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Abstract

We study linear regression under covariate shift, where the marginal distribution
over the input covariates differs in the source and the target domains, while the
conditional distribution of the output given the input covariates is similar across
the two domains. We investigate a transfer learning approach with pretraining on
the source data and finetuning based on the target data (both conducted by online
SGD) for this problem. We establish sharp instance-dependent excess risk upper
and lower bounds for this approach. Our bounds suggest that for a large class of
linear regression instances, transfer learning with O(N2) source data (and scarce
or no target data) is as effective as supervised learning with N target data. In
addition, we show that finetuning, even with only a small amount of target data,
could drastically reduce the amount of source data required by pretraining. Our
theory sheds light on the effectiveness and limitation of pretraining as well as the
benefits of finetuning for tackling covariate shift problems.

1 Introduction

In transfer learning [Pan and Yang, 2009, Sugiyama and Kawanabe, 2012], an algorithm is provided
with abundant data from a source domain and scarce or no data from a target domain, and aims to
train a model that generalizes well on the target domain. A simple yet effective approach is to pretrain
a model with the rich source data and then finetune the model with the available target data via, e.g.,
stochastic gradient descent (SGD) (see, e.g., Yosinski et al. [2014]). Despite its wide applicability in
practice, the power and limitation of the pretraining-finetuning based transfer learning framework is
not fully understood in theory. The focus of this work is to consider this issue in a specific transfer
learning setup known as covariate shift [Pan and Yang, 2009, Sugiyama and Kawanabe, 2012], where
the source and target distributions differ in their marginal distributions over the input, but coincide in
their conditional distribution of the output given the input.

Regarding the theory of learning with covariate shift, there exists a rich set of results [Ben-David
et al., 2010, Germain et al., 2013, Mansour et al., 2009, Mohri and Muñoz Medina, 2012, Cortes and
Mohri, 2014, Cortes et al., 2019, Kpotufe and Martinet, 2018, Hanneke and Kpotufe, 2019, Ma et al.,
2022] for the (regularized) empirical risk minimizer, which minimizes the empirical loss over the
source data and target data (if available) with potential regularization terms (e.g., ℓ2-regularization).
However, in most of these works [Ben-David et al., 2010, Germain et al., 2013, Mansour et al., 2009,
Mohri and Muñoz Medina, 2012, Cortes and Mohri, 2014, Cortes et al., 2019], the generalization
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error on the target domain is bounded by the sum of a vanishing term (e.g., the training error) and a
divergence between the two domains (see, e.g., discussions in Kpotufe and Martinet [2018], with
a few notable exceptions that we will discuss later). Such bounds are very pessimistic because the
additive error contributed by the source-target divergence only captures the worst case performance
gap caused by distribution mismatch [David et al., 2010] and is too crude to describe the intriguing
properties of pretraining-finetuning across different domains.

In this paper, we take a different approach to directly study the generalization performance of the
pretraining-finetuning method. In particular, we consider linear regression under covariate shift, and
an online SGD estimator which is firstly trained with the source data and then finetuned with the
target data. We derive a target domain risk bound that is stated as a function of (i) the spectrum of the
source and target population data covariance matrices, (ii) the amount of source and target data, and
(iii) the (initial) stepsizes for pretraining and finetuning (see Theorem 3.1 for more details). Moreover,
a nearly matching lower bound is provided to justify the tightness of our upper bound. The derived
bounds comprehensively characterize the effects of pretraining and finetuning for each covariate
shift problem and each algorithm configuration, based on which we make the following important
observations:

• We compare the generalization performance (i.e., target domain excess risk) of pretraining
(with source data) vs. supervised learning (with target data). We show that, for a large class
of problems, O(N2) source data is sufficient for pretraining to match the performance of
supervised learning with N target data.

• We next show the benefits of finetuning with scarce target data. In particular, for the problem
class considered before, finetuning can reduce by at least constant factors the amount of source
data required by pretraining. Moreover, there exist problem instances for which the pretraining-
finetuning approach requires polynomially less amount of total data than pretraining (with
source data) or supervised learning (with target data).

