
A Intuitions and Implementations of Procedures to Find Masking
Explanations

As introduced in Section 3.1, for evaluation we may interest in random binary masks due to its
connection to AUC, but in our method for finding masking explanations we only focus on deterministic
masks. Given a network f , image x 2 Rc⇥hw and class a, we wish to find a binary mask M 2
{0, 1}hw such that when the part of x on M is superimposed onto a “distractor” x̄ ⇠ X (randomly
sampled from the train set) as x̃ = M �x+(1�M)� x̄, the output probability of the model f(x̃, a)
is high for the class a.

As in Section 3.2 we compute the average probability assigned to class a over the sampling of
the distractor x̄, i.e. we are interested in making Ex̄⇠X [f(x̃, a)] high. To avoid the hard problem
of optimizing over the hypercube {0, 1}hw, a typical strategy (also employed in prior work) is to
relax the domain of M to be [0, 1]hw. Since we do not wish to learn masks of very large size, a `1

norm penalty on M (corresponding to size of the mask), leading to the following natural objective
function11

L(M) = Ex̄⇠X [� log(f(M � x+ (1�M)� x̄, a))] + �1kMk1 (5)

However most masking-based methods employ additional “tricks” in order to avoid “artifacts” in the
produced saliency maps, like Total-Variation (TV) penalty [11] and upsampling of the mask from a
lower resolution one [30]. We also employ the same strategy by learning a low-resolution mask at
scale s, M 2 Rhw/s2 , to minimize the following

L(M) = Ex̄⇠X
⇥
� log(f(M⇥s � x+ (1�M

⇥s)� x̄, a))
⇤
+ �TV TV (M⇥s) + �1kM⇥sk1

(6)

where M
⇥s 2 Rhw is obtained by upsampling M by a factor of s 2 {1, 4} via bilinear interpolation.

While the motivation cited for these “trick” is to avoid artifacts, it is not clear whether artifacts
are a bad thing, since they might be relevant to the net’s decision-making. Indeed, we show that
while TV penalty or upsampling does produce better looking masks, they lead to a drop in the
completeness metric. However we show that adding such tricks leads to significant improvement in
the soundness metric, thus providing a novel justification for the use of such tricks, beyond just the
heuristic argument of getting rid of artifacts. In Section 5 we also provide theoretical justification for
why TV penalty can help with soundness, even for the simple case of linear predictors on non-image
data.

We optimize the objective in Equation (4) by parametrizing M as a sigmoid of real valued weights
W 2 Rhw/s2 , i.e. M = �(W ), and run Adam [23] optimizer for 2000 steps with learning rate 0.05
and by sampling 10 distractor images at every step, for different values of �TV and upsampling
factor s.

B Practical Benefits of Completeness of all labels for Images of Multiple
Objects

Images may have multiple plausible labels. Figure 5 and Figure 6 show images where the classifier
net gave high probability to a single label even though multiple objects were present. Our saliency
method can produce different and meaningful masks for all labels that are valid. Extending the notion
of soundness for multi-label settings is an open question.

In Figure 5, images that previously used in Gu et al. 13 can have both elephants and zebras present,
but it may not be always clear from the model output if there is such a case, since the model can be
much more confident on one label, e.g., elephant, than one would expect it to be. For this reason,
finding masking explanations validating other labels, e.g., zebra, could provide more information on
how the model makes the prediction.

We also use the relabeling provided by Beyer et al. [4] to select ImageNet validation images with two
true labels. Our results may be seen in Figure 6.

11A standard way to maximize probability is to minimize the negative log probability
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Figure 5: Images containing both elephant(s) and zebra(s), and the corresponding masked ones
generated by our method and the best-performing CA model in Phang et al. [31]. The masks by
Phang et al. [31] are identical for different labels, and contains both elephant and zebra. In contrast,
our method outputs decent masks for elephant and zebra accordingly. For more examples please see
Figure 6 in Appendix C.

Figure 6: Our masks and masks by Phang et al. [31] for ImageNet images with two ground truth
labels. The best-performing CA model in Phang et al. [31] was used. First (leftmost) column depicts
original image with original model probabilities for each ground truth class below the image. Next
two columns depict our masks with target label below the image. Final two columns depict the masks
for Phang et al. [31]. The masks by Phang et al. [31] are identical for different labels, and contains
both classes. In contrast, our method outputs descent masks for each class accordingly.
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Table 2: Worst case completeness and worst case soundness (✏1 = 0.01, ✏2 = 0.1) for different �TV

in CIFAR-10. The best one in each row is marked bold.
�TV 0 0.001 0.01 0.1

Completeness 0.99 0.99 0.89 0.80
Worst soundness 0.10 0.10 0.11 0.19

Table 3: Deletion, insertion, saliency metric, worst case completeness and soundness on Imagenette-
Corner. Our method with upsampling factor s = 4, TV penalty �TV = 0.01 achieves the best
completeness and soundness. (" indicates higher is better.) The numbers for Centered Gaussian drop
compared to Imagenette.

