
A Technical Preliminaries
We now present some technical results that will be repeatedly used in the rest of the paper. We start
with the standard Chernoff-Hoeffding bound
Proposition A.1. Let X1, X2, · · · , Xm be a sequence of independent random variables bounded in
the range [0, 1]. Define Sm =

∑m
i=1Xi, there is

Pr(|Sm − E [Sm] | ≥ t) ≤ 2 · exp

(
−2t2

m

)
.

A direct corollary of the Chernoff-Hoeffding bound (see, e.g. [5] for a proof) on the stochastic
multi-armed bandits is as follows.
Proposition A.2. Let arm1 and arm2 be two different arms with rewards p1 and p2. Suppose
p1 − p2 ≥ θ and we pull each arm K

θ2 times to obtain empirical rewards p̂1 and p̂2. Then,

Pr (p̂1 ≤ p̂2) ≤ 2 · exp

(
−1

4
·K
)
.

We also use the following variation of Chernoff bound for sampling without replacement.
Proposition A.3 (cf. [22, 37]). Let X1, X2, · · · , Xm be a sequence of random variables bounded
in the range [ai, bi], and let them to be dependent in the form of sampling without replacement. Let
Sm =

∑m
i=1Xm, we have

Pr(Sm − E [Sm] ≥ t) ≤ exp

(
− 2t2∑m

i=1(bi − ai)2

)
.

Furthermore, we use the algorithm by [5] as a subroutine of our algorithm. This algorithm, named
GAME-OF-COINS, guarantees the following properties
Proposition A.4 ([5]). Given n arms and the gap parameter ∆[2], algorithm GAME-OF-COINS

finds the best arm with probability at least (1− δ), a sample complexity of O
(

n
∆2

[2]

· log( 1
δ )

)
and a

memory of a single arm. Furthermore, the algorithm GAME-OF-COINS has the following properties

(i) Completeness: For any subset of arms, if the stored arm has a reward p that is at least ∆
larger than other arms, then algorithm GAME-OF-COINS does not discard the stored arm
with probability at least (1− δ) and a sample complexity of O

(
n

∆2 · log( 1
δ )
)
.

(ii) Soundness: For any subset of arms, if the stored arm has a reward p that is at least
∆ smaller than arm∗, then algorithm GAME-OF-COINS make arm∗ the stored arm with
probability at least (1− δ) and a sample complexity of O

(
n

∆2 · log( 1
δ )
)
.

B Missing Proofs of Section 4 (Lower Bounds)
We provide the lower bound proofs for the results in Section 4. We remark that these lower bounds
are are different from standard streaming or multi-armed bandits lower bounds, as they establish
sample-space trade-offs. In particular, lower bounds for offline multi-armed bandits are often
information-theoretic and does not depend on adversarial instances. In contrast, to capture the
sample-space trade-off in the streaming setting, it is necessary to exploit the order of the stream and
use adversarial instances.

B.1 Proof of Theorem 1

By Yao’s minimax principle, it suffices to prove the lower bound for deterministic algorithms over
a hard distribution of inputs. Fix any function f : (0, 1) → (0, 1), we construct the following
distribution

A hard distribution for streaming MAB without any further knowledge

1. Set the value of β such that 1
β2 = ω( 1

f( 1
6 )

).

2. Set the first (n− 1) arms in the stream with DIST and provide β as we specified above.
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3. Set armn with reward pn from the followings distribution: with probability 1
2 , pn = 2

3 ;
with probability 1

2 , pn = 1
3 .

Observe that if the algorithm wants to solve the problem with probability at least 5
6 , on 1

2 of the
instances, it must find the best arm with probability at least 2

3 (i.e. 2
3 -fraction of the instances). This

is because otherwise, the overall success probability is less than
2

3
· 1

2
+

1

2
· 1 =

5

6
. (assuming the other 1

2 of the instances with a success probability of 1)

For half of the instances, we have pn = 1
3 , which means the last arm has no way to become the best

arm (note that β < 1
6 ). Therefore, to find the best arm on these instances, we must store the best arm

among the first (n− 1) arms. By Corollary 3.3, storing the best arm over 2
3 of the instances with the

given memory takes at least Ω
(
n
β2

)
arm pulls.

Now for the other 1
2 fraction of the instances, armn is certainly the best arm, and the gap parameter

∆[2] is 2
3 −

1
2 = 1

6 . Note that since the algorithm is deterministic, it also has to store the best arm for
2
3 of the instances of the first (n− 1) arms in this case, which costs Ω

(
n
β2

)
arm pulls. By the way

we pick β, we have n−1
β2 = ω( n

f( 1
6 )

) for all these instances.

Remark B.1. We remark that even with the random arrival of arms, the sample lower bound in
Theorem 1 still holds. The proof is almost identical to the case with the known ∆[2], and the
techniques will be clear once we present the proof of Theorem 3. To avoid redundant repetition of
the details, we omit the proof for Theorem 1 with random arrival.

B.2 Proof of Theorem 2

We consider the following distribution of the streaming multi-armed bandits

A hard distribution for streaming MAB with known ∆[2]

1. Set a value of β such that β << 1
6 .

2. Set the first (n− 2) arms in the stream with DIST and provide β as we specified above.
3. Set armn−1 and armn with rewards pn−1 and pn from the followings distribution:

with probability 1
2 , pn−1 = 2

3 , pn = 2
3 + β; with probability 1

2 , pn−1 = 1
3 , pn = 1

3 .

With an argument identical to the proof of Theorem 1, we can see that for the algorithm to solve the
problem with probability at least 5

6 , on 1
2 of the instances, it must find the best arm with probability

at least 2
3 . For half of the instances, we have pn−1 = pn = 1

3 ; therefore, any algorithm has to pay at

least Ω
(
n
β2

)
arm pulls to store the best arm among the first (n − 2) arms over 2

3 of the instances.