• Finally, our bounds can also be applied to the supervised learning setting, i.e., linear regression
with last iterate SGD. In this case, our upper bound sharpens that of Wu et al. [2021] by a
logarithmic factor, and as a consequence we close the gap between the upper and lower bounds
for last iterate SGD when the signal-to-noise ratio is bounded.

Notation. For two positive-value functions f(x) and g(x) we write f(x) ≲ g(x) or f(x) ≳ g(x)
if f(x) ≤ cg(x) or f(x) ≥ cg(x) for some absolute constant c > 0 respectively, and we write
f(x) ≂ g(x) if f(x) ≲ g(x) ≲ f(x). For two vectors u and v in a Hilbert space, their inner
product is denoted by ⟨u,v⟩ or equivalently, u⊤v. For a matrix A, its spectral norm is denoted
by ∥A∥2. For two matrices A and B of appropriate dimension, their inner product is defined as
⟨A,B⟩ := tr(A⊤B). For a positive semi-definite (PSD) matrix A and a vector v of appropriate
dimension, we write ∥v∥2A := v⊤Av. For a symmetric matrix A and a PSD matrix B, we write
∥A∥2B := ∥B− 1

2AB− 1
2 ∥22. The Kronecker/tensor product is denoted by ⊗. For a set S, we use |S| to

denote its cardinality.

1.1 Additional Related Work

We review some additional works that are mostly related to ours.

Learning under Covariate Shift. Kpotufe and Martinet [2018], Pathak et al. [2022] proposed new
similarity measures to the source and target domains, and proved covariate shift bounds that do not
contain an additive error of the divergence between the source and target distribution. Compared to
our results, theirs can be applied to nonlinear regression/classifications as well; however in the case
of linear regression, our bounds are more fine-grained and are tight upto constant factors for a broad
class of problems (see Theorem 3.2), beyond being only optimal in the worst case.

It is worth noting that Hanneke and Kpotufe [2019] studied the value of target data in addressing
covariate shift problems. Their discussion is based on the minimax risk bounds afforded by a
given number of source and target data. In contrast, our discussion on the benefits of finetuning
with target data is based on a completely different perspective, which is by comparing the sample
inflation [Bahadur, 1967, 1971, Zou et al., 2021a] between pretraining-finetuning vs. pretraining vs.
supervised learning, i.e., for each covariate shift problem instance, how much source (and target) data
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are necessary for pretraning (and finetuning) to match the performance of supervised learning with
certain amount of target data.

More recently, Ma et al. [2022] studied covariate shift problem in the nonparameteric kernel regression
setting, with the assumption that the density ratio (or second moment ratio) between the target and
source distribution is bounded. Their results are similar to ours in that their bounds reflect the effect
of the spectrum of the source population data covariance. Since our results are dimension-free, our
bounds can also be applied in the nonparameteric kernel regression setting. There are two notable
differences: firstly, their estimator is (weighted) ridge regression and ours is given by SGD; moreover,
our results do not rely on the bounded density ratio or bounded second moment condition.

In addition, there is a vast literature on constructing more sample-efficient transfer learning algorithms,
e.g., importance weighting methods [Shimodaira, 2000, Cortes et al., 2010] and learning invariant
representations [Arjovsky et al., 2019, Wu et al., 2019], to mention a few. Along this line, Lei et al.
[2021] proposed nearly minimax optimal estimator for linear regression under distribution shift, but
their method relies on the knowledge of target population covariance matrix. Developing new transfer
learning algorithms is beyond the agenda in this paper.

SGD. The pretraining and finetuning discussed in this work are both conducted by online SGD,
therefore our results are closely related to the generalization analysis of online SGD for linear
regression in the supervised learning context [Bach and Moulines, 2013, Dieuleveut et al., 2017, Jain
et al., 2017a,b, Ge et al., 2019, Zou et al., 2021b, Varre et al., 2021, Wu et al., 2021]. From a technical
point of view, our theoretical results can be viewed as an extension of the SGD analysis from the
supervised learning setting to the covariate shift setting.

