
Finding and Listing Front-door Adjustment Sets

Hyunchai Jeong
Purdue University

jeong3@purdue.edu

Jin Tian
Iowa State University
jtian@iastate.edu

Elias Bareinboim
Columbia University

eb@cs.columbia.edu

Abstract

Identifying the effects of new interventions from data is a significant challenge
found across a wide range of the empirical sciences. A well-known strategy for
identifying such effects is Pearl’s front-door (FD) criterion [26]. The definition
of the FD criterion is declarative, only allowing one to decide whether a specific
set satisfies the criterion. In this paper, we present algorithms for finding and
enumerating possible sets satisfying the FD criterion in a given causal diagram.
These results are useful in facilitating the practical applications of the FD criterion
for causal effects estimation and helping scientists to select estimands with desired
properties, e.g., based on cost, feasibility of measurement, or statistical power.

1 Introduction

Learning cause and effect relationships is a fundamental challenge across data-driven fields. For
example, health scientists developing a treatment for curing lung cancer need to understand how a
new drug affects the patient’s body and the tumor’s progression. The distillation of causal relations is
indispensable to understanding the dynamics of the underlying system and how to perform decision-
making in a principled and systematic fashion [27, 37, 2, 30, 1, 23, 24].

One of the most common methods for learning causal relations is through Randomized Controlled
Trials (RCTs, for short) [8]. RCTs are considered as the “gold standard” in many fields of empirical
research and are used throughout the health and social sciences as well as machine learning and AI.
In practice, however, RCTs are often hard to perform due to ethical, financial, and technical issues.
For instance, it may be unethical to submit an individual to a certain condition if such condition may
have some potentially negative effects (e.g., smoking). Whenever RCTs cannot be conducted, one
needs to resort to analytical methods to infer causal relations from observational data, which appears
in the literature as the problem of causal effect identification [26, 27].

The causal identification problem asks whether the effect of holding a variableX at a constant value x
on a variable Y , written as P (Y |do(X = x)), or P (Y |do(x)), can be computed from a combination
of observational data and causal assumptions. One of the most common ways of eliciting these
assumptions is in the form of a causal diagram represented by a directed acyclic graph (DAG), where
its nodes and edges describe the underlying data generating process. For instance, in Fig. 1a, three
nodes X,Z, Y represent variables, a directed edge X → Z indicates that X causes Z, and a dashed-
bidirected edge X ↔ Y represents that X and Y are confounded by unmeasured (latent) factors.
Different methods can solve the identification problem, including Pearl’s celebrated do-calculus [26]
as well as different algorithmic solutions [40, 34, 12].

In practice, researchers often rely on identification strategies that generate well-known identification
formulas. One of the arguably most popular strategies is identification by covariate adjustment.
Whenever a set Z satisfies the back-door (BD) criterion [26] relative to the pair X and Y , where X
and Y represent the treatment and outcome variables, respectively, the causal effect P (Y |do(x)) can
be evaluated through the BD adjustment formula

∑
z P (y|x, z)P (z).
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Despite the popularity of the covariate adjustment technique for estimating causal effects, there are
still settings in which no BD admissible set exists. For example, consider the causal diagram G
in Fig. 1a. There clearly exists no set to block the BD path from X to Y , through the bidirected
arrow, X ↔ Y . One may surmise that this effect is not identifiable and the only one of evaluating
the interventional distribution is through experimentation. Still, this is not the case. The effect
P (Y |do(x)) is identifiable from G and the observed distribution P (x, y, z) over {X,Y, Z} by another
classic identification strategy known as the front-door (FD) criterion [26]. In particular, through the
following FD adjustment formula provides the way of evaluating the interventional distribution:

P (Y |do(x)) =
∑
z

P (z|x)
∑
x′

P (y|x′, z)P (x′). (1)

We refer to Pearl and Mackenzie [28, Sec. 3.4] for an interesting account of the history of the FD
criterion, which was the first graphical generalization of the BD case. The FD criterion is drawing
more attention in recent years. For applications of the FD criterion, see, e.g., Hünermund and
Bareinboim [13] and Glynn and Kashin [10]. Statistically efficient and doubly robust estimators have
recently been developed for estimating the FD estimand in Eq. (1) from finite samples [9], which are
still elusive for arbitrary estimands identifiable in a diagram despite recent progress [18, 19, 5, 20, 43].

X YZ

(a) G

X A B Y

C

D

(b) G′

Figure 1: (a) A canonical example of the FD crite-
rion where {Z} satisfies the FD criterion relative
to ({X}, {Y }). In (b), four FD adjustment sets rel-
ative to ({X}, {Y }) are available: {A}, {A,B},
{A,C}, and {A,B,C}.