Note that in this case, the best arm is the arm with reward 1
2 , thus we have ∆[2] = β.

Now for the other 1
2 fraction of the instances, armn is the best arm, and the gap parameter ∆[2] is still

β. Therefore, the instance of the first (n− 1) arms is identical to the above case. Since the algorithm
is deterministic, it takes Ω

(
n
β2

)
arm pulls. On the other hand, by the distribution of the rewards of

arms, the quantity of H2 is now
∑n
i=2

1
∆2

[i]

log log
(

1
∆[i]

)
≤ 1

β2 + n−1
( 1

6 )2 = o( nβ2 ). Therefore, on half

of the instances, the algorithm has to use ω
(∑n

i=2
1

∆2
[i]

log log
(

1
∆[i]

))
arm pulls. Applying Yao’s

minimax principle gives us the worst-case sample complexity.
Remark B.2. It is not difficult to see that the above proof works for the approximate knowledge
of ∆[2]. In particular, if we are given an α-approximation for ∆[2] (α > 1), we can change the gap

between pn−1 and pn to α · β. As a result, the Ω
(
n
β2

)
sample complexity becomes Ω

(
α2 · n

∆2
[2]

)
.

B.3 Proof of Theorem 3

We consider the following distribution of the streaming multi-armed bandits with the random arrival
of arms:
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A hard distribution for streaming MAB with known ∆[2] and random arrival

1. Set β such that β << 1
6 , and let (n− 2) arms be following DIST with parameter β.

2. Set 2 arms arm′ and arm′′ with rewards p′ and p′′ from the followings distribution:
with probability 1

2 , p′ = 2
3 , p
′′ = 2

3 + β; with probability 1
2 , p′ = 1

3 , p
′′ = 1

3 .
3. Order the arms by uniformly at random picking a permutation over [n].

We first show that with probability 4
27 , the following three events happen together: (i). the arm with

reward 1
2 appears in the first 1

3 of the stream; (ii). arm′ appears in the last 2
3 of the stream; and (iii).

arm′′ appears in the last 2
3 of the stream. To see this, note that by picking the permutations uniformly

at random, each arm as 1
n probability to appear at a position j. Therefore, the probability for the

above events to happen is at least 1
3 ·

2
3 ·

2
3 ≥

4
27 .

For the algorithm to solve the problem with probability at least 26
27 , on the above (at least) 4

27 fraction
of the instances, it must find the best arm with probability at least 5

6 . This is again a simple Markov
bound argument, as otherwise the success probability is less than

4

27
· 5

6
+

23

27
=

79

81
.

Let n′ = n
3 , we can show that the memory of the algorithm is n

24 − 1 ≤ n′−2
8 . Furthermore, we have

∆[2] = β for any of the instances. Therefore, the distribution in Theorem 2 reduces to this 4
27 fraction

of instances with n′ = n
3 . This implies the worst-case number of arm pulls for the distribution is at

least Ω
(
n′

β2

)
= Ω

(
n
β2

)
. Finally, by using the fact that

∑n
i=2

1
∆2

[i]

log log
(

1
∆[i]

)
≤ 1

β2 + n−1
( 1

6 )2 , we

conclude the number of arm pulls is ω
(∑n

i=2
1

∆2
[i]

log log
(

1
∆[i]

))
.

B.4 Proof of Theorem 4

The high-level idea

We now analyze the hard instance with the knowledge of all gap parameters {∆[i]}ni=2. Note that for
the case with the gap parameters, one can easily compute INST-complexity, and the idea to construct
distributions with ‘hard final arm’ (as we used in Theorem 1, Theorem 2, and Theorem 3) no longer
works: since the algorithm knows the INST-complexity, it can easily determine if the reward of the
final arm is high by checking if the INST-complexity is sufficient on first (n− 2) coins. In fact, if for
the optimal algorithm, the O(H2) arm pulls span over Θ(n) arms, then any distribution that tries to
trick the algorithm seems futile since the gap parameters ∆[i] for i > 3 must be considerably different
between the cases.
To break the above barrier, we instead construct instances in which the O(H2) arm pulls is ‘reserved’
for a small fraction of the arms, and hide the small fraction of arms among many similar chunks. On
the high level, our hard instance satisfies the following properties: (i). With the optimal algorithm,
the O(H2) sample complexity are mostly paid on a small chunk of arms; (ii). there are ω(1) number
of chunks that could possibly contain the best arm, and all of them are very similar to the chunk that
actually contains the best arm; and (iii). all chunks have same gaps between the arms, which makes
the gap parameters {∆[i]}ni=2 looks exactly the same among all the instances in the distribution. As
such, the algorithm could be tricked by not being able to know which chunk should it search from, and
it has to pay the INST-complexity to keep the best arm among sufficiently many chunks to maintain
a high enough success probability. This forces the sample complexity to become ω(H2).

The formal proof

We construct a distribution as follows:

A hard distribution for streaming MAB with all known gap parameters {∆[i]}ni=2

1. Pick parameter t = o(n) and β such that 1
β = 1

(t/n)2 .
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2. Define n
2t sets of t arms {Shigh

i }
n
2t
i=1 by a modified version of DIST: For each set, (t−1)

arms are with reward 1
2 + i

3 ·
t
n − β; one arm is with reward 1

2 + i
3 ·

t
n .

3. Also define n
2t sets of t arms {Slow

i }
n
2t
i=1 by simply setting the first arm with reward

1
2 −

i−1
3 ·

t
n and the rest of the (t− 1) arms with reward 1

2 −
i−1

3 ·
t
n − β.

4. Sample i∗ uniformly at random from [ n2t ]. Pick the first i∗ sets from {Shigh
i }

n
2t
i=1 as the

first (i∗ · t) arms of the stream.

5. Pick the first i′ = n
2t − i

∗ sets of arms from {Slow
i }

n
2t
i=1 and appends them to the stream

followed by the (i∗ · t) arms in step 4.

