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This supplementary document summarizes the parameter configurations for producing figures in the1

main text as well as the detailed mathematical derivations. You can also run the matlab code in the2

zip file if you are interested in the detailed implementation. It is organized as follows:3

• Sec.1 summarizes all the parameters that we used in the simulation shown in the main text.4

• Sec.2 shows the analytical derivation of the intrisic mobility of our model.5

• Sec.3 shows the detailed mathematical analysis of the oscillatory tracking state.6

• Sec.4 presents the details for the comparison between our simulation results and the adapted7

experimental data from [1] and [2].8

We also include two videos showing how the oscillatory tracking state naturally give rise to the9

bursting activities of bimodal cells and unimodal cells at the single neuron level.10

1 Parameter configurations11

Parameters that are fixed across all simulations are given in Table.1. For validating different aspects12

of oscillatory tracking, we tune the external input strength α and the feedback inhibition strength m,13

and the values are summarized in Table. 2.14

Table 1: Values for common parameters in all figures

number of neurons: N 512
recurrent connection range: a 0.4

time constant of U(x, t): τ (ms) 3
time constant of V (x, t): τv (ms) 144

gain factor: g 5
recurrent connection strength: J0 0.2

moving speed of the external input: vext (m/s) 1.45
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Table 2: Values for figure specific parameters

Figures
Parameters

α m k

Fig 2B 0 (0,0.12) 0.7
Fig 2D, 2E, 2F 0.1 0.3125, 0.1250, 0.21 0.7
Fig 2C, 3B, 3C (0.14,0.35) (1.7, 4.2) 5

Fig 4B, 4C 0.19 2.3 5
Fig 3A, 4A, 5B 5C upper panel 0.19 3.125 5

Fig 5B, 5C lower panel 0.19 3.15 5

2 Analytical derivation of the intrinsic mobility of the CANN15

2.1 The network model and dynamic simplification by the projection method16

For the convenience of reading, we write down again the network dynamics here (for the detailed17

description of each variable, see the main text.):18

τ
dU(x, t)

dt
= −U(x, t) + ρ

∫ ∞

−∞
J(x, x′)r(x′, t) dx′ − V (x, t) + Iext(x, t), (1)

τv
dV (x, t)

dt
= −V (x, t) +mU(x, t), (2)

r(x, t) =
U(x, t)2

1 + kρ
∫∞
−∞ U(x′, t) dx′ . (3)

The connection profile between neurons is set to be,19

J(x, x′) =
J0
2πa

exp

[
− (x− x′)2

2a2

]
, (4)

It is known that without the external input and feedback inhibition (α = 0,m = 0), the vanilla CANN20

holds a continuous family of Gaussian-shaped (bump-like) stationary states when k < ρJ2
0/(8

√
2πa)21

(see 2.2 for the derivation). These bump states are expressed as U(x) = AU exp
[
−(x− z)2/(4a2)

]
,22

with z a free parameter and AU a constant [3].23

According to the simulations, we observed that, when both of the external input and negative feedback24

are applied, the network bump state can still be well approximated with the Gaussian-like profile,25

which is written as26

U(x, t) = Au exp

{
− [x− z(t)]

2

4a2

}
, (5)

V (x, t) = Av exp

{
− [x− z(t) + d(t)]

2

4a2

}
, (6)

r(x, t) = Ar exp

{
− [x− z(t)]

2

2a2

}
, (7)

where Au, Av and Ar represent the heights of neural bumps. z(t) is the center of U(x, t) and r(x, t),27

and d(t) denotes the displacement between U(x, t) and V (x, t), and d(t) > 0 always holds, as the28

negative feedback is delayed. To simplify the analysis, we assume that the bump heights, i.e. Au, Av29

and Ar, are all constants.30
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Substituting Eqs.(5,6,7) into the network dynamics described in Eqs.(1,2,3), we obtain31

Ar =
A2

u

1 + kρ
√
2πaA2

u

, (8)

τ

[
Au

x− z

2a2
dz

dt
+

dAu

dt

]
N (z, 2a) = (−Au +

ρJ0√
2
Ar)N (z, 2a)

−AvN (z − d, 2a) + Iext(x, t), (9)

τv

[
Av

x− z + d

2a2
d(z − d)

dt
+

dAv

dt

]
N (z − d, 2a) = −AvN (z − d, 2a)

+mAuN (z, 2a), (10)

with N (z, 2a) = exp
{
− [x− z]