2 Problem Setup

Transfer Learning. We use x to denote a covariate in a Hilbert space (that can be d-dimensional or
countably infinite dimensional), and y ∈ R to denote its response. Consider a source and a target
data distribution, denoted by Dsource and Dtarget respectively. In the problem of transfer learning,
we are given with M data sampled independently from the source distribution, and N data sampled
independently from the target distribution (where N ≪ M or even N = 0), denoted by

(xi, yi)
M+N
i=1 , where (xi, yi) ∼

{
Dsource, i = 1, . . . ,M ;

Dtarget, i = M + 1, . . . ,M +N.

The goal of transfer learning is to learn a model based on the M +N data that can generalize on
the target domain. We are particularly interested in the covariate shift problem in transfer learning,
where the source and target distributions satisfy: Dsource(y|x) = Dtarget(y|x) but Dsource(x) ̸=
Dtarget(x).

Linear Regression under Covariate Shift. A covariate shift problem is formally defined in the
context of linear regression by Definitions 1 and 2.
Definition 1 (Covariances conditions). Assume that each entry and the trace of the source and target
data covariance matrices are finite. Denote the source and target data covariance matrices by

G := EDsource
[xx⊤], H := EDtarget

[xx⊤],

respectively, and denote their eigenvalues by (µi)i≥1 and (λi)i≥1, respectively. For convenience
assume that both G and H are strictly positive definite.
Definition 2 (Model conditions). For a parameter w, define its source and target risks by

Risksource(w) :=
1

2
EDsource

(y −w⊤x)2, Risktarget(w) :=
1

2
EDtarget

(y −w⊤x)2,

respectively. Assume that there is a parameter w∗ that simultaneously minimizes both source
and target risks, i.e., w∗ ∈ argminw Risksource(w) ∩ argminw Risktarget(w). For convenience
assume that w∗ is unique.

We remark that the strict positive definiteness of G and H in Definition 1 and the uniqueness
of w∗ in Definition 2 are only made for the ease of presentation. Otherwise one can set w∗ to
be the minimum-norm solution, i.e., w∗ = argmin{∥w∥2 : w ∈ argminw Risksource(w) ∩
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argminw Risktarget(w)}, and our results still hold. This argument also holds in a reproducing
kernel Hilbert space [Schölkopf et al., 2002].

Our definitions of linear regression under covaraite shift follow from Lei et al. [2021], Ma et al.
[2022]. In the literature, covariate shift problem often assumes the source and target distributions
differ in their marginal distributions over the input, but coincide in their conditional distribution of the
output given the input (see, e.g., Sections 1.3.3 and 1.3.4 in Sugiyama et al. [2012]). When applied
to the well-specified linear regression models, i.e., E[y|x] = x⊤w∗ for some parameter w∗, the
latter condition turns out to require the optimal parameter w∗ is identical for both source and target
domains. Therefore, the problems described by Definitions 1 and 2 include at least all well-specified
linear regression problems under standard covariate shift conditions.

Excess Risk. For linear regression under covariate shift, the performance of a parameter w is
measured by its target domain excess risk, i.e.,

ExcessRisk(w) := Risktarget(w)− Risktarget(w
∗) =

1

2
⟨H, (w −w∗)⊗ (w −w∗)⟩.

SGD. The transfer learning algorithm of our interests is pretraining-finetuning via online stochastic
gradient descent with geometrically decaying stepsizes2 (SGD). Without lose of generality, we assume
the SGD iterates are initialized from w0 = 0. Then the SGD iterates are sequentially updated as
follows:

wt = wt−1 − γt−1(xtx
⊤
t wt−1 − xtyt), t = 1, . . . ,M +N,

where γt =

{
γ0/2

ℓ, 0 ≤ t < M, ℓ = ⌊t/ log(M)⌋ ;
γM/2ℓ, M ≤ t < N, ℓ = ⌊(t−M)/ log(N)⌋ ,

(SGD)

and the output is the last iterate, i.e., wM+N . Here γ0 and γM are two hyperparameters that
correspond to the initial stepsizes for pretraining and finetuning, respectively. In both pretraining and
finetuning phases, the stepsize scheduler in (SGD) is epoch-wisely a constant and decays geometrically
every certain number of epochs, which is widely used in deep learning [He et al., 2015]. We note
that such (SGD) for linear regression has been analyzed by Ge et al. [2019], Wu et al. [2021] in the
context of supervised learning. Our goal in this work is to understand the generalization of (SGD) in
the covariate shift problems.

