈ I, then GETCAND3RDFDC returns ⊥ as no Z with
I ⊆ Z ⊆ R′ and v ∈ Z will satisfy the third condition of the FD criterion relative to (X,Y).
At the end of for loop, we have that R′′ consists all and only variables v such that there
exists a subset Z with I ⊆ Z ⊆ R′ and v ∈ Z that satisfies the third condition of the FD
criterion relative to (X,Y).

2. Every set Z with I ⊆ Z ⊆ R that satisfies both the second and the third conditions of the
FD criterion relative to (X,Y) must be a subset of R′′.

By Lemma 1, every set Z with I ⊆ Z ⊆ R that satisfies the second condition of the
FD criterion relative to (X,Y) must be a subset of R′. We restrict the scope of Z into
I ⊆ Z ⊆ R′ and show that every Z that satisfies the third condition of the FD criterion
relative to (X,Y) must be a subset of R′′.

When GETCAND3RDFDC iterates through all variables in R′, every u ∈ Z must have been
checked since Z ⊆ R′. For each u ∈ Z, GETDEP must have returned a set of variables
since there exists a subset Z′ = Z \ {u} ⊆ R′ \ {u} such that Z satisfies the third condition
of the FD criterion relative to (X,Y) (by Prop A.3). GETCAND3RDFDC removes all and
only variables v from R′ such that there exists no set Z′ with I ⊆ Z′ ⊆ R′ and v ∈ Z′ that
satisfies the third condition of the FD criterion relative to (X,Y). If Z includes any such v,
then it is a contradiction as Z will violate the third condition of the FD criterion relative to
(X,Y). Hence, Z must be a subset of R′′.

Proposition A.4 (Complexity of GETCAND3RDFDC). GETCAND3RDFDC runs in O(n3(n+m))
time where n and m represent the number of nodes and edges in G.

Proof. GETCAND3RDFDC iterates through all variables v in R′ of sizeO(n). The function GETDEP
will be called once per loop. By Prop. A.3, GETDEP runs in O(n2(n+m)) time. In total, the running
time of GETCAND3RDFDC is O(n3(n+m)).

16



1: function GETCAUSALPATHGRAPH(G,X,Y)
2: Output: G′ a causal path graph relative to (G,X,Y).
3: G′′ ← GX∪Y∪PCP (X,Y)

4: G′ ← G′′
XY

5: Remove all bidirected edges from G′
6: return G′
7: end function

Figure 9: A function that constructs a causal path graph.

Lemma 3. R′′ generated by GETCAND3RDFDC (in Step 2 of Alg. 1) satisfies the third condition of
the FD criterion, that is, all BD paths from R′′ to Y are blocked by X.

Proof. By Lemma 2, for every variable v ∈ R′′, there exists a subset Z′ ⊆ R′ \ {v} such that
Z = {v}∪Z′ satisfies the third condition of the FD criterion relative to (X,Y). In other words, there
is no BD path from Z to Y that cannot be blocked by X in G. All BD paths from v to Y that cannot
be blocked by X are disconnected in GZ by removing all outgoing edges of v and Z′ in G. Consider
the graph GR′′ where all outgoing edges of Z as well as those of R′′ \Z are removed (Z ⊆ R′′ holds
by Lemma 2). Removing more outgoing edges (i.e., in GR′′) will not re-connect the BD paths that
have already been disconnected in GZ. Hence, all BD paths from v to Y that cannot be blocked by X
will be disconnected in GR′′ . Then, for every variable v ∈ R′′, all BD paths from v to Y that cannot
be blocked by X will be disconnected in GR′′ . All BD paths from R′′ to Y that cannot be blocked
by X are disconnected in GR′′ . All BD paths from R′′ to Y are blocked by X and thus R′′ satisfies
the third condition of the FD criterion relative to (X,Y).

Proposition A.5. Let G be a causal graph and X,Y disjoint sets of variables. GETCAUSALPATH-
GRAPH constructs a causal path graph G′ relative to (G,X,Y) in O(n+m) time where n and m
represent the number of nodes and edges in G.

Proof. The construction of a causal path graph is immediate from Def. 2. Constructing a subgraph
GX∪Y∪PCP (X,Y), performing graph transformation G′′

XY
, and removing all bidirected edges take

O(n+m) time.

Definition 3. (Proper Causal Path [35]) Let X,Y be set of nodes. A causal path from a node in X
to a node in Y is called proper if it does not intersect X except at the end point.