Both the BD and FD criteria are only descriptive,
i.e., they specify whether a specific set Z satis-
fies the criteria or not, but do not provide a way
to find an admissible set Z. In addition, in many
situations, it is possible that multiple adjustment
sets exist. Consider for example the causal dia-
gram in Fig. 1b, and the task of identifying the
effect of X on Y . The distribution P (Y |do(x))
can indeed be identified by the FD criterion with
a set Z = {A,B,C} given by the expression in
Eq. (1) (with Z replaced with {A,B,C}). Still,
what if the variable B is costly to measure or en-
codes some personal information about patients
which is undesirable to be shared due to ethi-
cal concerns? In this case, the set Z = {A,C}
also satisfies the FD criterion and may be used.
Even when both B and C are unmeasured, the
set Z = {A} is also FD admissible.

This simple example shows that a target effect can be estimated using different adjustment sets leading
to different probability expressions over different set of variables, which has important practical
implications. Each variable implies different practical challenges in terms of measurement, such
as cost, availability, privacy. Each estimand has different statistical properties in terms of sample
complexity, variance, which may play a key role in the study design [31, 11, 32, 36]. Algorithms
for finding and listing all possible adjustment sets are hence very useful in practice, which will
allow scientists to select an adjustment set that exhibits desirable properties. Indeed, algorithms have
been developed in recent years for finding one or listing all BD admissible sets [38, 39, 41, 29, 42].
However, no such algorithm is currently available for finding/listing FD admissible sets.

The goal of this paper is to close this gap to facilitate the practical applications of the FD criterion
for causal effects estimation and help scientists to select estimand with certain desired properties 1.
Specifically, the contributions of this paper are as follows:

1. We develop an algorithm that finds an admissible front-door adjustment set Z in a given
causal diagram in polynomial time (if one exists). We solve a variant of the problem that
imposes constraints I ⊆ Z ⊆ R for given sets I and R, which allows a scientist to constrain
the search to include specific subsets of variables or exclude variables from search perhaps
due to cost, availability, or other technical considerations.

2. We develop a sound and complete algorithm that enumerates all front-door adjustment sets
with polynomial delay - the algorithm takes polynomial amount of time to return each new
admissible set, if one exists, or return failure whenever it exhausted all admissible sets.

1Code is available at https://github.com/CausalAILab/FrontdoorAdjustmentSets.
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2 Preliminaries

Notation. We write a variable in capital letters (X) and its value as small letters (x). Bold letters,
X or x, represent a set of variables or values. We use kinship terminology to denote various
relationships in a graph G and denote the parents, ancestors, and descendants of X (including X
itself) as Pa(X),An(X), and De(X), respectively. Given a graph G over a set of variables V, a
subgraph GX consists of a subset of variables X ⊆ V and their incident edges in G. A graph G can be
transformed: GX is the graph resulting from removing all incoming edges to X, and GX is the graph
with all outgoing edges from X removed. A DAG G may be moralized into an undirected graph
where all directed edges of G are converted into undirected edges, and for every pair of nonadjacent
nodes in G that share a common child, an undirected edge that connects such pair is added [22].

A path π from a node X to a node Y in G is a sequence of edges where X and Y are the endpoints of
π. A node W on π is said to be a collider if W has converging arrows into W in π, e.g.,→ W ←
or↔ W ←. π is said to be blocked by a set Z if there exists a node W on π satisfying one of the
following two conditions: 1) W is a collider, and neither W nor any of its descendants are in Z, or
2) W is not a collider, and W is in Z [25]. Given three disjoint sets X,Y, and Z in G, Z is said
to d-separate X from Y in G if and only if Z blocks every path from a node in X to a node in Y
according to the d-separation criterion [25], and we say that Z is a separator of X and Y in G.

Structural Causal Models (SCMs). We use Structural Causal Models (SCMs, for short) [27] as
our basic semantical framework. An SCM is a 4-tuple 〈U,V,F, P (u)〉, where 1) U is a set of
exogenous (latent) variables, 2) V is a set of endogenous (observed) variables, 3) F is a set of
functions {fV }V ∈V that determine the value of endogenous variables, e.g., v ← fV (paV ,uV )
is a function with PAV ⊆ V \ {V } and UV ⊆ U, and 4) P (u) is a joint distribution over the
exogenous variables U. Each SCM induces a causal diagram G [3, Def. 13] where every variable
v ∈ V is a vertex and directed edges in G correspond to functional relationships as specified in F
and dashed bidirected edges represent common exogenous variables between two vertices. Within
the structural semantics, performing an intervention and setting X = x is represented through the
do-operator, do(X = x), which encodes the operation of replacing the original functions of X (i.e.,
fX(paX ,uX)) by the constant x and induces a submodelMx and an interventional distribution
P (v|do(x)).