Assumptions. The following assumptions [Zou et al., 2021b, Wu et al., 2021] are crucial in our
analysis.
Assumption 1 (Fourth moment conditions). Assume that for both source and target distribution the
fourth moment of the covariates is finite. Moreover:

A There is a constant α > 0 such that for every PSD matrix A it holds that

EDsource
[xx⊤Axx⊤] ⪯ α · tr(GA) ·G, EDtarget

[xx⊤Axx⊤] ⪯ α · tr(HA) ·H.

Clearly, it must hold that α ≥ 1.

B There is a constant β > 0 such that for every PSD matrix A it holds that

EDsource
[xx⊤Axx⊤]−GAG ⪰ β·tr(GA)·G, EDtarget

[xx⊤Axx⊤]−HAH ⪰ β·tr(HA)·H.

Assumption 1 holds with α = 3 and β = 1 given that Dsource(x) = N (0,G) and Dtarget(x) =

N (0,H). Moreover, Assumption 1A holds if both H− 1
2 · Dsource(x) and G− 1

2 · Dtarget(x) have
sub-Gaussian tails [Zou et al., 2021b]. For more exemplar distributions that satisfy Assumption 1, we
refer the reader to Wu et al. [2021].
Assumption 2 (Noise condition). Assume that there is a constant σ2 > 0 such that

EDsource
[(y − ⟨w∗,x⟩)2xx⊤] ⪯ σ2 ·G, EDtarget

[(y − ⟨w∗,x⟩)2xx⊤] ⪯ σ2 ·H.

Assumption 2 puts mild requirements on the conditional distribution of the response given input
covariates for both source and target distribution. In particular, Assumption 2 is directly implied by
the following Assumption 2’ for a well-specified linear regression model under covariate shift.

2For the conciseness of presentation we focus on SGD with geometrically decaying stepsizes. With the
provided techniques, our results can be easily extended to SGD with tail geometrically decaying stepsizes [Wu
et al., 2021] as well.
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Assumption 2’ (Well-specified noise). Assume that for both source and target distributions, the
response (conditional on input covariates) is given by

y = x⊤w∗ + ϵ, where ϵ ∼ N (0, σ2) and ϵ is independent with x.

Additional Notation. Let N+ := {1, 2, . . . }. For an index set K ⊂ N+, its complement is defined
by Kc := N+ −K. Then for an index set K ⊂ N+ and a scalar a ≥ 0, we define

HK :=
∑
i∈K

λiviv
⊤
i , H−1

K :=
∑
i∈K

1

λi
viv

⊤
i , aIK +HKc :=

∑
i∈K

avivi +
∑
i/∈K

λivivi,

where (λi)i≥1 and (vi)i≥1 are corresponding eigenvalues and eigenvectors of H. One can verify
that H−1

K is equivalent to the (pseudo) inverse of HK. Similarly, we define GJ, G−1
J and aIJ +GJc

according to the eigenvalues and eigenvectors of G.

3 Main Results

An Upper Bound. We begin with presenting an upper bound for the target domain excess risk
achieved by the pretraining-finetuning method.
Theorem 3.1 (upper bound). Suppose that Assumptions 1A and 2 hold. Let wM+N be the
output of (SGD). Let Meff := M/ log(M), Neff := N/ log(N). Suppose that γ0, γM <
min{1/(4α tr(G)), 1/(4α tr(H))}. Then it holds that

ExcessRisk(wM+N ) ≤ BiasError+ VarError.