Deletion # Insertion Saliency Worst Case Worst Case
(gray) " Metric # Completeness " Soundness "

Gradient � Input 0.13 0.34 �0.25 0.50 0.78
Dabkowski and Gal [9] 0.21 0.33 �0.25 0.52 0.78
Fong and Vedaldi [11] 0.15 0.53 �0.25 0.53 0.48

Phang et al. [31] 0.33 0.69 �0.25 0.68 0.82
Ours 0.36 0.64 �0.25 0.76 0.84

Random 0.35 0.35 �0.24 0.36 0.64
Centered Gaussian 0.62 0.62 0.458 0.50 0.54

C Additional Results on CIFAR-10 and Imagenette

In this section, we show additional results for CIFAR-10 and Imagenette experiments.

1. In Table 2, we show the worst case completeness and worst case soundness on CIFAR-10 of our
method with different TV penalty �TV . To showcase of generality of our definition of base metric,
here we use a modified version of AUC metric where we set s ⇠ {0.2 dim(x), . . . , 0.6 dim(x)}
in Definition 3.5.

2. We showcase the masks of ten randomly drawn images from Imagenette for different methods in
Figure 7 and Figure 8. The masks in Figure 7 is generated for model predictions, while the masks
in Figure 8 is generated for incorrect labels. Note there are some wired horizontal lines and shapes
for some masks. These are caused by default tie breaking of pixels of masking value 1. We also
tried tie breaking according to Centered Gaussian, which does not improve the performance of
those methods.

3. We create a new dataset Imagenette-Corner based on Imagenette, where each image is a random
corner of the original image12. We show the results on Imagenette-Corner in Table 3. The results
show that the good performance of Centered Gaussian on Imagenette is likely due to the bias of
datasets (that objects are centered with high probability). Saliency metric on Imagenette-Corner
are the same for most of the methods, likely because of the coarse selection of hyperparameters as
in Dabkowski and Gal [9].

D Experimental Details and Additional Experiments

In this section we expand upon the experiments in Section 6 and complement them with more
experiments on the ImageNet, CIFAR-10 and CIFAR-100 datasets. For each of the datasets we test
the following:

• Visualization: For various values of TV regularization (and upsampling for ImageNet), we
visualize the mask and also what part of the image a sparse version of the mask highlights. We do
so for masks learned for the correct label and also for the second most probable label as predicted
by the model. The common trend is that while TV regularization (and upsampling) make the masks
more human interpretable, it also makes it harder to find a good mask for the incorrect label, thus
improving soundness.
12On ImageNet or Imagenette, the common way to process image is first resizing it to 256⇥ 256 pixels, and

then crop the center 224⇥ 224 pixels. In Imagenette-Corner, instead of center cropping, we take one of the four
180⇥ 180-pixel corners and resize it to 224⇥ 224 pixels.
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Figure 7: Masks of 10 Imagenette examples generated by different methods. Above each original
image is the corresponding correct label. 30% of the pixels are retained, and the rest pixels are filled
with grey.
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Figure 8: Masks of 10 Imagenette examples generated by different methods for incorrect labels.
Above each original image is the target incorrect label. 30% of the pixels are retained, and the rest
pixels are filled with grey.
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Table 4: Completeness and soundness for a ResNet-164 trained model on CIFAR-10, as defined
in Equation (1). Each column represents mask learned using our procedure, with different TV
regularization strengths (0.0, 0.001, 0.01, or 0.1). “Gray” indicates pixels were grayed during AUC
calculation and “Random image” indicates they were replaced with other images.

Gray TV = 0.0 TV= 0.001 TV= 0.01 TV= 0.1
Completeness (↵) 0.92 0.91 0.83 0.77

Soundness (�) 0.17 0.18 0.39 0.57
Random image TV = 0.0 TV= 0.001 TV= 0.01 TV= 0.1

Completeness (↵) 0.86 0.85 0.77 0.70
Soundness (�) 0.20 0.21 0.44 0.62

• AUC curve: We plot the output model probability for a masked input as more pixels from the
original image are selected. The 4 plots denote replacing remaining pixels with gray pixels or
pixels from a random image, and masks to fit the correct or incorrect labels, i.e. most probable
and second most probable labels. Again, we find the TV regularization and upsampling help
with soundness; i.e. inability to find mask for the second most probable label. For mask M ,
if M̄(p) denotes the discrete mask with top p fraction of the pixels from M picked. We plot
Ex

⇥
Ex0⇠�[f(M̄(p)� x+ (1� M̄(p))� x

0
, a)]

⇤
v/s p, where � is either a random image or a

gray image, and a is either the correct label for x or the second best label. We note that replacing
with gray and random image lead to similar looking plots, with the probability estimate of random
image being more pessimistic. This justifies the motivation for our procedure that learns a mask to
solve a “harder task” of random image replacement.