Classic Causal Effects Identification Criteria. Given a causal diagram G over V, an effect
P (y|do(x)) is said to be identifiable in G if P (y|do(x)) is uniquely computable from the observed
distribution P (v) in any SCM that induces G [27, p. 77].

A path between X and Y with an arrow into X is known as a back-door path from X to Y . The
celebrated back-door (BD) criterion [26] provides a sufficient condition for effect identification from
observational data, which states that if a set Z of non-descendants of X blocks all BD paths from X
to Y, then the causal effect P (y|do(x)) is identified by the BD adjustment formula:

P (y|do(x)) =
∑
z

P (y|x, z)P (z) (2)

Another classic identification condition that is key to the discussion in this paper is known as the
front-door criterion, which is defined as follows:

Definition 1. (Front-door (FD) Criterion [26]) A set of variables Z is said to satisfy the front-door
criterion relative to the pair (X,Y) if

1. Z intercepts all directed paths from X to Y,

2. There is no unblocked back-door path from X to Z, and

3. All back-door paths from Z to Y are blocked by X, i.e., X is a separator of Z and Y in GZ.

If Z satisfies the FD criterion relative to the pair (X,Y), then P (y|do(x)) is identified by the
following FD adjustment formula [26]:

P (y|do(x)) =
∑
z

P (z|x)
∑
x′

P (y|x′, z)P (x′). (3)
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3 Finding A Front-door Adjustment Set

Algorithm 1 FINDFDSET (G,X,Y, I,R)

1: Input: G a causal diagram; X,Y disjoint sets of
variables; I,R sets of variables.

2: Output: Z a set of variables satisfying the front-
door criterion relative to (X,Y) with the con-
straint I ⊆ Z ⊆ R.

3: Step 1:
4: R′ ← GETCAND2NDFDC(G,X, I,R)
5: if R′ =⊥ then: return ⊥
6: Step 2:
7: R′′ ← GETCAND3RDFDC(G,X,Y, I,R′)
8: if R′′ =⊥ then: return ⊥
9: Step 3:

10: G′ ← GETCAUSALPATHGRAPH(G,X,Y)
11: if TESTSEP(G′,X,Y,R′′) = True then:
12: return Z = R′′

13: else: return ⊥

In this section, we address the following ques-
tion: given a causal diagram G, is there a set
Z that satisfies the FD criterion relative to
the pair (X,Y) and, therefore, allows us to
identify P (y|do(x)) by the FD adjustment?
We solve a more general variant of this ques-
tion that imposes a constraint I ⊆ Z ⊆ R for
given sets I and R. Here, I are variables that
must be included in Z (I could be empty) and
R are variables that could be included in Z
(R could be V\(X∪Y)). Note the constraint
that variables in W cannot be included can
be enforced by excluding W from R. Solv-
ing this version of the problem will allow sci-
entists to put constraints on candidate adjust-
ment sets based on practical considerations.
In addition, this version will form a building
block for an algorithm that enumerates all FD
admissible sets in a given G - the algorithm
LISTFDSETS (shown in Alg. 2 in Section 4)
for listing all FD admissible sets will utilize
this result during the recursive call.

We have developed a procedure called FINDFDSET shown in Alg. 1 that outputs a FD adjustment set
Z relative to (X,Y) satisfying I ⊆ Z ⊆ R, or outputs ⊥ if none exists, given a causal diagram G,
disjoint sets of variables X and Y, and two sets of variables I and R.
Example 1. Consider the causal graph G′, shown in Fig. 1b, with X = {X}, Y = {Y }, I = ∅
and R = {A,B,C,D}. Then, FINDFDSET outputs {A,B,C}. With I = {C} and R = {A,C},
FINDFDSET outputs {A,C}. With I = {D} and R = {A,B,C,D}, FINDFDSET outputs ⊥ as no
FD adjustment set that contains D is available.

1: function GETCAND2NDFDC(G,X, I,R)
2: Output: R′ with I ⊆ R′ ⊆ R, the set of

candidate variables consisting of all the variables
v ∈ R such that there is no BD path from X to v.

3: R′ ← R
4: for all v ∈ R:
5: if TESTSEP(GX,X, v, ∅) = False then:
6: if v ∈ I then: return ⊥
7: else: R′ ← R′ \ {v}
8: end for
9: return R′

10: end function

Figure 2: A function that outputs the set of candidate
variables satisfying the second condition of the FD
criterion.