2
/4a2

}
.32

As a consequence of the translation-invariant connections between neurons, an important property of33

the CANN is that its dynamics is dominated by a few motion modes [3]. We can therefore simplify34

the network dynamics significantly by projecting it onto the dominating motion modes ( projecting35

a function f(x) onto a mode un(x) means computing
∫
x
f(x)un(x)dx). The two most dominant36

motion modes in the CANN are the bump height and the bump location, and projecting onto these37

two motions modes is adequate to approximate the network dynamics. For the bump U(x, t), the first38

two motion modes are,39

u0(x, t) = exp

{
− [x− z(t)]2

4a2

}
, (11)

u1(x, t) = [x− z(t)] exp

{
− [x− z(t)]2

4a2

}
. (12)

For the bump V (x, t), the first two motion modes are,40

v0(x, t) = exp

{
− [x− z(t) + d(t)]2

4a2

}
, (13)

v1(x, t) = [x− z(t) + d(t)] exp

{
− [x− z(t) + d(t)]2

4a2

}
. (14)

2.2 Deriving the condition of generating static bump state when Iext(x, t) = 041

We first consider the simplest case that there is no external drive, and the feedback inhibition is too42

weak to generating traveling wave state. We are interested in that, under which case the network state43

can hold a Gaussian-like bump profile as its stationary state. In such a case, we have dz/dt = 0 and44

d = 0, as the bump is static over time. Therefore Eqs. (9-10) are simplified as,45

τ
dAu

dt
= −Au +

ρJ0√
2
Ar −Av, (15)

τv
dAv

dt
= −Av +mAu. (16)

Combining with Eq.(8), we get an active steady state of the network, which is given by,46

Av = mAu, (17)

Ar =

√
2(1 +m)

ρJ0
Au, (18)

Au =
ρJ0 +

√
ρ2J2

0 − 8
√
2π(1 +m)2kρa

4
√
π(1 +m)kρa

. (19)

To analyze the stability of this solution, we calculate the Jacobian matrix given by eqn. (17-19), which47

is given by,48

M =

(
1
τ

(
−1 + ρJ0Au

1+2
√
πkρaA2

u

)
− 1

τ
m
τv

− 1
τv

)
. (20)
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Denote the eigenvalues of the Jacobian matrix as λ1 and λ2. The condition for the solution to be49

stable is that both eigenvalues are negative, which is equivalent to,50

λ1 + λ2 =
1

2

[
−1 +

AuJ0ρ

1 + 2
√
πakρA2

u

− τ

τv

]
< 0, (21)

λ1λ2 =
τ

τv

(
m+ 1− AuJ0ρ

1 + 2
√
πakρA2

u

)
> 0. (22)

The above inequalities are satisfied when,51

0 < k < kc1 =
ρJ2

0 (1 +
τ
τv
)(1 + 2m− τ

τv
)

8
√
2πa(1 +m)4

, (23)

0 < k < kc2 =
ρJ2

0

8
√
2πa(1 +m)2

. (24)

It is easy to check that kc2 < kc1, so the condition for the network to hold static bumps is 0 < k < kc2.52

2.3 Deriving the condition of generating travelling wave state when Iext(x, t) = 053

We further derive the condition for the network to hold a travelling wave state, i.e., the network bump54

moves spontaneously on the neuronal track. We will focus on the feedback inhibition strength m55

here, as this parameter directly affect the bump mobility. In the travelling wave state, the bump will56

move at a constant speed and its position is expressed as,57

z(t) = vintt, (25)

where vint is the intrinsic speed of the network bump. Since the bump height is unchanged and the58

displacement d is a constant in the travelling wave state, Eqs. (9-10) can be simplified as,59

τ

(
Au

x− z

2a2
vint

)
N (z, 2a) = (−Au +

ρJ0√
2
Ar)N (z, 2a)−AvN (z − d, 2a),(26)

τv

(
Av

x− z + d

2a2
vint

)
N (z − d, 2a) = −AvN (z − d, 2a) +mAuN (z, 2a). (27)

Projecting both sides of Eq. (26) onto the motion mode u0(x) (given by Eq.11), we obtain60

Left− side = 0,

Right− side = (−Au +
ρJ0√
2
Ar)

√
2πa−Av exp(−

d2

8a2
)
√
2πa.