6. For the rest of the arms (which is always n
2 ), set the their rewards as 1

2 −
i′

3 ·
t
n .

We first make some key observations on the distribution.

(i). The quantity of gap parameters {∆[i]}ni=2 are always the same in every instance of the
distribution. To see this, note that the gaps ∆[2] to ∆[t] are always β. Observe that the best
arm is with reward 1

2 + i∗

3 ·
t
n , and the rewards from the second-best to the t-th best arms are

1
2 + i∗

3 ·
t
n −β. The (t+ 1)-th best arm is the arm with the highest reward from the previous

set, which is 1
2 + i∗−1

3 · tn (this is much smaller than 1
2 + i∗

3 ·
t
n − β by the choice of β).

Among this set, the gap ∆[t+1] is t
3n , and the gaps ∆[t+2] to ∆[2t] are all t

3n + β. With the
arms we place to the instances from Shigh and Slow, the gaps are kept the same among all
instances in the distribution in the same manner till ∆[n/2]. The last n2 arms are with gap
1
3 · (i

∗ + i′) · tn = 1
6 by line 6.

(ii). For every i∗ ∈ [ n2t ] instance in the distribution, the quantity of H2 is identical. This is a
directly corollary of (i).

(iii). The number of INST-complexity from the arm pulls on the set Shigh
i∗ (that contains the

best arm) takes at least 1
2 fraction overall INST-complexity. To see this, note that the

number of INST-complexity on Shigh
i∗ is Ω

(
t
β2

)
= Ω(n

4

t3 ). For all the other arms, the

gap is at least t
3n . Therefore, the number of arm pulls reserved for this part is at most

O
(
n · 1

(t/3n)2

)
= O(n

3

t2 ). Hence, by the choice of t = o(n), for sufficiently large n, the

number of INST-complexity on Shigh
i∗ takes at least 1

2 of all the INST-complexity.

We now study the complexity of any deterministic algorithms with a memory of t
8 arms over the

above distribution. We again use the Markov bound to show that for the algorithm to find the best
arm with probability at least 8

9 , on 2
3 of the instances, the algorithm has to finds the best arm with

probability at least 5
6 , since the success probability for otherwise is less than

2

3
· 5

6
+

1

3
=

8

9
.

Note that i∗ is sampled uniformly at random. Therefore, we can pick 2
3 of the instances by picking

all the instances with 1 ≤ i∗ ≤ 2
3 ·

n
2t . We now apply another Markov bound to show that for the

algorithm to find the best arm with probability at least 5
6 , a 1

2 fraction of them has to be solved with a
probability of at least 2

3 . Therefore, we can calculate that for at least 2
3 ·

1
2 = 1

3 of the choices of i∗,
the algorithm has to at least store the best arm among Shigh

i∗ with probability at least 2
3 .

Since the algorithm only has a memory of t
8 arms, by Corollary 3.3, to store the best arm with

probability at least 2
3 , it has to use at least Ω

(
t
β2

)
= Ω (H2) arm pulls (per the observation (iii)).

The algorithm is deterministic, and by observation (i), the gap parameters {∆[i]}ni=2 does not reveal
any information about i∗. As such, the algorithm has to store the best arm for all the instances with
1
3 choice of i∗. Hence, it has to use at least Ω

(
n
t ·H2

)
arm pulls. By the choice that t = o(n), the

number of arm pulls is ω(H2).
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C Proofs of Section 3 – The Arm Trapping Lemma

C.1 Proof of Lemma 3.1

We first assume Lemma 3.2 holds, and prove Lemma 3.1 by a reduction argument. Concretely,
we show that if there exists such an algorithm (we call it ALG) to trap the best arm in DIST with
probability at least 2

3 and 1
1200 ·

n
β2 arm pulls, it implies an algorithm that determines the reward of the

arm in Lemma 3.2 with probability at least 7
12 and less than 1

144 ·
1
β2 arm pulls, which is impossible

by the statement of Lemma 3.2.
The reduction is given as follows: suppose such an ALG to trap the best arm exists, then we design an
algorithm ALG’ to determine the reward of the special arm (denote it as ãrm) as follows.

• ALG’ samples i? ∈ [n] uniformly at random, and puts ãrm at position i?.

• ALG’ creates (n− 1) ‘dummy arms’ with rewards ( 1
2 − β), and puts them into the positions

arm1, · · · ,armi?−1,armi?+1, · · · ,armn; note that any arm pulls on these arms does not
count towards the sample complexity on ãrm.

• ALG’ runs ALG with the instance (without revealing i?), and output with the following rules

1. If ALG makes more than 1
1200 ·

n
β2 arm pulls at any time, terminate and output p̃ = 1

2−β;

2. Else, if ALG makes more than 1
150 ·

1
β2 arm pulls on ãrm, terminate and output p̃ = 1

2 ;

3. Otherwise (if ALG makes at most 1
150 ·

1
β2 arm pulls on ãrm), output with the following

rules
– p̃ = 1

2 if ãrm is among the arms returned by ALG.
– p̃ = 1

2 − β if ãrm is not among the arms returned by ALG.

It is straightforward to see that the number of arm pulls on ãrm is at most 1
150 ·

1
β2 , as we explicitly

terminate the algorithm once the sample complexity exceeds this limit.
We now verify that ALG’ determines the reward of the arm with probability at least 7

12 . We first show
that if p = 1

2 , the error probability is at most 1
3 . To see this, note that for ALG’ to make mistakes

when p = 1
2 , ALG needs to either makes more than 1

1200 ·
n
β2 arm pulls, or fail to include ãrm among

the arm it stores. By the assumption of the algorithm, the probability for either of the cases to happen
is at most 1

3 .