FINDFDSET runs in three major steps. Each
step identifies candidate variables that incre-
mentally satisfy each of the conditions of the
FD criterion relative to (X,Y). First, FIND-
FDSET constructs a set of candidate vari-
ables R′, with I ⊆ R′ ⊆ R, such that every
subset Z with I ⊆ Z ⊆ R′ satisfies the sec-
ond condition of the FD criterion (i.e., there
is no BD path from X to Z). Next, FIND-
FDSET generates a set of candidate variables
R′′, with I ⊆ R′′ ⊆ R′, such that for every
variable v ∈ R′′, there exists a set Z with
I ⊆ Z ⊆ R′ and v ∈ Z that further satisfies
the third condition of the FD criterion, that
is, all BD paths from Z to Y are blocked by
X. Finally, FINDFDSET outputs a set Z that
further satisfies the first condition of the FD
criterion - Z intercepts all causal paths from
X to Y.

Step 1 of FINDFDSET

In Step 1, FINDFDSET calls the function GETCAND2NDFDC (presented in Fig. 2) to construct a set
R′ that consists of all the variables v ∈ R such that there is no BD path from X to v (R′ is set to
empty if there is a BD path from X to I). Then, there is no BD path from X to any set I ⊆ Z ⊆ R′

since, by definition, there is no BD path from X to Z if and only if there is no BD path from X to
any v ∈ Z.
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GETCAND2NDFDC iterates through each variable v ∈ R and checks if there exists an open BD path
from X to v by calling the function TESTSEP(GX,X, v, ∅) [41]. TESTSEP(G,A,B,C) returns True
if C is a separator of A and B in G, or False otherwise. Therefore, TESTSEP(GX,X, v, ∅) returns
True if ∅ is a separator of X and v in GX (i.e., there is no BD path from X to v), or False otherwise.
If TESTSEP returns False, then v is removed from R′ because every set Z containing v violates the
second condition of the FD criterion relative to (X,Y).
Example 2. Continuing Example 1. With I = ∅ and R = {A,B,C,D}, GETCAND2NDFDC
outputs a set R′ = {A,B,C}. D is excluded from R′ since there exists a BD path from {X} to {D},
and any set containing D violates the second condition of the FD criterion relative to ({X}, {Y }).
Lemma 1 (Correctness of GETCAND2NDFDC). GETCAND2NDFDC(G,X, I,R) generates a set
of variables R′ with I ⊆ R′ ⊆ R such that R′ consists of all and only variables v that satisfies
the second condition of the FD criterion relative to (X,Y). Further, every subset Z ⊆ R′ satisfies
the second condition of the FD criterion relative to (X,Y), and every set Z with I ⊆ Z ⊆ R that
satisfies the second condition of the FD criterion relative to (X,Y) must be a subset of R′.

Step 2 of FINDFDSET

1: function GETCAND3RDFDC(G,X,Y, I,R′)
2: Output: R′′ consisting of all the variables
v ∈ R′ such that there exists a set Z containing v
with I ⊆ Z ⊆ R′ that satisfies the third condition
of the FD criterion relative to (X,Y).

3: R′′ ← R′

4: for all v ∈ R′:
5: if GETDEP(G,X,Y, {v},R′) =⊥ then:
6: if v ∈ I then: return ⊥
7: else: R′′ ← R′′ \ {v}
8: end for
9: return R′′

10: end function

Figure 3: A function that outputs the set of candidate
variables potentially satisfying the second and third
conditions of the FD criterion.

In Step 2, FINDFDSET calls the function
GETCAND3RDFDC presented in Fig. 3 to
generate a set R′′ consisting of all the vari-
ables v ∈ R′ such that there exists a set
Z containing v with I ⊆ Z ⊆ R′ that
further satisfies the third condition of the
FD criterion relative to (X,Y) (i.e., all BD
paths from Z to Y are blocked by X). In
other words, R′′ is the union of all Z with
I ⊆ Z ⊆ R′ that satisfies the third condition
of the FD criterion.

GETCAND3RDFDC iterates through each
variable v ∈ R′ and calls the function
GETDEP(G,X,Y, {v},R′) in line 5. Pre-
sented in Fig. 4, GETDEP returns a subset
Z′ ⊆ R′ \ {v} such that all BD paths from
Z = {v} ∪ Z′ to Y are blocked by X (if
there exists such Z′). If GETDEP returns ⊥,
then there exists no Z containing v that sat-
isfies the third condition of the FD criterion
relative to (X,Y), so v is removed from R′′.
Example 3. Continuing Example 2. Given I = ∅ and R′ = {A,B,C}, GETCAND3RDFDC outputs
R′′ = {A,B,C} because for each variable v ∈ R′′, GETDEP finds a set Z′ such that {v} ∪ Z′

satisfies the third condition of the FD criterion relative to ({X}, {Y }). For v = A, Z′ = ∅, for
v = B, Z′ = {A}, and for v = C, Z′ = {A}.