Equating both sides, we have61

−Au +
ρJ0√
2
Ar −Av exp(−

d2

8a2
) = 0. (28)

Similarly, projecting Eq. (26) onto the motion mode u1(x) (given by Eq.12) and equating both sides,62

we obtain63

τAuvint = dAv exp(−
d2

8a2
). (29)

Again, projecting both sides of Eq. (27) onto the motion modes u0(x) and v1(x), respectively, and64

equating both sides, we obtain65

d

4a2
τvAv exp(−

d2

8a2
)vint = −Av exp(−

d2

8a2
) +mAu, (30)

τv(1−
d2

4a2
)vint = d. (31)
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Combining 8,28-31, we obtain ,66

Au =

ρJ0 +

√
ρ2J2

0 − 8
√
2πkρa(1 +

√
mτ
τv

)2

4
√
πkρa(1 +

√
mτ
τv

)
, (32)

Av =

ρJ0 +

√
ρ2J2

0 − 8
√
2πkρa(1 +

√
mτ
τv

)2

2
√
2πkρ2aJ0

, (33)

Ar =

√
mτ

τv
exp

1−
√

τ
mτv

2

 ρJ0 +

√
ρ2J2

0 − 8
√
2πkρa(1 +

√
mτ
τv

)2

4
√
πkρa(1 +

√
mτ
τv

)
, (34)

d = 2a

√
1−

√
τ

mτv
, (35)

vint =
2a

τv

√
mτv
τ

−
√

mτv
τ

. (36)

It is straightforward to check from Eq. (36) that for vint > 0, i.e., the bump has intrinsic mobility, we67

have68

m >
τ

τv
. (37)

3 Analytical derivation of the oscillatory tracking state69

We analyze the tracking behaviors of the network in response to an external moving input, with the70

latter given by,71

Iext = α exp

[
− (x− vextt)

2

4a2

]
, (38)

where vext represents the moving speed of the external input and α the input strength.72

The tracking behaviors of the network are determined by two competing factors: one is the intrinsic73

mobility of the network caused by the feedback inhibition, which tends to drive the bump to move74

spontaneously (see above derivation); the other is extrinsic mobility caused by the external moving75

input, which tends to drive the bump to move at the speed vext. The competition between two76

factors leads to three tracking states of the network: travelling wave, oscillatory tracking, and smooth77

tracking. Here we only focus on the analytical derivation of the oscillatory tracking. Based on78

simulation results, we assume that the bump position is expressed as,79

z(t) = c0sin(ωt) + d0 + vextt, (39)

where c0 and ω represent the amplitude and frequency of the bump position oscillation, respectively,80

and d0 denotes the offset between the baseline of bump oscillation and the position of the external81

input. Substitute the form of external input written in eqn. (38) into eqs. (9-10), we obtain82

τ

(
Au

x− z

2a2
dz

dt

)
N (z, 2a) = (−Au +

ρJ0√
2
Ar)N (z, 2a)−AvN (z − d, 2a)

+αN (vextt, 2a), (40)

τv

(
Av

x− z + d

2a2
d(z − d)

dt

)
N (z − d, 2a) = −AvN (z − d, 2a) +mAuN (z, 2a). (41)

Projecting Eq. (40) onto u0 and u1, respectively, we get,83

−Au +
ρJ0√
2
Ar + α exp(− s2

8a2
) = Av exp(−

d2

8a2
), (42)

dAv exp(−
d2

8a2
)− α exp(− s2

8a2
) = τAu

dz

dt
, (43)
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where s(t) = c0 sin(ωt) + d0 denotes the offset between U(x, t) and Iext(x, t). For clearance, we84

denote Atemp = Av exp(−d2/8a2) hereafter.85

Substituting Eqs. (39&42) into (43), we obtain86

d(t) =
1

Atemp

[
τAu(v + c0ω cosωt) + αs exp(− s2

8a2
)

]
.

Since s ≪ 2a generally holds, we consider the approximation of exp(−s2/8a2) ≈ 1. With this87

approximation, the above equation can be re-written as88

d(t) = A0 sin(ωt+ β) +B0, (44)

where the parameters are,89

β = arccos

(
α√

τ2A2
uω

2 + α2

)
, (45)

A0 =
c0
√
τ2A2

uω
2 + α2

Atemp
, (46)

B0 =
τAuv + αd0

Atemp
. (47)

Similarly, projecting Eq. (41) onto v0 and v1, respectively, we obtain,90

Av = mAu exp(−
d2

8a2
), (48)

τvAv

[
dz(t)

dt
− dd(t)

dt

]
= mAu exp(−

d2

8a2
)d(t). (49)

Substituting Eqs. (8 & 48) into (42), we have91

−Au +
ρJ0√
2

A2
u

1 +
√
2πakρA2

u

+ α exp(− s2

8a2
) = mAu exp(−

d2

4a2
).