• Completeness/soundness: We evaluate the completeness and soundness scores, as defined in
Equation (1) and Definition 3.7. In particular for any input x, we only evaluate the scores for the top
model prediction a and the second most probable label a0 and report the worst case completeness
and soundness for these 2 labels. For all experiments in this section, we use ✏1 = 0 and ✏2 = 0.1
(from Equation (1)).

• Intrinsic metrics: We evaluate our masks on other intrinsic metrics from prior work, and compare
to baseline saliency methods. Our baselines include Gradient � Input [38], Smooth-Grad [39],
Real Time Saliency [9] (for ResNet-50 on ImageNet), and Random indicating a random Gaussian
mask as a control. We use Captum [24] for Gradient � Input and Smooth-Grad implementations
and the original author code13 for Real Time Saliency. When calculating the Saliency Metric (SM)
[9] we tune the threshold � on a holdout set of size 100 with � between 0 and 5 in increments of
0.2 as in prior work.
For the saliency method of Fong and Vedaldi [11] that we only used on the Imagenette, we adapt
the most popular implementation on GitHub14. The implementation contains minor deviations
from the original paper as described on its main page. For Phang et al. [31], we used their best CA
model pretrained and provided in original author code15.

D.1 CIFAR-10 Experiments

We also run our method from Section 4 on the CIFAR-10 dataset using a pretrained ResNet-164
architecture16. For all experiments we learn a mask M 2 R32⇥32, thus using a scaling factor of
s = 1 (no upsampling). We train masks for 1600 images that were correctly classified by the
pretrained ResNet-164 using regularization parameter �TV 2 {0, 0.001, 0.01, 0.1}. We use a (fixed)
L1 regularization value of .001 for all masks.

We visualize the masks learned for the correct label in Figure 10a and in Figure 10b we visualize the
same for the second best label predicted by the ResNet-164 model. We also visualize the masks for
all labels for some randomly picked images in Figure 11 to demonstrate the commonness of artifact,

13https://github.com/PiotrDabkowski/pytorch-saliency
14https://github.com/jacobgil/pytorch-explain-black-box
15https://github.com/zphang/saliency_investigation
16https://github.com/bearpaw/pytorch-classification. The ResNet-110 model in this repository

is actually a ResNet-164 model.
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Figure 9: [CIFAR-10] AUC curves with as the fraction of pixels retained from the original images
based on the mask varies from 0 to 1.0 on the X-axis. The probabilities assigned by the model
(averaged over 1600 images) on the Y-axis. Left: Mask learned for ground truth label, probabilities
for ground truth label while replacing remaining pixels with gray. Center Left: Mask learned for
ground truth label, probabilities for ground truth label while replacing remaining pixels with other
image pixels. Center Right: Mask learned for second best label, probabilities for second best label
while replacing remaining pixels with gray. Right: Mask learned for second best label, probabilities
for second best label while replacing remaining pixels with other image pixels. We see that increasing
TV regularization results in only a mild drop in completeness, but significantly improves soundness.

Table 5: Performance of our method on CIFAR-10 and some baselines on various intrinsic saliency
metrics proposed in prior work. Downarrow (uparrow) means lower (higher) is better. We find that
while both our masks (learned with and without TV) have very good performance on the insertion
metric. The deletion and saliency metrics are uninformative in this case, since all methods are as
good (or worse) compared to a random mask.

Gradient � Input Our method Our Method Smooth-Grad Random
(�TV = 0.01) (�TV = 0) saliency

Deletion # 0.32 0.37 0.59 0.31 0.26
Insertion (blur) " 0.60 0.88 0.94 0.66 0.36
Insertion (gray) " 0.51 0.83 0.92 0.55 0.26
Saliency Metric # 0.22 0.22 0.22 0.23 0.22

especially for the incorrect labels. The AUC curves in Figure 9 suggest a similar trend to that of
Imagenette, adding TV regularization results in only a mild drop in completeness, but significantly
improves soundness. Evaluation of our masks, compared to some gradient baselines, on intrinsic
metrics can be found in Table 5. We report the completeness and soundness results for CIFAR-10 in
Table 4 for TV values in (0.0, 0.001, 0.01, 0.1) calculated using a ResNet-164 model.