Next, we explain how the function GETDEP(G,X,Y,T,R′) works. First, GETDEP constructs an
undirected graphM in a way that the paths from T to Y inM represent all BD paths from T to Y
that cannot be blocked by X in G. The auxiliary function MORALIZE(G) moralizes a given graph
G into an undirected graph. The moralization is performed on the subgraph over An(T ∪X ∪Y)
instead of G based on the following property: T and Y are d-separated by X in G if and only if X is
a T-Y node cut (i.e., removing X disconnects T and Y) in G′ = MORALIZE(GAn(T∪X∪Y)) [21].

GETDEP performs Breadth-First Search (BFS) from T to Y onM and incrementally constructs
a subset Z′ ⊆ R′ \ T such that, after BFS terminates, there will be no BD path from Z = T ∪
Z′ to Y that cannot be blocked by X in G. While constructing Z′, GETDEP calls the function
GETNEIGHBORS(u,M) (presented in Fig. 8, Appendix) to obtain all observed neighbors of u inM.

The BFS starts from each variable v ∈ T. Whenever a non-visited node u is encountered, the set
NR, observed neighbors of u that belong to R′, is computed. NR can be added to Z′ because
removing all outgoing edges of NR may contribute to disconnecting some BD paths Π from T to Y
that cannot be blocked by X in G. In other words, in GT∪Z′∪NR, Π could be disconnected from T to
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1: function GETDEP(G,X,Y,T,R′)
2: Output: Z′ ⊆ R′ \T, a set of variables such that T ∪ Z′ satisfies the third condition of the

FD criterion relative to (X,Y).
3: G′ ← GAn(T∪X∪Y)

4: G′ ← G′ with all bidirected edges A ↔ B replaced by a latent node LAB and two edges
LAB → A and LAB → B

5: G′′ ← G′T
6: M← MORALIZE(G′′) then remove X
7: Z′ ← ∅,Q← T and mark all v ∈ T as visited
8: while Q 6= ∅ do
9: u← Q.POP()

10: if u ∈ Y then: return ⊥
11: NR← GETNEIGHBORS(u,M) ∩R′ that are not visited
12: G′′ ← G′T∪Z′∪NR

13: M← MORALIZE(G′′) then remove X
14: N′ ← GETNEIGHBORS(u,M) that are not visited
15: NR′ ← {w ∈ NR| there exists an incoming arrow into w in G}
16: N← N′ ∪NR′,Z′ ← Z′ ∪NR
17: Q.INSERT(N) and mark all w ∈ N as visited
18: end while
19: return Z′

20: end function

Figure 4: A function that facilitates the construction of a set that satisfies the third condition of the
FD criterion.

Y where Π are not disconnected in GT∪Z′ . After adding NR to Z′,M must be reconstructed in a
way that reflects the setting where all outgoing edges of NR are removed. BFS will be performed on
such modifiedM.

GETDEP checks if there exists any set of nodes N to be visited further. N consists of two sets: 1) N′,
all observed neighbors of u that are still reachable from u, even after removing all outgoing edges
of NR, and 2) NR′ ⊆ NR where for every node w ∈ NR, there exists an incoming arrow into
w in G. All nodes in NR′ must be checked because there might exist some BD path π from w to
y ∈ Y that cannot be blocked by X in G. If π cannot be disconnected from w to y, then the set Z
will violate the third condition of the FD criterion relative to (X,Y).

The BFS continues until either a node y ∈ Y is visited, or no more nodes can be visited. If GETDEP
returns a set Z′, then we have that all BD paths from T to Y that cannot be blocked by X in G have
been disconnected in GZ while ensuring that there exists no BD path from Z to Y that cannot be
blocked by X in G. Therefore, Z satisfies the third condition of the FD criterion relative to (X,Y).
Otherwise, if GETDEP returns ⊥ (i.e., y is visited), then there does not exist any Z containing T that
satisfies the third condition of the FD criterion relative to (X,Y). This is because there exists a BD
path π from t ∈ T to y that cannot be blocked by X in G; removing outgoing edges of all w ∈ R′