On the other hand, when p = 1
2 − β, we show that the error probability is at most 1

2 . To see this, note
that when p = 1

2 − β, ALG’ could make mistakes on the following occasions.

• ALG fails (returns arbitrary results, but terminates with 1
1200 ·

n
β2 arm pulls).

• ALG returns correctly, but it also includes ãrm.

• ALG returns correctly, but uses more than 1
40 ·

1
β2 arm pulls on ãrm such that ALG’ falsely

terminates and returns p = 1
2 .

The probability for the first scenario to happen is clearly at most 1
3 . For the second scenario, note that

ãrm has the same reward as other arms, and they become identical random variables. Therefore, we
have

Pr
(

ãrm included by ALG | p =
1

2
− β

)
= Pr

(
armj included by ALG | pj =

1

2
− β

)
= Pr (armj included by ALG, ∀j ∈ [n])

Since ALG only returns 1
8 fraction of the arms, the probability for ãrm to be falsely included to the

output is 1
8 .

For the third scenario, we show that conditioning on p = 1
2 − β, it is with lower probability that

ALG excessively makes arm pulls on ãrm while keeping the overall number of arm pulls low. By
an argument that is similar to the previous scenario, the number of arm pulls on ãrm is an identical
random variable with the number of arm pulls on any of the other arms. Therefore, denote Ti? as the
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number of arm pulls on ãrm and Tj the number of arm pulls on any arm j, we have

E
[
Ti?
∣∣∣ p =

1

2
− β

]
= E

[
Tj

∣∣∣ pj =
1

2
− β,∀j ∈ [n]

]
= E [Tj ] , ∀j ∈ [n]

Hence, the number of arm pulls on ãrm under p = 1
2 − β equals to the expectation on each arm (the

average). More formally, we have

E
[

number of total arm pulls of ALG
∣∣∣ p =

1

2
− β

]
= E

 n∑
j=1

Tj

∣∣∣ pj =
1

2
− β


=

n∑
j=1

E
[
Tj

∣∣∣ pj =
1

2
− β

]
(linearity of expectation)

= n · E
[
Ti?
∣∣∣ pi? =

1

2
− β

]
.

(identical random variables with equal expectations)

That is to say, conditioning on p = 1
2 − β, we have E

[
Ti? | p = 1

2 − β
]

=
E[number of total arm pulls of ALG]

n = 1
1200 ·

1
∆2 arm pulls. By Markov bound, the probability for the number

of arm pulls on ãrm to be more than 1
150 ·

1
∆2 is at most 1

8 . Therefore, by summarizing the above
scenarios, we conclude that the probability for ALG’ to make mistake under p = 1

2 − β is bounded by
1
3 + 2

3 · (
1
8 + 1

8 ) = 1
2 .

Summarizing the above two cases on p gives us the failure probability of at most

Pr (ALG’ fails) =
1

2
· Pr
(
ALG’ fails | p =

1

2

)
+

1

2
· Pr
(
ALG’ fails | p =

1

2
− β

)
=

1

2
· 1

3
+

1

2
· 1

2
=

5

12
.

As such, ALG’ can determine the reward of the arm in Lemma 3.2 with probability at least 7
12 and

1
150 ·

1
∆2 arm pulls, which contradicts the lemma itself. Therefore, the lower bound is obtained.

Remark C.1. Note that it is possible to prove Lemma 3.1 without the reduction argument. For
instance, one can use the approaches developed by [28, 14] to obtain a similar result. The merit of our
proof is that it provides a black-box way to prove MAB lower bounds without resorting to previous
techniques. Furthermore, the idea to prove lower bounds by ‘embedding’ a single instance into
multiple copies and using the ‘direct sum’ argument is extensively used in the theoretical computer
science literature. Our proof shows that such an idea works for machine learning lower bounds, which
gives an interesting connection between the areas.

C.2 Proof of Lemma 3.2

We now turn to the skipped proof of Lemma 3.2. The lemma is a standard result that has been shown
by multiple previous work [33, 1], but none of them could provide a blackbox lemma for our case to
use. Therefore, we provide an information-theoretic proof for Lemma 3.2. We reach the conclusion
by showing that to distinguish two distributions with a bounded KL divergence with a sufficiently high
probability, a certain number of samples are necessary. En route to the proof, we begin with showing
the error lower bound as a function of the total variation distance, thus establishing the first version
of connection between the error and the divergence. We then use Pinsker’s inequality (proposition
C.3) to transform the total variation distance to the functions of KL divergence. Furthermore, by
leveraging the chain rule and the independence between samples, we transform the KL divergence of
the distribution with m samples to m copies of the KL divergence of the distribution with a single
sample. The latter quantity can be bounded as O(β2) since the reward is from Bernoulli distributions.
And finally, the sample lower bound can be obtained by solving the inequality that upper-bounds the
error probability.
Before showing the proof, we list the technical tools we are going to use. The first technical tool is
the standard KL divergence for discrete distributions:
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Proposition C.2. Let two discrete distributions X and Y be on the same set of supports S, the KL
divergence between X and Y is defined as

DKL(X||Y ) =
∑
s∈S

X(s) log

(
X(s)

Y (s)

)
.

To connect the total variation distance with the KL divergence, we use Pinker’s inequality:
Proposition C.3 (Pinsker’s inequality). Let δTV(·, ·) denote the total variation distance and DKL(·||·)
denote the KL divergence. For two distributions X and Y , we have

δTV(X,Y ) ≤
√

1

2
·DKL(X||Y ).

We now formalize the above intuitions. To begin with, we present the following claim
Claim C.4. Let X and Y be two distributions, and P is determined by

P =

{
X, w.p. 1

2 ;

Y, w.p. 1
2 .

Any algorithm that samples once from P to determine which distribution does P follows makes an
error of at least 1

2 · (1− δTV(X,Y )).