D.2 CIFAR-100 Experiments

We run the same experiment for CIFAR-100 using the corresponding ResNet164 model. We visualize
the masks learned for the correct label in Figure 13a and in Figure 13b we visualize the same for the
second best label predicted by the ResNet-164 model. The AUC curves in Figure 12 suggest a similar
trend to that of Imagenette, adding TV regularization results in only a mild drop in completeness, but
significantly improves soundness. Evaluation of our masks, compared to some gradient baselines,
on intrinsic metrics can be found in Table 7. We place a downarrow after the name of the metric to
indicate a lower value is considered better and an uparrow when a higher value is considered better.
We evaluate on a randomly selected subset of 1600 data points where the model had correct top 1
accuracy. We report the completeness and soundness results for CIFAR-100 in Table 6 for TV values
in (0.0, 0.001, 0.01, 0.1) calculated using a ResNet-164 model.
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(a)

(b)

Figure 10: Details in Appendix D.1 Panel 10a Masks learned for the correct label of CIFAR-10
images using the procedure outlined in Section 4 with ResNet-164. Columns (1,3,5,7) depict masked
images at 30 (retained) % mask sparseness. Columns (2,4,6,8) depict the original mask. TV values
shown above. Original image shown in rightmost column. Model probability of correct label for
masked images on y axis. Panel 10b Masks leared for the second most probable label of CIFAR-10
images using the procedure outlined in Section 4 on ResNet-164. Columns (1,3,5,7) depict masked
images at 30 % mask sparseness. Columns (2,4,6,8) depict the original mask.TV values shown above.
Original image shown in rightmost column. Model probability of second best label for masked
images on y axis.

Table 6: Completeness and soundness for a ResNet-164 trained model on CIFAR-100, as defined
in Equation (1). Each column represents mask learned using our procedure, with different TV
regularization strengths (0.0, 0.001, 0.01, or 0.1). “Gray” indicates pixels were grayed during AUC
calculation and “Random image” indicates they were replaced with other images.

Gray TV = 0.0 TV= 0.001 TV= 0.01 TV= 0.1
Completeness (↵) 0.80 0.74 0.64 0.55

Soundness (�) 0.28 0.34 0.58 0.75
Random image TV = 0.0 TV= 0.001 TV= 0.01 TV= 0.1

Completeness (↵) 0.67 0.66 0.61 0.54
Soundness (�) 0.35 0.40 0.61 0.78

D.3 Experiments on ImageNet

In Figure 14a we depict the the masks for TV values in {0.0, 0.01} for a ResNet-18 model on
ImageNet for the ground truth label and in Figure 14b we depict the same for the second best label.
We also experiment with the effect of upsampling (US) the mask, whereby we learn a mask of size
(56,56) and upsample to size (224,224). We use a fixed L1 regularization value of 2e-5. We depict
our results on ImageNet and ResNet-18 in Table 9

22



(a) Our method with no TV regularization

(b) Our method with TV regularization �TV = 0.01

Figure 11: A demonstration of artifacts created by masking on CIFAR-10. Pixels (partially) masked
out are filled with gray based on the fractions they are masked out. Masks generated without or only
with low level regularization can easily produce artifacts. It is more common and/or severe for the
incorrect label than correct label.
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Figure 12: [CIFAR-100] AUC curves with as the fraction of pixels retained from the original images
based on the mask varies from 0 to 1.0 on the X-axis. The probabilities assigned by the model
(averaged over 1600 images) on the Y-axis. Left: Mask learned for ground truth label, probabilities
for ground truth label while replacing remaining pixels with gray. Center Left: Mask learned for
ground truth label, probabilities for ground truth label while replacing remaining pixels with other
image pixels. Center Right: Mask learned for second best label, probabilities for second best label
while replacing remaining pixels with gray. Right: Mask learned for second best label, probabilities
for second best label while replacing remaining pixels with other image pixels. We see that increasing
TV regularization results in only a mild drop in completeness, but significantly improves soundness.

Table 7: Performance of our method on CIFAR-100 and some baselines on various intrinsic saliency
metrics proposed in prior work. Downarrow (uparrow) means lower (higher) is better. We find that
while both our masks (learned with and without TV) have very good performance on the insertion
metric. The deletion and saliency metrics are uninformative in this case, since all methods are as
good (or worse) compared to a random mask.

Gradient � Input Our method Our Method Smooth-Grad Random
(�TV = 0.01) (�TV = 0) saliency

Deletion # 0.10 0.17 0.10 0.29 0.11
Insertion (blur) " 0.36 0.71 0.82 0.39 0.20
Insertion (gray) " 0.27 0.62 0.76 0.29 0.11
Saliency Metric # 0.77 0.77 0.77 0.79 0.77

For the deletion metric, we note that most methods have comparable or worse performance than
the random mask, which suggests that the metric does not give us much signal about the goodness
of the saliency maps. On the insertion metric, we find that mask learned by not adding the TV
penalty significantly beats other methods. The mask learned using TV penalty, on the other hand, has
impressive performance on both the insertion AUC and saliency metric (SM).

Completeness and Soundness on ImageNet and ResNet-18. We report our results in Table 8
for TV values in (0, 0.01) for both graying (Gray) and replacing with other image pixels (Random
image). Additionally, we investigate the effect of upsampling (US) where we derive a (56,56) and
upsample by a factor of 4 to a (224, 224) mask.