Since s ≪ 2a and d ≪ 2a, the approximations exp(−s2/8a2) ≈ 1 and exp(−d2/4a2) ≈ 1 hold,92

and the above equation can be simplified as,93

(m+ 1)Au − ρJ0√
2

A2
u

1 +
√
2πakρA2

u

− α = 0.

We note that
√
2πakρA2

u ≫ 1 when the network is at the oscillatory tracking state, which gives94

A2
u/(1 +

√
2πakρA2

u) ≈ 1/
√
2πakρ. Thus, we have95

Au =
J0 + 2

√
πakα

2
√
πak(1 +m)

. (50)

Substituting Eq. (48) into (49), we have96

τv
dz(t)

dt
= d(t) + τv

dd(t)

dt
. (51)

Substituting Eqs. (39 & 44) into (51), we have97

τv(v + c0ω cosωt) = A0 [sin(ωt+ β) + ωτv cos(ωt+ β)] +B0.

Using the trigonometric transformation formula, the above equation is re-written as,98

τvv + τvc0ω sin(ωt+
π

2
) = A0

√
1 + ω2τ2v sin(ωt+ β + γ) +B0, (52)

where γ is given by99

γ = arccos(
1√
τ2vω

2
). (53)
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Equating two sides of Eq. (52), we have,100

τvv = B0, (54)
π

2
= β + γ, (55)

τvc0ω = A0

√
1 + ω2τ2v . (56)

Substituting Eq. (47) into (54), we obtain101

d0 =
τvvAtemp − τvAu

α
. (57)

Applying the cosine function to both sides of Eq. (55), we have102

cos(β + γ) = cos γ cosβ − sin γ sinβ = 0. (58)

Substituting Eqs. (45 & 53) into (58), we have103

ω2 =
α

ττvAu
. (59)

Combining Eq. 59 with Eq. (50), we obtain104

ω =

√
2
√
παak(1 +m)

ττv(J0 + 2
√
πakα)

. (60)

Substituting Eqs. (46 & 59) into (56), and taking square for both sides, we have105

(τ2A2
uω

2 + α2)

A2
temp

(1 + ω2τ2v ) = τ2vω
2.

Solving the above equation for Atemp, we get106

Atemp =
τAu + ατv

τv
. (61)

Substituting Eq. (61) into (57), we can get the expression for d0, which is107

d0 = τvv. (62)

Since Atemp = mAu exp
[
−d(t)2/(4a2)

]
varies across time, we take the approximation108

Atemp = mAu exp
[
−d(t)2/(4a2)

]
(63)

with d(t)2 the time-averaged value, which is calculated to be,109

d(t)2 =
1

T

∫ T

0

d2(t)dt =
ατv

2(τAu + ατv)
c20 + τ2v v

2. (64)

Substituting Eqs. (61 & 64) into (63), we obtain,110

c0 =

√√√√2
[
4a2(ln τvmAu

τAu+ατv
)− τ2v v

2
]
(τAu + ατv)

ατv
. (65)

Substituting Eq. (61) into (48) and utilizing the condition of exp(−d2/8a2) =
√

Atemp/mAu, we111

obtain112

Av =

√
τAu + ατv

τv
mAu. (66)
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Finally, combining Eqs.(8, 50, 62, 60, 65, 66), we get all unknown parameters of the oscillatory113

tracking state, which are,114

Au =
J0 + 2

√
πakα

2
√
πak(1 +m)

, (67)

Ar =
A2

u

1 +
√
2πakρA2

u

, (68)

Av =

√
τAu + ατv

τv
mAu, (69)

c0 =

√√√√2
[
4a2 ln τvmAu

τAu+ατv
− ω

2π τ
2
v v

2
]
(τAu + α)

ατv
, (70)

d0 = τvv, (71)

ω =

√
2
√
παak(1 +m)

ττv(J0 + 2
√
πakα)

. (72)

4 Related experimental results of the theta sequences115

4.1 The forward and backward theta sweeps in the experiment116

Fig.4A in the main text shows comparison between our simulation results and the experimental117

results of the decoded virtual position of the neural activities with respect to the rat’s position. In the118

experiment, they decoded the neural activities (spike train) through Bayesian inference by assuming119

that the place cells fire independently and obey a Poisson statistics [1]. Specifically, they first recorded120

the mean probability of the neurons firing spikes as a function of space as the rats moved through the121

maze. For the ith neuron, if denoting fi(z) as the tuning function, then the number of spikes ni it122

generates within a time interval ∆t when the animal locates at z satisfies the Poisson distribution,123

which is expressed as,124

P (ni|z) =
[fi(z)∆t]

ni

ni!
e−fi(z)∆t, (73)