Lemma 4. Let G be a causal graph and X,Y,Z disjoint sets of variables. Let G′ be the causal
path graph relative to (G,X,Y). Then, Z satisfies the first condition of the FD criterion relative to
(X,Y) if and only if Z is a separator of X and Y in G′.

Proof. We prove the statement in both directions.

• If case: We show that Z satisfies the first condition of the FD criterion relative to (X,Y).
By the construction of G′, all paths from X to Y comprise of all and only proper causal
paths from X to Y. It is only necessary to check for all proper causal paths from X to
Y since every non-proper causal path from X to Y must include a proper causal path
from X to Y as a subpath. To witness, consider any non-proper causal path π = x1 →
, · · · ,→ xk →, · · · ,→ y from a node x1 ∈ X to a node y ∈ Y. Since π is not proper,
there must exist a node xk ∈ X that intersects π at non-endpoint and there exists a subpath
π′ = xk →, · · · ,→ y such that π′ is proper. Since Z is a separator of X and Y in G′, Z
intercepts all causal paths from X to Y in G.

• Only if case: We show that Z is a separator of X and Y in G′. By assumption, Z intercepts
all causal paths from X to Y in G. By the construction of G′, all and only paths from X to
Y must be causal. Thus, Z must be a separator of X and Y in G′.
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Lemma 5. There exists a set Z0 satisfying the FD criterion relative to (X,Y) with I ⊆ Z0 ⊆ R
if and only if R′′ generated by GETCAND3RDFDC (in Step 2 of Alg. 1) satisfies the FD criterion
relative to (X,Y).

We prove the statement in both directions.

• If case: It is automatic with Z0 = R′′.
• Only if case: We prove the contrapositive of the statement: if R′′ is not a FD adjustment set

relative to (X,Y), then there does not exist any FD adjustment set Z0 relative to (X,Y)
with I ⊆ Z0 ⊆ R. On the following three items, we show that there does not exist any
FD adjustment set Z0 relative to (X,Y) with three disjoint intervals, I ⊆ Z0 ⊆ R′′,
R′′ ⊂ Z0 ⊆ R′, and R′ ⊂ Z0 ⊆ R, respectively.

1. Since R′′ is not a FD adjustment set relative to (X,Y), R′′ must be violating the first
condition of the FD criterion relative to (X,Y). That is because, by the construction
of R′′, R′′ must satisfy the second condition of the FD criterion relative to (X,Y)
(by Lemma 1) and the third condition of the FD criterion relative to (X,Y) (by
Lemma 3). Then, R′′ does not intercept all causal paths from X to Y. No subset Z0

with I ⊆ Z0 ⊆ R′′ will intercept all causal paths from X to Y. Z0 violates the first
condition of the FD criterion relative to (X,Y)), and thus Z0 is not a FD adjustment
set relative to (X,Y).

2. Consider a collection of sets Z0 with R′′ ⊂ Z0 ⊆ R′. By the construction of R′′

generated by GETCAND3RDFDC (with R′′ ⊆ R′), for all v ∈ R′ \R′′, there does
not exist any set Z with I ⊆ Z ⊆ R′ and v ∈ Z that satisfies the third condition of
the FD criterion relative to (X,Y) (by Lemma 2). Z0 must include some v, and thus
Z0 violates the third condition of the FD criterion relative to (X,Y). Z0 is not a FD
adjustment set relative to (X,Y).

3. Consider a collection of sets Z0 with R′ ⊂ Z0 ⊆ R. By the construction of R′

generated by GETCAND2NDFDC (with R′ ⊆ R), for all v ∈ R \R′, there exists
an open BD path from X to v (By Lemma 1). Z0 must be including some v, and by
definition, there exists an open BD path from X to Z0. Z0 violates the second condition
of the FD criterion relative to (X,Y) and Z0 is not a FD adjustment set relative to
(X,Y).

Combining together the three items, we have that for all Z0 with I ⊆ Z0 ⊆ R, Z0 is not a
FD adjustment set relative to (X,Y).

Theorem 1 (Correctness of FINDFDSET). Let G be a causal graph, X,Y disjoint sets of variables,
and I,R sets of variables such that I ⊆ R. Then, FINDFDSET(G,X,Y, I,R) outputs a set Z
with I ⊆ Z ⊆ R that satisfies the FD criterion relative to (X,Y), or outputs ⊥ if none exists, in
O(n3(n+m)) time, where n and m represent the number of nodes and edges in G.