Effect of ensembling. In order to investigate the effect of ensembling we plot maps in Figure 16
as we vary the number of maps that are ensembled over as K 2 {1, 2, 4}, where we learn multiple
masks such that each of them individually validate the label, but are as disjoint as possible. We do
not upsample (using a scale of 1.0) and we use a fixed L1 regularization of 2e-5 and a fixed TV
regularization of 0.0.
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(a)

(b)

Figure 13: Details in Appendix D.2 Panel 13a Masks learned for the correct label of CIFAR-100
images using the procedure outlined in Section 4 on ResNet-164. Columns (1,3,5,7) depict masked
images at 30 (retained) % mask sparseness. Columns (2,4,6,8) depict the original mask. TV values
shown above. Original image shown in rightmost column. Model probability of correct label for
masked images on y axis. Panel 13b Masks learned for the second most probable label of CIFAR-100
images using the procedure outlined in Section 4 on ResNet-164. Columns (1,3,5,7) depict masked
images at 30 % mask sparseness. Columns (2,4,6,8) depict the original mask.TV values shown above.
Original image shown in rightmost column. Model probability of second best label for masked
images on y axis.

Table 8: Completeness and soundness for a ResNet-18 model on ImageNet as defined in Equation (1).
Each column contains a represents mask learned using our procedure, with our without upscaling and
different TV regularization strengths. “Gray” indicates pixels were grayed during AUC calculation
and “Random image” indicates they were replaced with other images. No US indicates the full
(224,224) mask was derived and US indicates a (56, 56) mask was derived then upsampled by a
factor of 4. TV indicates a TV regularization value of 0.0 or 0.01.

Gray TV = 0.0 TV = 0.01 US TV = 0.0 US TV = 0.01
Completeness (↵) 0.97 0.76 0.87 0.71

Soundness (�) 0.19 0.70 0.38 0.75
Random image TV = 0.0 TV = 0.01 US TV = 0.0 US TV = 0.01

Completeness (↵) 0.89 0.61 0.74 0.59
Soundness (�) 0.25 0.83 0.52 0.86

D.4 Effect on Sanity Checks

Inspired by [1] we randomize the last layer of a ResNet-18 network and visually inspect the resulting
saliency maps in Figure 15. We find that the maps appear less coherent than those of a pre-trained
model. We use a fixed L1 regularization of 2e-5 and depict maps with and without upsampling (US)
at TV values of (0, 0.01).
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Table 9: Performance of our method on ImageNet and ResNet-18 model and some baselines on
various intrinsic saliency metrics proposed in prior work. We find that while both our masks (learned
with and without TV) have very good performance on the insertion metric, the mask learned with TV
has much better performance on the saliency metric. The deletion metric is uninformative in most
cases, since most methods are as good (or worse) compared to a random mask.

Gradient � Input Our method Our Method Smooth-Grad Random
(�TV = 0.01) (�TV = 0) saliency

Deletion # 0.10 0.13 0.21 0.08 0.13
Insertion (blur) " 0.44 0.79 0.85 0.51 0.31
Insertion (gray) " 0.30 0.67 0.92 0.35 0.13
Saliency Metric # 0.31 0.15 0.32 0.32 0.32

(a)

(b)

Figure 14: Details in Appendix D.3. US stands for upsampled mask, where we derive a (56,56) mask
and interpolate to (224,224). Panel 14a Masks learned for the correct label of ImageNet images
using the procedure outlined in Section 4 on ResNet-50. Columns (1,3,5,7) depict masked images
at 30 (retained) % mask sparseness. Columns (2,4,6,8) depict the original mask. TV values shown
above. Original image shown in rightmost column. Model probability of correct label for masked
images on y axis. Panel 14b Masks learned for the second most probable label of ImageNet images
using the procedure outlined in Section 4 on ResNet-50. Columns (1,3,5,7) depict masked images at
30 % mask sparseness. Columns (2,4,6,8) depict the original mask.TV values shown above. Original
image shown in rightmost column. Model probability of second best label for masked images on y
axis. We find, unsurprisingly, that adding TV regularization and upsampling make the mask more
continuous and “human interpretable” and, more importantly, make it harder to find masks that can
get high probability for the second best label, thus ensuring higher soundness.
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Figure 15: Results of randomizing the last layer of a ResNet-18 model on ImageNet data for
the procedure described in Section 4. US indicates a (56, 56) map was learned and upsampled to
(224, 224). We find the maps of this randomized network are less visually coherent than the analogous
maps of a pre-trained model.

Figure 16: Effect of ensembling Partial statistical assignments validating the correct label of
ImageNet and ResNet-18 images as we vary K, the number of maps. Details in Appendix D.3.

E Additional Background information

E.1 Additional related work

The pixel replacement strategy we used is closely related to hot deck imputation [32], where features
may be replaced either by using the mean feature value (analogous to replacing with grey) or sampling
from the marginal feature distribution (analogous to replacing with image pixels sampled from other
training images). Some prior work [7] has found that mean imputation does not significantly affect
model output on the beer aroma review dataset. On Imagenette, by contrast, we found that replacement
strategy can matter.