Proof. We slightly abuse the notations of X and Y to let them denote both the distributions and the
mass functions. Let P̂ be the prediction of the algorithm, we can write the error as

Pr(error) = Pr(P̂ = X|P = Y ) · Pr(P = Y ) + Pr(P̂ = Y |P = X) · Pr(P = X)

=
1

2
· (Pr(P̂ = X|P = Y ) + Pr(P̂ = Y |P = X)).

For discrete distributions, the conditional error terms are no worse than the total probability of the
‘converse likelihoods.’ That is, the total probability of the samples that by evaluating on the supports
are from one distribution, but actually from another. More formally, we have Pr(P̂ = X|P = Y ) ≥
Pr(X(s) > Y (s)|s ∼ Y ), and Pr(P̂ = Y |P = X) ≥ Pr(Y (s) > X(s)|s ∼ X). Therefore, the
error is lower bounded by

Pr(error) ≥ 1

2
· (Pr(X(s) > Y (s)|s ∼ Y ) + Pr(X(s) < Y (s)|s ∼ X))

=
1

2
· (

∑
s:X(s)≥Y (s)

Y (s) +
∑

s:X(s)<Y (s)

X(s))

=
1

2
· (

∑
s:X(s)≥Y (s)

Y (s) + 1−
∑

s:X(s)≥Y (s)

X(s))

=
1

2
· (1−

∑
s:X(s)≥Y (s)

(X(s)− Y (s)))

=
1

2
· (1− δTV(X,Y )) ,

which is as desired.

Note that Claim C.4 is applicable to every pairs of distributions, even the distribution with multiple
samples. Therefore, if we use X [m] and Y [m] to denote the distribution of m samples from X and Y ,
we can write the error probability lower bound as

Pr(P̂ 6= P ) ≥ 1

2
·
(

1− δTV(X [m], Y [m])
)
.

To provide a stronger bound, we transform the above inequality to a function of the KL-
divergence. Note that with Pinsker’s inequality (Proposition C.3), there is δTV(X [m], Y [m]) ≤
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√
1
2 ·DKL(X [m]||Y [m]). Since X [m] and Y [m] are from independent identically samples, for any of

the marginal distribution function (denote as Xi), we have X1 = X2 = · · · = Xm = X . Therefore,
we have

DKL(X [m], Y [m]) = DKL

(
Xm||Y m

)
+DKL

(
(X [m−1]|Xm)||(Y m−1|Y m)

)
(by the chain rule)

= DKL

(
X||Y

)
+DKL

(
X [m−1]||Y m−1

)
(by the independence and identity of the random variables)

= · · · · · · · · ·

= m ·
(
DKL(X||Y )

)
.

Since both X and Y are Bernoulli random variables, we have(
DKL(X||Y )

)
=
∑
i

Pr(X = i) log(
Pr(X = i)

Pr(Y = i)
)

= (
1

2
+ β) · log(1 + 2β) + (

1

2
− β) · log(1− 2β)

=
1

2
· log((1 + 2β)(1− 2β)) + β · log(

1 + 2β

1− 2β
)

≤ β · log(
1 + 2β

1− 2β
) (log(1− 4β2) < 0)

≤ β · log(26·β) ( 1+2β
1−2β ≤ 26·β for β ∈ (0, 1

6 ))

= 6 · β2

Therefore, we have

Pr(P̂ 6= P ) ≥ 1

2
·
(

1−
√

1

2
·DKL(Xm, ym)

)
≥ 1

2
·
(

1−
√

1

2
· 6m · β2

)
≥ 1

2
·
(

1− 2 · β ·
√
m
)
.

On the other hand, we want the error probability to be at most 5
12 , which means 1

2 ·
(

1−2β·
√
m
)
≤ 5

12 ,

which solves to m ≥ 1
144 ·

1
β2 .

Remark C.5. We pick β < 1
6 to obtain a clean constant for the number of samples, and it is sufficient

to prove the lower bounds to follow. In fact, if one intends to generalize the range of β, one can
always decease the multiplicative term up to a constant factor, and relax the inequality used in the
derivative of the upper bound of the KL divergence. Nonetheless, we do not aim to get the best
possible range in this paper.

Remark C.6. Very recently, [2] obtains an arm-trapping lower bound that is similar-in-spirit to ours.
However, we remark that their bound focused on the much stronger scenario that the algorithm does
not learn the distribution of the arms (as opposed to simply trap the arm); and their sample complexity
lower bound is much weaker – it has no dependency on n.

D Missing Analysis of the Algorithm

D.1 A High-level Overview of the Analysis

Before showing the formal analysis, we outline the high-level intuitions of the analysis below
(focusing on the case δ = Θ(1)). Any multi-level challenging rules have to fulfill three properties:
soundness, as in the best arm should be able to become the king; completeness, as in after the best
arm becomes the king, it should not be discarded; and sample complexity, which is desired to be
proportional to the INST-complexity Hδ

2.
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Let us first consider the scenario that arm∗ is already the king, under which our concerns are focused
on completeness and sample complexity. One way to guarantee the completeness is to pull both
the king and the challenger O(1/∆2

[2]) times at the first level, and increase the number of arm pulls
geometrically in the levels afterwards. The correctness of such a method was proved by [5] using a
random walk argument. Nonetheless, with such a mechanism, the sample complexity could be as
high as Θ(n/∆2

[2]), which is clearly not instance-sensitive.

To tackle this issue, we design a new instance-sensitive challenge subroutine, inspired by [26]. The
subroutine maintains a ‘guess’ ∆̃` of the gap between the king and the challenger arm. The parameter
∆̃` starts with a sufficiently large value to avoid excessive arm pulls, and updates itself by decreasing
the value with a constant factor as the level ` goes up. After ∆̃` becomes smaller than the real ∆[i],
the probability for the challenger arm to defeat arm∗ becomes very small, and we can show that the
sample complexity of the challenge (from this single arm) is O

(
1

∆2
[i]

log log( 1
∆[i]

)
)

in expectation.