Proof. By Lemma 2, every set Z with I ⊆ Z ⊆ R that satisfies both the second and the third
conditions of the FD criterion relative to (X,Y) must be a subset of R′′. By Lemma 1, R′′ satisfies
the second condition of the FD criterion relative to (X,Y). By Lemma 3, R′′ satisfies the third
condition of the FD criterion relative to (X,Y). Let Z = R′′. Then, By Lemma 4, Z is a FD
adjustment set relative to (X,Y) if and only if Z is a separator of X and Y in G′, a causal path
graph relative to (G,X,Y). FINDFDSET outputs Z if and only if Z is a separator of X and Y in G′
(by calling TESTSEP(G′,X,Y,Z) at line 11 and verifying TESTSEP is returning True). Hence, the
outputted set Z is a FD adjustment set relative to (X,Y) where I ⊆ Z ⊆ R. If TESTSEP returns
False, then Z is not a FD adjustment set relative to (X,Y) and FINDFDSET outputs⊥. By Lemma 5,
there does not exist any FD adjustment set Z0 relative to (X,Y) with I ⊆ Z0 ⊆ R.

For the running time, constructing R′ takes O(n(n+m)) time (by Prop. A.1), and generating R′′

takes O(n3(n+m)) time (by Prop. A.4). By Prop. A.5, creating a causal path graph G′ relative to
(G,X,Y) (by calling GETCAUSALPATHGRAPH) takes O(n+m) time. TESTSEP takes O(n+m)
time. The dominant factor is O(n3(n+m)).

Theorem 2 (Correctness of LISTFDSETS). Let G be a causal graph, X,Y disjoint sets of variables,
and I,R sets of variables. LISTFDSETS(G,X,Y, I,R) enumerates all and only sets Z with
I ⊆ Z ⊆ R that satisfy the FD criterion relative to (X,Y) in O(n4(n+m)) delay where n and m
represent the number of nodes and edges in G.
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Proof. Consider the recursion tree for LISTFDSETS. By induction on tree nodes, we show that when
a tree node N (I′,R′) is visited, LISTFDSETS will output all and only FD adjustment sets Z relative
to (X,Y) where I′ ⊆ Z ⊆ R′.

• Base case: Consider any leaf tree node L(I′,R′). The recursion stops when I = R, so
I′ = R′ must hold. L contains a node Z with Z = I′ = R′ if Z is a valid FD adjustment set
relative to (X,Y), or empty otherwise. Indeed, LISTFDSETS will output a FD adjustment
set Z if and only if FINDFDSET in line 3 does not output ⊥ (by Thm. 1).

• Inductive case: Let N (I′,R′) be any non-leaf tree node. Assume the claim holds for two
children of N . We show that N contains all FD adjustment sets Z with I′ ⊆ Z ⊆ R′,
which can also be expressed as the union of two collections of sets: 1) the collection of
FD adjustment sets Z1 with I′ ∪ {v} ⊆ Z1 ⊆ R′, and 2) the collection of FD adjustment
sets Z2 with I′ ⊆ Z2 ⊆ R′ \ {v}. The two collections are disjoint as every set in the first
collection contains v, and none in the second collection does. By assumption, each child
contains the collection of respective FD adjustment sets. If FINDFDSET in line 3 outputs ⊥,
then there does not exist a FD adjustment set Z with I′ ⊆ Z ⊆ R′. Otherwise, each child
outputs a respective collection of FD adjustment sets.

For the runtime, consider the recursion tree for LISTFDSETS. Every time a tree node N (I′,R′)
is visited, the function FINDFDSET is called, which takes O(n3(n + m)) time (by Thm. 1). If
FINDFDSET outputs ⊥, then LISTFDSETS does not search further from N because there exists no
FD adjustment set Z with I′ ⊆ Z ⊆ R′. Otherwise, recursion continues until a leaf tree node is
visited. In each level of the tree, a single node v is removed from the set R \ I. The depth of the tree
is at most n, and the time required to output a set Z is O(n4(n+m)). In the worst case scenario, n
branches will be aborted (i.e., FINDFDSET outputs ⊥ on every level of the tree) before reaching the
first leaf. It takes O(n4(n+m)) time to produce either the first output or halt. Thus, LISTFDSETS
runs with O(n4(n+m)) delay.
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