Additional saliency evaluation tests. Adebayo et al. [1] proposed “sanity checks” for saliency
maps. They note that if a model’s weights are randomized, it has not learned anything, and therefore
the saliency map should not look coherent. They also randomize the labels of the dataset and argue
that the saliency maps for a model trained on this scrambled data should be different than the saliency
maps for the model trained on the original data. We study the effect of model layer randomization on
our method in Appendix section D.4 and find that randomizing the model weights does cause our
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saliency maps to look incoherent. Tomsett et al. [43] also discover sanity checks for saliency metrics,
finding that saliency evaluation methods can yield inconsistent results. They evaluate saliency maps
on reliability, i.e. how consistent the saliency maps are. To measure a method’s reliability, because
access to ground truth saliency maps are not available, they use three proxies 1) inter-rater reliability,
i.e. how whether a saliency evaluation metric is able to consistently rank some saliency methods
above others, 2) inter-method reliability, which indicates whether a saliency evaluation metric agrees
across different saliency methods, and 3)internal consistency reliability, which measure whether
different saliency methods are measuring the same underlying concept.

Saliency axioms. Sundararajan et al. [41] identify two fundamental axioms, Sensitivity (versions
a and b), and Implementation Invariance that attribution methods should satisfy. "An attribution
method satisfies Sensitivity(a) if for every input and baseline that differ in one feature but have
different predictions then the differing feature should be given a non-zero attribution." The definition
of Sensitivity b is "If the function implemented by the deep network does not depend (mathematically)
on some variable, then the attribution to that variable is always zero.". Implementation invariance
simply states that if two networks are equivalent, the saliency maps for those two networks should be
the same. These axioms are not captured by completeness and soundness and are good examples
of why completeness and soundness cannot be used alone in evaluating saliency maps. Other prior
work Carter et al. [7] argues that saliency explanations should be minimal Carter et al. [7] and find
sufficient input subsets which are "minimal subsets of features whose observed values alone suffice
for the same decision to be reached, even if all other input feature values are missing."

E.2 Saliency Methods

We give a partial list of extant saliency methods here. We broadly categorize explanations into
three categories: Back-propagation based explanations, axiomatic methods, and masking methods.
Backpropagation based explanations shape credit as it is propagated backwards through the neural
network according to certain rules. These approaches include Layerwise Relevance Propagation
[5] which satisfies completeness, Rect-Grad which thresholds internal neuron activations [21], and
DeepLIFT which satisfies the summation to delta rule.

Axiomatic methods. Axiomatic methods decompose the ouput (typically the logit) according to
certain axioms like fairness in Shapley based methods SHAP [26] and conceptSHAP [45]. We also
include gradient based approaches like Gradient @S

@x [3] which calculates the partial derivative of
the logit with respect to the input. Gradient � Input [38] @S

@x · x, which elementwise multiplies
the gradient explanation by the input, and Grad-CAM [36] which takes the gradient of the logit
with respect to the feature map of the last convolutional unit of a DNN. Smooth-Grad [39], which
averages the Gradient � Input explanation over several noisy copies of the input x+ ⌘, where ⌘ is
some Gaussian. The previous methods are intrinsic in the sense that they aim to explain the model
decision. The last category of saliency maps, namely masking methods, also aim to explain the model
decision, but they frequently aim to do so in a way that is interpretable by a human. Contrastive
methods, such as contrastive layerwise propagation Gu et al. [13], also modify LRP by constructing
class specific saliency maps, with the goal of object localization, i.e. in an image of an elephant and
zebra, the saliency map for elephant should have high overlap with the elephant, and similarly for the
corresponding map for zebra.

Masking Methods. Masking Methods are often evaluated using a pointing game or WSOL metric,
which measures overlap with human labeled bounding boxes or explanations. These masking
methods include techniques based on averaging over randomly sampled masks [30], optimizing
over meaningful mask perturbations [11], and real time image saliency using a masking network
[9]. Pixels that have been removed from the image by the mask may be replaced by graying out, by
Gaussian blurring as in Fong and Vedaldi [11], or with infillers such as CA-GAN [46] used in Chang
et al. [8], or DFNet [14]. De Cao et al. [10] find masks using differentiable masking. Taghanaki
et al. [42] introduce a method that results in more accurate localization of discriminatory regions via
mutual information.