We now generalize to the scenario that any arm could be the king. The strategy we used in the
previous case no longer works here, as the soundness immediately becomes an issue: the rule requires
the challenger to defeat the king at every level, but arm∗ might not be able to defeat an arm with
a close reward by a large guess of ∆̃`. Furthermore, if some other arm besides arm∗ becomes the
king, there is no guarantee on the sample complexity.
A remedy for the former issue is the new notion of epochs: we refer to the period in the stream that a
fixed arm remains the king as an epoch and throughout the epoch, maintain a fixed estimate pest as an
approximation of the reward of the best arm p∗ (not necessarily the empirical reward of the current
king). We then require each challenger to win only against (pest − ∆̃

4 ) – an easier rule that arm∗ is
able to satisfy at all levels upon arrival. Moreover, the pest value itself starts as ∆[2]

20 and is increased
by at least ∆[2]

20 whenever the king is defeated (which implies the guess for pest was not sufficiently
large). This allows us to control the number of all kings that are ever defeated to O(1/∆[2]) – the
importance of this will be clear once we address the second challenge.
The second challenge requires a more careful treatment. In fact, this is where we need the assumptions
of the random arrival and the knowledge of the INST-complexity Hδ

2. Our general approach is to
give a budget to each king for performing the arm pulls in the challenges, and discard the king
whenever it exhausts its budget – the idea of budgeting also appears in [5] but our analysis of budget
is entirely different than theirs. From an amortized perspective, we can give the king a budget of
roughly O(Hδ

2/n) for each arriving arm to bound the sample complexity by O(Hδ
2). Unfortunately,

this on its own does not guarantee the completeness: while arm∗ as a king recieves a budget that is
sufficient in expectation, since the ∆i-value of different challengers can be highly variant, if the arms
come in an adversarial manner, arm∗ could quickly exhaust its budget. Therefore, we further need the
condition of the random arrival of the arms. Still, even this way, the variance in budget use does not
immediately drop sufficiently. However, we can now show that after O(poly(log n/∆[2])) arms, the
number of arm pulls will fall below the budget with a high (constant) probability. For the algorithm
to ‘warm-up’ with these starting arms, we can directly call the GAME-OF-COINS algorithm of [5]
to guarantee the correctness, which will pay an poly(log n/∆[2]) overhead on sample complexity.
Finally, since we also managed to limit the total number of kings to be ever defeated by O(1/∆[2]),
the overhead applied to all the kings is also bounded by poly(log n/∆[2]).

D.2 The Formal Analysis

We provide the formal analysis of the algorithm in this section. We start with bounding the sample
complexity of the algorithm.

Lemma D.1 (Sample Complexity). The total number of arm pulls used by the algorithm is

O

(
Hδ

2 +
1

∆7
[2]

· log(
n

δ
)2 · log2

(
1

δ
log

(
1

∆[2]

)))
.

Proof. There are three sources of arm pulls: the GAME-OF-COINS algorithm, the challenge subrou-
tine, and the arm pulls to update pest. For the first part, one can directly use Proposition A.4 to bound
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the sample complexity as

O

(
n′

(∆[2]/4)2
· log(

1

δ
)

)
= O

(
1

∆7
[2]

· log(
n

δ
)2 · log2

(
1

δ
log

(
1

∆[2]

)))
.

Note that the best arm may not be among the early arms; but since the GAME-OF-COINS algorithm
only adds a budget of O( 1

∆2
[2]

) for each arriving arm, the sample complexity is bounded.

For the challenge subroutine, note that we only collect a budget of b = O(
Hδ

2

n ) for each arriving arm
so the total budget is at most O(Hδ

2). Each unit of budget is responsible for two arm pulls. As a
result, the the sample complexity of the challenge subroutine throughout the algorithm is O(Hδ

2).
And finally, if king is discarded, the algorithm pays another O( 1

∆2
[2]

· log(nδ )) arm pulls. The total

number of times a king can be discarded is at most 20
∆[2]

(as after that pest > 1), which means this

part pays O
(

log(n/δ)
∆3

[2]

)
arm pulls, that is suppressed in the asymptotic sample complexity.

Lemma D.2 (Correctness). With probability at least (1− δ), the algorithm outputs the the best arm
arm∗.

To prove the lemma, we need to show both the soundness and the completeness. To do so, we need
the following key claims on the behavior of our instance-sensitive challenge subroutine. Considering
the proofs are technical, we postpone them to the appendix—however, we shall note that the entire
idea behind the algorithm hinges on these claims.

Claim D.3. Assuming pest ≥ p∗ −
∆[2]

2 , the expected number of arm pulls of the instance-sensitive

challenge subroutine on arm[i] is at most
(

600 · 1
∆2

[i]

log

(
1
δ log

(
1

∆2
[i]

)))
.

Proof. Define `∆i :=
⌈
log( 1

∆[i]
)
⌉

. We analyze the number of arm pulls of arm[i] for the cases of

` ≤ `∆i
and ` > `∆i

, respectively. For all the levels ` ≤
⌈
log( 1

∆[i]
)
⌉

, the overall number of arm
pulls is at most:

`∆i∑
`=1

s` =

`∆i∑
`=1

4

∆̃2
· log(

1

δ`
) =

`∆i∑
`=1

4 · 16 · (22(`−1)) · log(
50 · `3

δ
)

≤ 4 · 16 · 22·log( 1
∆[i]

) · log(
50 · log( 1

∆[i]
)3

δ
) ≤ 576 · 1

∆2
[i]

· log

(
1

δ
log

(
1

∆[i]

))
.