Denote n = {ni}, for i = 1, . . . , N , the numbers of spikes generated by the neuron ensemble within125

the time interval ∆t. Assuming that neurons fire independently, the likelihood function of observing126

n when the animal locates at z can be written as127

P (n|z) =
N∏
i=1

P (ni|z). (74)

Assuming the prior distribution of the animal location is uniform (i.e., P (z) is flat), the posterior of128

the animal location given the spike events is given by129

P (z|n) = P (n|z)P (z),

= C0

N∏
i=1

P (ni|z), (75)

with C0 a normalization constant. Fig.1A shows the decoded spatial representation probability130

P (z|n) relative to the rat’s current location (blue line) and movement direction. We can see clearly131

there exists a positive offset in the sweeps which supports a stronger prospective encoding in the132

forward theta sequences. Alternating forward and reverse theta sequences were observed in rats when133

they are exploring an open field or a linear tracks (see fig.1B). This may indicate that place cells in134

the hippocampus have adopted a spatial coding mode that combines prospective (forward sweeps)135

and retrospective (backward sweeps) coding.136

4.2 Phase shifts of unimodal cells and bimodal cells in the experiment137

To compare with the experimental data [1], we follow the experimental protocol to calculate the138

averaged phase shift effects of each type of cells.139
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A

B

Figure 1: The experimental data shows alternative forward and reverse theta sweeps. A. Decoded
relative positions of the place cell activities shows forward and reverse theta sweeps (Single trial). B.
Averaged probability distribution (over trials and over theta cycles) of the decoded virtual positions
of the place cell activities when the rat is exploring either in an open field (left panel) or in linear
tracks (right panel). The experimental data is adapted from [1].
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Figure 2: Comparison between our simulation results and the experimental results of the phase shift
of unimodal cells and bimodal cells. A. The phase shift of bimodal cells. Left panel: our simulation
results. Right panel: experimental data. B. The phase shift of unimodal cells. Left panel: our
simulation results. Right panel: experimental data. The parameters are the same as those used in
Fig.5 in the main text. The experimental data is adapted from [1].

9



Firstly, rather than measuring the phase of neuronal firing by using only the response peak as done in140

the theoretical analysis, we calculate the distribution of neuronal firing phase by using the neuronal141

response at each moment as the intensity of the corresponding phase (this essentially leads to the142

same conclusion as in the theoretical analysis, but for the experimental data, since the response peak143

is vague, the analysis has to be done in such a way). For example, if the neuronal response at the144

moment ∆t in a theta cycle is r(∆t), then the firing phase is θ = ∆t/T × 2π (note that the moment145

in a theta cycle is counted from 0 to T ) and it occurs with the intensity r(∆t). Secondly, we align146

phase shifts of all bimodal (or unimodal) cells in the network together according to the normalized147

position of the animal in the place field of each neuron. For example, if the animal is located at vextt148

and its displacement to the place field center x0 of a neuron is (vextt − x0), then the normalized149

position of the animal with respect to this neuron is calculated to be x̃ = (vext − x0)/(2.5a), with150

a the width of the bump. We only consider phase shift for x̃ in the range of [−1, 1], with x̃ = −1151

corresponding to that the animal just enters the place field of the neuron and x̃ = 1 the animal leaves152

the place field of the neuron. Following the experimental protocol [1], we calculate the phase shift153

effect summed over bimodal or unimodal cells then normalize the total distribution to make sure that154

the summation of the joint probability distribution equals 1. For each type of cells, the intensity of155

phase θ at a normalized position x̃ is then calculated to be156

P (θ, x̃) = C

Nc∑
i=1

θri(∆t, x̃), (76)

where the relationship θ = ∆t/T × 2π holds, and ri(∆t, x̃) denotes the response of the i-th neuron157

at the moment ∆t in a theta cycle when the animal locates at x̃. Nc is the number of neurons of the158

cell type, and the summation runs over all neurons of the same type. C is the normalized factor. The159

comparison between our simulation results and the experimental data are shown in Fig. 2. Consistent160

with our analysis, both unimodal cells and bimodal cells exhibits phase pre- and procession. However,161

the strength of the phase procession between the two cell types are different. For bimodal cells,162

because the bump height keeps almost invariant during the forward sweeps and the backward sweeps,163

both of the phase precession and the phase procession are significant. For unimodal cells, because164

the bump height attenuates significantly during the backward sweeps, the phase procession is not as165

significant as the phase precession.166
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