Pruning and information theory Khakzar et al. [19] improve attribution via pruning. Schulz et al.
[35] improve attribution by adding noise to intermediate feature maps.
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Saliency and Boolean Logic. Previous work has also drawn connections between saliency and
notions in logic. Ignatiev et al. [18] relates saliency explanations and adversarial examples by a
generalized form of hitting set duality. Ignatiev et al. [17] develops a constraint-agnostic solution
for computing explanations for any ML model. Macdonald et al. [28] develop a rate distortion
explanation for saliency maps and prove a hardness result. Mu and Andreas [29] find a procedure for
explaining neurons by identifying compositional logical concepts. Zhou et al. [49] describe network
dissection, which provides labels for the neurons of the hidden representations. We are unaware of
frameworks like Section 3.

Arguments about saliency. For discussion including pro/cons of various methods some starting
points are Seo et al. [37] Fryer et al. [12] Gu et al. [13] Sundararajan and Najmi [40].

Phang et al. [31] We describe separately the masking procedure used by Phang et al. [31]. They
begin by taking a pretrained model on ImageNet. The masker has access to the internal representations
of the pre-trained model, and tries to maximize masked in accuracy and masked out entropy. They do
not provide the ground truth label to the masker.

E.3 Saliency Evaluation Methods

Saliency evaluation methods attempt to evaluate the quality of a saliency map. Many interpret the
heatmap values as a priority order of saliency. Extrinsic evaluation metrics include the WSOL metric,
which aim to measure overlap of the saliency map with a human annotated bounding box and the
Pointing Game metric proposed by Zhang et al. [47] in which a pixel count as a hit if it lies within a
bounding box and a miss otherwise, and the metric is # Hits

# Hits + #Misses . Other more intrinsic methods
include early saliency evaluation techniques like MorF and LerF Samek et al. [33], which involve
removing pixels either in the order of highest importance or lowest importance and observing the area
of the resulting curve. Insertion and Deletion Games of Petsiuk et al. [30] uses this too. The deletion
game measures the drop in class probability as important pixels are removed, while the insertion
game measures the rise in class probability as important pixels are added. (Our AUC discussion in
Section 3 relates to this.) Remove and Retrain (ROAR) is a saliency evaluation method proposed
by Hooker et al. [15]. Input features are ranked and then removed according to a saliency map.
A new model is trained on the modified training set, and a larger degradation in accuracy on the
modified test set compared to the original model on the original test set is regarded as a better saliency
method. (NB: retraining makes this a non-intrinsic method.) Previous work has also introduced
datasets specifically designed to test saliency methods. BAM Yang and Kim [44] creates saliency
maps by pasting object pixels from MSCOCO Lin et al. [25] into scene images from MiniPlaces
Zhou et al. [48]. The Saliency Metric proposed by Dabkowski and Gal [9] thresholds saliency values
above some ↵ chosen on a holdout set, finds the smallest bounding box containing these pixels,
upsamples and measures the ratio of bounding box area to model accuracy on the cropped image,
s(a, p) = log(max(a, 0.05)) � log(p) where a is the area of the bounding box and p is the class
probability of the upsampled image.

E.4 Saliency computations and underlying meanings of saliency

For simplicity this discussion assumes the datapoints are images and the classifier is a deep net. The
heatmap in the saliency method is trying to highlight the contribution of individual pixels to the final
answer. This is analogous to how a human may highlight relevant portions of the image with a plan.
(Classic saliency methods in vision are inspired by studies of human cognition.) Saliency methods
operationalize this intuitive definition in different ways, and we try to roughly categorise these as
follows.

Variational interpretation. These interpret saliency in terms of effect on final output due to change
in a single pixel –captured either via partial derivative of output with respect to pixel value (i.e., effect
of infinitesimal change), or via change of output when this pixel is set to 0 or to a random (or "gray")
value. Examples include Gradient, Gradient � Input Shrikumar et al. [38], Occlusion
Credit attribution guided by gradient. These use the gradient to guide the assignment of saliency
values. The gradient is interpreted as propagating values from the output to the input layer, and the
values are partitioned/recombined at internal nodes of the net following some conservation principles.
A key goal is to ensure completeness, which means that the sum of the attributions equal the logit
value. Examples include LRP, DeepLIFT Shrikumar et al. [38], Rect-Grad Let ali be the activation
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of some node in layer l, and R
l+1
i be the backpropagated gradient up to a

l
i. Rect-grad replaces the

vanilla chain rule, Rl = 1[ai > 0] with the rule that Rl
i = 1[Rl+1

i ai > ⌧ ] for some threshold ⌧ .
Hence, during a backward pass preference is given to nodes with large margin.

Ensembling on top of above two ideas. Ensembling methods combine saliency estimates over
multiple inputs an an attempt to reduce noise in the final map. Examples include Smooth-Grad,
Occlusion based methods, etc. We also include Shapley Values in this list.

The Shapley value aims to fairly distribute credit among a coalition of N players. In the context
of image saliency, each coordinate of the image input may be seen as a player, and the Shapley
value computes

P
S✓N \{i} |S|!(n�|S|�1)!

n! (v(S [ {i})� v(S)). It can be interpreted as the marginal
contribution of player i, over all possible orderings of the coalition. In this sense, it can be seen as an
ensembling method, as it averages over all possible random permutations.