that intersect π cannot disconnect π from t to y.
Example 4. Expanding on Example 3 to show the use of function GETDEP. Consider the case when
v = B. Then, Q = T = {B} and u = B is popped from Q at line 9. We have NR = {A},N′ =
∅,NR′ = {A},N = {A}, and Z′ = {A}. Since N is inserted to Q at line 17, u = A is popped
from Q in the next iteration of while loop. Then, NR = ∅,N′ = ∅,NR′ = ∅, and N = ∅. Since Q
is empty, the while loop terminates and GETDEP returns Z′ = {A}.
Example 5. Illustrating the use of function GETDEP. Let I = ∅, R′ = {B,C}, and v = B.
Q = T = {B} and u = B is popped from Q at line 9. NR = ∅,N′ = {A},NR′ = ∅,N = {A},
and Z′ = ∅. Since N is inserted to Q at line 17, u = A is popped from Q in the second iteration
of while loop. NR = NR′ = {C}, N′ = N = {C,D, Y }, Z′ = {C}, and Q = {C,D, Y }. On
the third iteration, u = C is popped from Q. NR = NR′ = N′ = N = ∅ and Q = {D,Y }.
On the fourth iteration, u = D is popped from Q. NR = NR′ = N′ = N = ∅ and Q = {Y }.
Next, u = Y is popped from Q. Since u ∈ {Y }, GETDEP returns ⊥ at line 10. There exists no set
Z′ ⊆ (R′ \T) = {C} such that T ∪ Z′ satisfies the third condition of the FD criterion relative to
({X}, {Y }).
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Lemma 2 (Correctness of GETCAND3RDFDC). GETCAND3RDFDC(G,X,Y, I,R′) in Step 2 of
Alg. 1 generates a set of variables R′′ where I ⊆ R′′ ⊆ R′. R′′ consists of all and only variables v
such that there exists a subset Z with I ⊆ Z ⊆ R′ and v ∈ Z that satisfies the third condition of the
FD criterion relative to (X,Y). Further, every set Z with I ⊆ Z ⊆ R that satisfies both the second
and the third conditions of the FD criterion must be a subset of R′′.

Remark: Even though every set Z with I ⊆ Z ⊆ R′ that satisfies the third condition of the FD
criterion must be a subset of R′′, not every subset Z ⊆ R′′ satisfies the third condition of the FD
criterion, as illustrated by the following example.
Example 6. In Example 3, GETCAND3RDFDC outputs R′′ = {A,B,C}. However, for Z = {B},
the BD path {B ← A→ D → Y } is not blocked by {X}; for Z = {C}, the BD path {C ← A→
D → Y } is not blocked by {X}.

On the other hand, we show that Z = R′′ itself satisfies the third condition of the FD criterion, as
shown in the following.
Lemma 3. R′′ generated by GETCAND3RDFDC (in Step 2 of Alg. 1) satisfies the third condition of
the FD criterion, that is, all BD paths from R′′ to Y are blocked by X.

Step 3 of FINDFDSET

Finally, in Step 3, FINDFDSET looks for a set Z ⊆ R′′ that satisfies the first condition of the FD
criterion relative to (X,Y), that is, Z intercepts all causal paths from X to Y. To facilitate checking
whether a set Z intercepts all causal paths from X to Y, we introduce the concept of causal path
graph defined as follows.
Definition 2. (Causal Path Graph) Let G be a causal graph and X,Y disjoint sets of variables.
A causal path graph G′ relative to (G,X,Y) is a graph over X ∪ Y ∪ PCP (X,Y), where
PCP (X,Y) = (De(X)GX

\X) ∩An(Y)GX
2, constructed as follows:

1. Construct a subgraph G′′ = GX∪Y∪PCP (X,Y).

2. Construct a graph G′ = G′′
XY

, then remove all bidirected edges from G′.

X YZ

(a) G

X A B Y

C

D

(b) G′′

Figure 5: Two causal path graphs generated from
(a) the causal graph in Fig. 1a, and (b) the causal
graph in Fig. 1b. Both preserve all and only causal
paths from {X} to {Y } in the original graphs.

A function GETCAUSALPATHGRAPH(G,X,Y)
for constructing a causal path graph is presented
in Fig. 9 in the Appendix.
Example 7. Consider the causal graph G′
shown in Fig. 1b with X = {X}, and Y =
{Y }. The causal path graph G′′ relative to
(G′, {X}, {Y }) is shown in Fig. 5b. All causal
paths from {X} to {Y } in G′ are present in G′′.

After constructing a causal path graph G′
relative to (G,X,Y), we use the function
TESTSEP(G′,X,Y,Z) to check if Z is a sep-
arator of X and Y in G′. Based on the following
lemma, Z satisfies the first condition of the FD
criterion relative to (X,Y) if and only if TEST-
SEP returns True.
Lemma 4. Let G be a causal graph and X,Y,Z disjoint sets of variables. Let G′ be the causal
path graph relative to (G,X,Y). Then, Z satisfies the first condition of the FD criterion relative to
(X,Y) if and only if Z is a separator of X and Y in G′.

Given the set R′′ that contains every set Z with I ⊆ Z ⊆ R that satisfies both the second and the third
conditions of the FD criterion (Lemma 2), it may appear that we need to search for a set Z ⊆ R′′ that
satisfies the first condition of the FD criterion. We show instead that all we need is to check whether
the set R′′ itself satisfies the first condition which has been shown to satisfy the second and third
conditions by Lemma 3. This result is summarized in the following lemma.

2A notation introduced by van der Zander et al. [41] to denote the set of variables on proper causal paths
from X to Y.
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Figure 6: Three examples of the FD criterion to demonstrate that total number of FD adjustment sets
may be exponential with respect to the number of nodes in a graph.