(log(50
1
3 ) < 2)

For the levels ` > `∆i
, we show that the probability for arm[i] to survive level ` is at most∏`

`′=`∆i+1 δ`′ . Note that for ` > `∆i , there is ∆̃ ≤ 1
4 ·∆[i]. Since we assume pest > p∗ − ∆[2]

2 >

p∗ − ∆[i]

2 , for the challenger arm to defeat the king, it should have an empirical reward of at least
p∗ − 3

4 ·∆[i]. On the other hand, we know its true reward is p∗ − 1
4 ·∆[i]. By Proposition A.2, we

have

Pr(p̂[i] ≥ p∗ −
3

4
·∆[i]) = Pr(p̂[i] − p ≥

1

4
·∆[i]) ≤ exp(−1

4
· 4 · log(

1

δ`
)) = δ`.

Based on the challenging rules, the above inequality implies that

Pr
(
arm[i] reaches level ` | arm[i] survives previous levels

)
≤ δ`.

Therefore, defining Xi as the number arm pulls for arm[i] under the challenge subroutine, we can
bound the expectation of the total arm pulls for ` > `∆i as

E [Xi | ` > `∆i ] =

∞∑
`=`∆i+1

Pr
(
arm[i] reaches level `

)
· (number of total arm pulls)
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≤
∞∑

`=`∆i+1

 ∏̀
`′=`∆i+1

δ`′

 · 5 · s` (s` ≥ 1
4 ·
∑`−1
`′=1 s`′)

≤ 4 · 16 · 9
∞∑

`=`∆i+1

1

∆2
[i]

· 22·(`−`∆i ) · log(
`

δ
) ·

 ∏̀
`′=`∆i+1

δ

50
· 1

8


(`∆i

+ 1 ≥ 2)

≤ 4 · 16 · 9 ·
∞∑
`′=1

1

∆2
[i]

22`′ · log(
`′ + `∆i

δ
) ·

 `′∏
`′′=1

δ

50
· 1

8

 (let `′ = `− `∆i
)

≤ 4 · 16 · 9 · 1

100
· 1

∆2
[i]

·
∞∑
`′=1

(
1

2
)`
′
· (4

3
)`
′
· log(

log( 1
∆[i]

)

δ
) ( δ50 ≤

1
100 )

≤ 12 · 1

∆2
[i]

· log

(
1

δ
log

(
1

∆[i]

))
.

Hence, by summarizing the above results, we can get

E [Xi] ≤
`∆i∑
`=1

s` + E [Xi | ` > `∆i
] ≤ 600 · 1

∆2
[i]

· log

(
1

δ
log

(
1

∆[i]

))
,

concluding the proof.

To continue we need some definition. For any set S of consecutive arms in the stream, define:

Ind(S) :=
{
j |arm[j] ∈ S

}
Hδ

2(S) :=
∑

j∈Ind(S)

1

∆2
[j]

log

(
1

δ
log

(
1

∆[j]

))
.

We can use claim D.3 to show that Hδ
2(S) characterizes the sample complexity of the algorithm on

the arms in S for any sufficiently large set S, as Claim D.4.

Claim D.4. Assuming pest ≥ p∗ −
∆[2]

2 , for a set of consecutive arms S ⊆ {armi}ni=1 that does not
contain arm∗ and has a size |S| ≥ mearly, the number of arm pulls on the set S under the challenge
rule is at most

(
900 ·Hδ

2(S)
)

w.p. at least
(
1− δ

16n2

)
.

Proof. Define random variables {Yj}j∈Ind(S) as the number of arm pulls used on arm[j] ∈ S. Let
the number of arm pulls on S be Y =

∑
j∈Ind(S) Yj . By Claim D.3, one can show that

E [Y ] =
∑

j∈Ind(S)

E [Yj ] ≤ 600 ·
∑

j∈Ind(S)

1

∆2
[j]

log

(
1

δ
log

(
1

∆[j]

))
= 600 ·Hδ

2(S).

Moreover, the challenge subroutine will pull an arm at most θ := 128
∆2

[2]

· log(nδ ) times at most. Thus,

each Yj ∈ [1, θ]. As such, by Chernoff bound,

Pr
(
Y ≥ 900 ·Hδ

2(S)
)
≤ Pr (Y ≥ 1.5 · E [Y ]) ≤ exp(−0.52 · E [Y ]

3θ
) ≤ exp(−

0.52 ·mearly

3θ
)

= exp(− 1

12
·

30
∆4

[2]

· log2(nδ ) · log2
(

1
δ log

(
1

∆[2]

))
3 · 128

∆2
[2]

· log(nδ )
)

≤ exp(−4 · log(
n

δ
)) ≤ δ

16n2
,

as desired.

We next use the random arrival assumption to prove Hδ
2(S) ≈ |S|n ·H

δ
2 for all sufficiently large S.
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Claim D.5. Assuming the arms arrive in a random order, for any set of consecutive arms S with size
|S| ≥ mearly, we have Hδ

2(S) ≤ 2 · |S| · H
δ
2

n with probability at least (1− δ
16n2 ).

Proof. Fix indices of any set S of consecutive arm. For any i ∈ S, define Zi as the random variable
that takes value 1

∆2
[j]

log( 1
δ · log 1

∆[j]
) where arm[j] is the arm arriving in the position i of S. Define

Z :=
∑
i∈S Zi and note that Hδ

2(S) = Z. Moreover, by the randomness of the stream,

E [Z] =
∑
i∈S

E [Zi] =
∑
i∈S

1

n
·
n∑
j=1

1

∆2
[j]

log(
1

δ
· log

1

∆[j]
) =
|S|
n
·Hδ

2.

Define θ := 1
∆2

[2]

log( 1
δ · log 1

∆[2]
) and note that each Zi ∈ [1, θ] with this definition. Considering the

distribution of Z is sampling without replacement, by Proposition A.3, we have that

Pr(Z − E [Z] ≥ E [Z]) ≤ exp

(
−2 · E [Z]

2

|S| · θ2

)
≤ exp

(
−|S|
θ2

)

≤ exp

− 30
∆4

[2]

· log2(nδ ) · log2
(

1
δ log

(
1

∆[2]

))
( 1

∆2
[2]

log( 1
δ · log 1

∆[2]
)2


(|S| ≥ mearly and by the choice of mearly)

= exp
(
−30 · (log (n/δ))2

)
� δ

16n2
.