Analysis of saliency methods. Previous work has analyzed ensembling methods like Smooth-grad,
and found that it does not smooth the gradient Seo et al. [37]. They conclude that Smooth-Grad does
not make the gradient of the score function smooth. Rather Smooth-grad is approximately the sum of
a standard saliency map and higher order terms and the standard deviation of the Gaussian noise. It
has also been found that Shapley values, despite having a uniqueness result, can differ in the way
they depend on the model, data, etc Sundararajan and Najmi [40]. Fryer et al. [12] highlight several
nuances that should be taken into account when considering Shapley values. They introduce Shapley
values as averaging over submodels, and note that "the performance of a feature across all submodels
may not be indicative of the particular performance of that feature in the set of optimal submodels.".
They provide specific cases where satisfying the axioms of Shapley values works against the goal of
feature selection.

F Clarifying benefit of TV regularization

This section gives more details of the discussion in Section 5 about how TV regularizers help ensure
soundness even in a linear setting.

Let S be a dataset of labeled data (x, y) where the inputs are of unit norm and labels are binary,
i.e., kxk2 = 1, y 2 {±1}. The model in question is a linear classifier f(x) := sgn(hw,xi)
parameterized by the weight vector w 2 Sd�1, and it achieves the perfect accuracy on the set S with
a margin � := min(x,y)2S y hw,xi > 0. We assume that the coordinates of x and w are uniformly
bounded by 10p

d
, i.e., kxk1  10p

d
, kwk1  10p

d
(10 can be changed to any other constant).

Let � be the input modification process that sets all non-salient pixels to 0. We are interested in
binary heatmaps, i.e., m assigns 1 to pixels in some salient set S, and 0 otherwise. According to
Definition 3.3, g(x, a,m) = x̃⇠�(x,m)[ [f(x̃)=a]]. A simple calculation shows that this expectation
is equal to [a

P
i2S wixi>0], and thus the goal is to find S so that a

P
i2S wixi > 0.

As we do not consider the full salient set informative, we are interested in salient sets with size
constraint |S| = L for some 1  L  d. There is a simple saliency method that achieves this goal:
Given an input x and a label a 2 {±1}, sort the coordinates according to awixi and take the highest
L coordinates as the salient set S.

It is easy to see that this method always produces S with a
P

i2S wixi > 0. Letting a = y

proves the completeness. However, this method does not satisfy soundness: a salient set S with
a
P

i2S wixi > 0 can also be found for a 6= y!

Now we see how the TV constraint helps to ensure soundness (with good probability). A vec-
tor can be seen as a 1D image, and the TV of a salient set S can be defined by TV(S) :=Pd�1

i=1

��
[i2S] � [i+12S]

��. For simplicity, we consider salient sets with TV at most 2. This means
S is just an interval. Given the size and TV constraints |S| = L, TV(S)  2, it is easy to come
out with the following saliency method: search over all the intervals of length L and if an interval
S satisfies a

P
i2S wixi > 0, return it as the salient set. Fortunately, this method does satisfy both

completeness and soundness, as is justified by Theorem 5.1 in Section 5.

Theorem 5.1. For (x, y) 2 Rd ⇥ {±1} with kxk2 = 1, after random shuffling of the coordinates,

the following holds for any L1 = ⌦( 1
�2 log

1
� ), L2 = ⌦( 1

�2 log
d
� ):
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1. (Completeness) With probability 1� �, there is an interval m of length L1 s.t. g(x, y,m) = 1;

2. (Soundness) With probability 1� �, g(x,�y,m) = 0 holds for all intervals m of length L2.

Proof. Let m be any fixed interval of length L, associated with salient set S. The distribution ofP
i2S wixi is identical to the distribution of the sum of L samples drawn from {w1x1, . . . , wdxd}

without replacement. Note that dyw1x1, . . . , dywdxd are d numbers with mean �, and their absolute
values are bounded by 102 = O(1). By Chernoff bound,

Pr

"
1

L

X

i2S

dywixi  � � ✏

#
 e

�⌦(✏2L)
.

Set ✏ = � ensures that y
P

i2S wixi > 0 with probability 1� e
�⌦(�2L). We can fix any interval m

with L = L1 to prove Item 1.

Taking union bounds over all intervals of length L, we can see that the probability of existing an
interval of length L that certifies �y should be no greater than

P
|S|=L e

�⌦(✏2L)  d
2
e
�⌦(�2L).

Setting L = L2 proves Item 2.

This shows that such salient sets make sense to humans: if the model predicts y, then we can find
an interval of length ⌦̃(1/�2) so that computing the inner product only in that interval leads to the
same prediction; otherwise if the model does not predict y, such interval cannot be found. Thus it
is sufficient to convince humans that the model predicts y by only revealing the existence of such
interval and the coordinate values in it.
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