Lemma 5. There exists a set Z0 satisfying the FD criterion relative to (X,Y) with I ⊆ Z0 ⊆ R
if and only if R′′ generated by GETCAND3RDFDC (in Step 2 of Alg. 1) satisfies the FD criterion
relative to (X,Y).

Example 8. Continuing Example 3. In Step 3, FINDFDSET outputs Z = R′′ = {A,B,C} since Z
is a separator of {X} and {Y } in the causal path graph G′′ in Fig. 5b.

The results in this section are summarized as follows.

Theorem 1 (Correctness of FINDFDSET). Let G be a causal graph, X,Y disjoint sets of variables,
and I,R sets of variables such that I ⊆ R. Then, FINDFDSET(G,X,Y, I,R) outputs a set Z
with I ⊆ Z ⊆ R that satisfies the FD criterion relative to (X,Y), or outputs ⊥ if none exists, in
O(n3(n+m)) time, where n and m represent the number of nodes and edges in G.

4 Enumerating Front-door Adjustment Sets

Algorithm 2 LISTFDSETS (G,X,Y, I,R)

1: Input: G a causal diagram; X,Y disjoint sets of
variables; I,R sets of variables.

2: Output: Listing front-door adjustment set Z rel-
ative to (X,Y) where I ⊆ Z ⊆ R.

3: if FINDFDSET(G,X,Y, I,R) 6=⊥ then:
4: if I = R then: Output I
5: else:
6: v ← any variable from R \ I
7: LISTFDSETS(G,X,Y, I ∪ {v},R)
8: LISTFDSETS(G,X,Y, I,R \ {v})

Our goal in this section is to develop an al-
gorithm that lists all FD adjustment sets in
a causal diagram. In general, there may ex-
ist exponential number of such sets, which
means that any listing algorithm will take
exponential time to list them all. We will
instead look for an algorithm that has an in-
teresting property known as polynomial delay
[38]. In words, poly-delay algorithms output
the first answer (or indicate none is available)
in polynomial time, and take polynomial time
to output each consecutive answer as well.
Consider the following example.

Example 9. Consider the three causal graphs
in Fig. 6. In G shown in Fig. 6a, there ex-
ists 9 valid FD adjustment sets relative to
({X}, {Y }). In G′, presented in Fig. 6b, two variables A3 and B3 are added from G, forming an
additional causal path from X to Y . 27 FD adjustment sets relative to ({X}, {Y }) are available in
G′. If another causal path X → A4 → B4 → Y is added to G′, then there are 81 FD adjustment sets
relative to ({X}, {Y }). As shown in Fig. 6c, in a graph G′′ with similar pattern with causal path
X → Ai → Bi → Y, i = 1, . . . n, there are at least 3n number of FD adjustment sets.

We have developed an algorithm named LISTFDSETS, shown in Alg. 2, that lists all FD adjustment
sets Z relative to (X,Y) satisfying I ⊆ Z ⊆ R with polynomial delay, given a causal diagram G,
disjoint sets of variables X and Y, and two sets of variables I and R.

Example 10. Consider the causal graph G′ shown in Fig. 1b with X = {X}, Y = {Y }, I = ∅ and
R = {A,B,C,D}. LISTFDSETS outputs {A,B,C}, {A,B}, {A,C}, {A} one by one, and finally
stops as no more adjustment sets exist.
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The algorithm LISTFDSETS takes the same search strategy as the listing algorithm LISTSEP [41]
that enumerates all BD adjustment sets with polynomial delay. LISTFDSETS implicitly constructs
a binary search tree where each tree node N (I′,R′) represents the collection of all FD adjustment
sets Z relative to (X,Y) with I′ ⊆ Z ⊆ R′. The search starts from the root tree node N (I,R),
indicating that LISTFDSETS will list all FD adjustment sets Z relative to (X,Y) with I ⊆ Z ⊆ R.

Figure 7: A search tree illustrating the running of
LISTFDSETS in Example 11.

Upon visiting a node N (I′,R′), LISTFDSETS
first calls the function FINDFDSET (line 3) to
decide whether it is necessary to search further
from N . If FINDFDSET outputs ⊥, then there
does not exist any FD adjustment set Z0 with
I′ ⊆ Z0 ⊆ R′ and there is no need to search
further. Otherwise, N spawns two children, N1

and N2, and LISTFDSETS continues the search
over each child separately. N1 in line 7 repre-
sents the collection of all FD adjustment sets Z1