Moreover, for any two index sets J,K ⊂ N+, it holds that

VarError ≲ σ2 ·
(
Dfinetune

eff

Meff

+
Deff

Neff

)
;

BiasError ≲
∥∥∥∏M+N−1

t=M (I− γtH)
∏M−1

t=0 (I− γtG)(w0 −w∗)
∥∥∥2
H

+ α ·
∥∥w0 −w∗∥∥2 IJ

Meffγ0
+GJc

· D
finetune
eff

Meff

+ α ·
(∥∥∥∏M−1

t=0 (I− γtG)(w0 −w∗)
∥∥∥2

IK
NeffγM

+HKc

+
∥∥w0 −w∗∥∥2 IJ

Meffγ0
+GJc

)
· Deff

Neff

,

where
Dfinetune

eff := tr
(∏N−1

t=0 (I− γM+tH)2H · (G−1
J +M2

effγ
2
0 ·GJc)

)
,

Deff := |K|+N2
effγ

2
M ·

∑
i/∈K λ2

i .
(1)

In particular, the upper bounds are optimized when

J = {j : µj ≥ 1/(γ0Meff)}, K = {k : λk ≥ 1/(γMNeff)}. (2)

The upper bound in Theorem 3.1 contains a bias error stemming from the incorrect initialization
w0 ̸= w∗, and a variance error caused by the additive label noise y−x⊤w∗ ̸= 0. In particular, Meff

and Neff are the effective number of source and target data, respectively, due to the effect of the
geometrically decaying stepsizes in (SGD). Moreover, Deff can be regarded as the effective dimension
of supervised learning [Wu et al., 2021] and Dfinetune

eff can be regared as the effective dimension of
pretraining-finetuning. Note that Dfinetune

eff is determined jointly by the spectrum of the source and
target population covariance matrices as well as the stepsizes for pretraining and finetuning.

To better illustrate the spirit of Theorem 3.1, let us consider an example where ∥w0 −w∗∥22, σ2 ≲ 1,
γ0 ≂ 1, and tr(G) ≂ tr(H) ≂ 1 (so that the spectrum of G and H must decay fast), then the bound
in Theorem 3.1 vanishes provided that

Deff = o(Neff), Dfinetune
eff = o(Meff). (3)

For the first condition in (3) to happen one needs

|K| = o(N/ logN), γ2
M ·

∑
i/∈K

λ2
i = o(logN/N),
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which can be satisfied when (i) the number of target data N is large and the finetuning stepsize
γM ≂ 1, or when (ii) N is small and γM is also small (which can depend on N ). The second
condition in (3) can happen under various situations, e.g., when (i) N is large and γM ≂ 1, or when
(ii) N , γM are small but the amount of source data M is large and that

tr(HG−1
J ) = o(M/ logM), tr(HGJc) = o(logM/M),

which will hold when G aligns well with H (as a sanity check these hold automatically when G = H
and M is large). To summarize, in case (i) the amount of target data is plentiful so that finetuning
with large stepsize leads to generalization (which is essentially supervised learning); and in case (ii),
even though the target data is scarce, pretraining with abundant source data can still generalize given
that the source and target population covariance matrices are well aligned.

A Lower Bound. The following theorem provides a nearly matching lower bound.
Theorem 3.2 (lower bound). Suppose that Assumptions 1B and 2’ hold. Let wM+N be the output of
(SGD). Let Meff := M/ log(M), Neff := N/ log(N), and suppose that Meff, Neff ≥ 10. Suppose
that γ0 < 1/∥G∥2, γM < 1/∥H∥2. Then it holds that

ExcessRisk(wM+N ) = BiasError+ VarError.

Moreover, for the index sets K and J defined in (2), it holds that

VarError ≳ σ2 ·
(
Dfinetune

eff

Meff

+
Deff

Neff

)
;

BiasError ≳
∥∥∥∏M+N−1

t=M (I− γtH)
∏M−1

t=0 (I− γtG)(w0 −w∗)
∥∥∥2
H

+ β · ∥w0 −w∗∥2GJc
· D

finetune
eff

Meff

+ β ·
∥∥∏M−1

t=0 (I− γtG)(w0 −w∗)
∥∥2
HKc

· Deff

Neff

,

where Deff and Dfinetune
eff are as defined in (1).

The lower bound in Theorem 3.2 suggests that the upper bound in Theorem 3.1 is tight upto constant
factor in terms of variance error, and is also tight in terms of bias error except for the following
additional parts in the respective places:∥∥∏M−1

t=0 (I− γtG)(w0 −w∗)
∥∥2

IK
NeffγM

,
∥∥w0 −w∗

∥∥2 IJ
Meffγ0

,
∥∥w0 −w∗

∥∥2 IJ
Meffγ0

+GJc
.