As such, we have that for any sufficiently large S as specified by the claim, Hδ
2(S) ≤ 2 · |S| · H

δ
2

n

with probability at least (1− δ
16n2 ), concluding the proof.

As a direct result of claims D.4 and D.5, we have:

Claim D.6. Assuming the arms arrive in a random order and pest ≥ p∗ −
∆[2]

2 , the number of arm
pulls used by the challenge subroutine on every set S of consecutive arms that does not contain arm∗

and has size |S| ≥ mearly is at most 1800 · |S|n ·H
δ
2 with probability at least (1− δ

8 ).

Proof. There are at most n2 sets of consecutive arms in total. Therefore, by a union bound on Claim
D.4, the number of arm pulls used by the challenge subroutine on every set of consecutive arms is at
most 900 ·Hδ

2(S) with probability at least 1− δ
16 .

By a similar argument applied to Claim D.5, we have that for every set of consecutive arms of size at
least mearly, Hδ

2(S) ≤ 2 · |S|n ·H
δ
2 with probability at least 1 − δ

16 . Under the condition that both
of the above happen, which is with probability at least (1− δ

8 ) by a union bound, the umber of arm
pulls used by the challenge subroutine on every set of consecutive arms with size at least mearly and
without arm∗ is at most 1800 · |S|n ·H

δ
2 as desired.

We are now ready to show the correctness of the algorithm.

Lemma D.7 (Soundness). W.p. at least 1− δ
2 , arm∗ becomes the king upon arrival.

Proof. We first show that with probability at least 1 − δ
4 , the estimation pest is at most p∗ − ∆[2]

4

before arm∗ arrives. Since pest is updated as maximum of p̂challenger and pest +
∆[2]

20 in Line (2) of
the algorithm, we analyze these two arguments of the max-term separately.

• For pest ≥ p∗−
∆[2]

4 to happen, the empirical reward of the challenger should be p̂challenger ≥
p∗ − ∆[2]

4 − ∆[2]

20 ≥ p∗ − ∆[2]

2 . But as arm∗ has not arrived yet, the probability for any
other arm to achieve such a high empirical reward in Line (1) is at most δ

8n by Proposition
A.2. Thus, w.p. at least (1− δ

8 ), we will not have pest ≥ p∗ −
∆[2]

4 via this argument of the
max-term.
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• For pest ≥ p∗ − ∆[2]

4 to be updated by the second argument of max-term, we must have
pest ≥ p∗ − ∆[2]

4 −
∆[2]

20 ≥ p∗ − ∆[2]

2 before the update. However, Claim D.6 show that
before arm∗ arrives, the king with this large value of pest will never exhausts its budget on
any set of arriving arms (1− δ

8 ) and thus will not be discarded; similarly, by Proposition
A.2, the king will not be discarded by the early arms with probability (1− δ

8 ). As such the
update will not able to happen due to this case either.

Hence, with probability at least
(
1− δ

4

)
, before the arrival of arm∗, we have pest ≤ p∗ −

∆[2]

4 .
Conditioning on the above event, now consider the moment when arm∗ arrives. If it arrives as one of
the early arms of the epoch, then by Proposition A.4, it becomes the king with probability at least
(1− δ

8 ). On the other hand, if it arrives as one of the late arms of the epoch, we show that it is not
likely to be defeated at any level of the challenging rule, so the challenge will continue until arm∗
exhausts the budget of the king. More formally, by Proposition A.4,

Pr (challenger arm∗is defeated at level `) = Pr

(
p̂challenger < pest −

∆̃`

4

)
≤ 2 exp(− log(

1

δ`
)) ≤ 2δ`.

Therefore, by a union bound over all the levels, we have Pr (arm∗ ever defeated) ≤ 2 ·
∑∞
`=1

δ
50`3 ≤

δ
4 . Finally, a union bound gives us at least (1− δ

2 ) probability for both of the above events to hold,
concluding the proof.

Lemma D.8 (Completeness). W.p. at least (1− δ
2 ), arm∗ is not discarded if it becomes the king.

Proof. For the early arms, by Proposition A.4, if arm∗ is already the king, the algorithm does not
discard it with probability at least (1− δ′) = (1− δ

8 ).

For the late arms, note that after arm∗ becomes the king, we have pest ≥ p∗ −
∆[2]

2 with probability
(1− δ

8 ) by Line (1) and Proposition A.2. Moreover, arm∗ is no longer part of the stream and hence,
by applying Claim D.6, we can show that with probability at least

(
1− δ

8

)
, the budget of arm∗

never gets exhausted, and therefore it does not get discarded. A union bound among the above cases
concludes the proof.

A union bound on Lemmas D.8 and D.7 proves Lemma D.2, concluding the proof of Theorem 5.
Remark D.9. From the analysis, one can observe that the large constant of the exponent for 1

∆[2]
on

the additive sample term (i.e. 1
∆7

[2]

) is mainly due to the analysis of Claim D.5, where a large mearly is

necessary. We remark that (i). we never need more than Θ

(
n

∆2
[2]

)
sample complexity by running

INSTANCE-SENSITIVE-GAME-OF-ARMS, as we can always compute the additive term with mearly
and run GAME-OF-COINS if the additive term is too large. In fact, if mearly ≥ n, the algorithm
automatically runs GAME-OF-COINS and outputs its answer. (ii). The analysis of Claim D.5 assumes
the worst-case, and the large mearly is necessary only when most ∆[i]’s are close to ∆[2]. It is an
interesting future direction to explore how large mearly is required in practical settings.
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