relative to (X,Y) where I′ ∪ {v} ⊆ Z1 ⊆ R′.
On the other hand, N2 in line 8 represents the
collection of all FD adjustment sets Z2 where
I′ ⊆ Z2 ⊆ R′ \ {v}. N1 and N2 are disjoint
and thus the search never overlaps, which is crucial to guaranteeing that LISTFDSETS runs in
polynomial delay. Finally, a leaf tree node L is reached when I′ = R′, and LISTFDSETS outputs a
valid FD adjustment set I′.
Example 11. Continuing from Example 10. Fig. 7 shows a search tree generated by running
LISTFDSETS(G′, {X}, {Y }, ∅, {A,B,C,D}). Initially, the search starts from the root tree node
N (∅, {A,B,C,D}). Since FINDFDSET returns a set {A,B,C}, N branches out into two children
N ′({A}, {A,B,C,D}) and N ′′(∅, {B,C,D}). The search continues from the left child N ′ until
reaching the leaf tree node L1({A,B,C,D}, {A,B,C,D}) where FINDFDSET returns⊥. LISTFD-
SETS backtracks to the parent tree node N1({A,B,C}, {A,B,C,D}) and then checks the next leaf
L2({A,B,C}, {A,B,C}) where FINDFDSET returns a set {A,B,C}, a valid FD admissible set
relative to ({X}, {Y }). LISTFDSETS outputs {A,B,C}. Next, LISTFDSETS backtracks to the
tree node N2({A,B}, {A,B,C,D}) and reaches the leaf L3({A,B}, {A,B}) where FINDFDSET
outputs {A,B}, and thus LISTFDSETS outputs {A,B}. LISTFDSETS continues and outputs two
sets {A,C} and {A} in order. Finally, LISTFDSETS backtracks to the root N and checks the right
childN ′′ where FINDFDSET returns ⊥. LISTFDSETS does not search further fromN ′′ and stops as
no more tree node is left to be visited.

Our results are summarized in the following theorem, which provides the correctness, completeness,
and poly-delay complexity of the proposed algorithm. Note that the completeness of the algorithm
means that it lists “all” valid sets satisfying the FD criterion. On the other hand, Pearl’s FD criterion
is not complete in the sense that there might exist a causal effect that can be computed by the FD
adjustment formula (Eq. (3)) but the set Z does not satisfy the FD criterion.
Theorem 2 (Correctness of LISTFDSETS). Let G be a causal graph, X,Y disjoint sets of variables,
and I,R sets of variables. LISTFDSETS(G,X,Y, I,R) enumerates all and only sets Z with
I ⊆ Z ⊆ R that satisfy the FD criterion relative to (X,Y) in O(n4(n+m)) delay where n and m
represent the number of nodes and edges in G.

5 Discussion and Conclusions

This work has some limitations and can be extended in several directions. First, Pearl’s FD criterion
is not complete with respect to the FD adjustment formula (Eq. (3)). While the BD criterion has
been generalized to a complete criterion for BD adjustment [35], it is an interesting open problem to
come up with a complete criterion for sets satisfying the FD adjustment. Second, this work assumes
that the causal diagram is given (or inferred based on scientists’ domain knowledge and/or data).
Although this assumption is quite common throughout the causal inference literature, more recent
work has moved to finding BD admissible sets given incomplete or partially specified causal diagrams,
e.g., maximal ancestral graphs (MAGs) [41], partial ancestral graphs (PAGs) [29], and completed
partially directed acyclic graphs (CPDAGs) [29]. There are algorithms capable of performing causal
effect identification in a data-driven fashion from an equivalence class [14, 15, 16, 17]. It is an
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interesting and certainly challenging future work to develop algorithms for finding FD admissible
sets in these types of graphs. Some recent work has proposed data-driven methods for finding and
listing BD admissible sets, using an anchor variable, when the underlying causal diagram is unknown
[7, 6, 33]. A criterion for testing FD-admissibility of a given set using data and an anchor variable is
also available [4]. Other interesting future research topics include developing algorithms for finding
minimal, minimum, and minimum cost FD adjustment sets, which are available for the BD adjustment
sets [42], as well as algorithms for finding conditional FD adjustment sets [13, 9]. Having said all
of that, we believe that the results developed in this paper is a necessary step towards solving these
more challenging problems.

After all, we started from the observation that identification is not restricted to BD adjustment, and
Pearl’s FD criterion provides a classic strategy for estimating causal effects from observational data
and qualitative knowledge encoded in the form of a causal diagram. The criterion is drawing more
attention in recent years and statistically efficient and doubly robust estimators have been developed
for estimating the FD estimand from finite samples. In this paper, we develop algorithms that given
a causal diagram G, find an admissible FD set (Alg. 1 FINDFDSET, Thm. 1) and enumerate all
admissible FD sets with polynomial delay (Alg. 2 LISTFDSETS, Thm. 2). We hope that the methods
and algorithms proposed in this work will help scientists to use the FD strategy for causal effects
estimation in the practical applications and are useful for scientists in study design to select covariates
based on desired properties, including cost, feasibility, and statistical power.
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