In particular, the upper and lower bounds match ignoring constant factors provided that

∥w0 −w∗∥2G ≲ σ2,
∥∥∏M−1

t=0 (I− γtG)(w0 −w∗)
∥∥2
H

≲ σ2,

which hold in a statistically interesting regime where the signal-to-noise ratios, ∥w0 −w∗∥2G/σ2,
∥w0 −w∗∥2H/σ2, are bounded and G commutes with H.

Implication for Pretraining. If target data is unavailable, Theorems 3.1 and 3.2 imply the following
corollary for pretraining.
Corollary 3.3 (Learning with only source data). Suppose that Assumptions 1A and 2 hold. Let
wM+0 be the output of (SGD) with M > 100 source data and 0 target data. Suppose that γ := γ0 <
1/(4α tr(H)). Then it holds that

ExcessRisk(wM+0) ≲
∥∥∏M−1

t=0 (I− γtG)(w0 −w∗)
∥∥2
H
+
(
α∥w0 −w∗∥2 IJ

Meffγ
+GJc

+ σ2
)

D
pretrain
eff

Meff
,

where Dpretrain
eff := tr(HG−1

J ) + M2
effγ

2 · tr(HGJc) and J ⊂ N+ can be any index set. If in
addition Assumptions 1B and 2’ hold, then for the index set J defined in (2), it holds that

ExcessRisk(wM+0) ≳
∥∥∏M−1

t=0 (I− γtG)(w0 −w∗)
∥∥2
H
+

(
β∥w0 −w∗∥2GJc

+ σ2
)
· D

pretrain
eff

Meff
.

Corollary 3.3 sharply characterizes the generalization of pretraining method, and is tight upto constant
factors provided with a bounded signal-to-noise ratio, i.e., ∥w0 −w∗∥2G ≲ σ2. Corollary 3.3 can
be interpreted in a similar way as Theorem 3.1. Moreover, these sharp bounds for pretraining and
pretraining-finetuning enable us to study the effects of pretraining and finetuning thoroughly, which
we will do in Section 4.

Implication for Supervised Learning. As a bonus, we can also apply Theorems 3.1 and 3.2 in the
setting of supervised learning.
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Corollary 3.4 (Learning with only target data). Suppose that Assumptions 1A and 2 hold. Let w0+N

be the output of (SGD) with 0 source data and N > 100 target data. Suppose that γ := γM <
1/(4α(tr(G))). Then it holds that

ExcessRisk(w0+N ) ≲
∥∥∏N−1

t=0 (I− γtH)(w0 −w∗)
∥∥2
H
+
(
α
∥∥w0 −w∗

∥∥2
IK

Neffγ
+HKc

+ σ2
)

Deff

Neff
,

where Deff is as defined in (1) and K ⊂ N+ can be any index set. If in addition Assumptions 1B and
2’ hold, then for the index set K defined in (2), it holds that

ExcessRisk(w0+N ) ≳
∥∥∏N−1

t=0 (I− γtH)(w0 −w∗)
∥∥2
H
+

(
β∥w0 −w∗∥2HKc

+ σ2
)
· Deff

Neff
.

We remark that the upper bound in Corollary 3.4 improves the related bound in Wu et al. [2021] by a
logarithmic factor, and matches the lower bound upto constant factors given that ∥w0 −w∗∥2H ≲ σ2.

For a more detailed comparison between the bounds in Theorem 3.1, Corollaries 3.3 and 3.4, we refer
the reader to Table 1 in Appendix A.

4 Discussions

With the established bounds, we are ready to discuss the power and limitation of pretraining and
finetuning by comparing them to supervised learning.

The Power of Pretraining. For covariate shift problem, pretraining with infinite many source data
can learn the true model. But when there are only a finite number of source data, it is unclear how the
effect of pretraining compares to the effect of supervised learning (with finite many target data). Our
next result quantitatively address this question by comparing Corollary 3.3 with Corollary 3.4.
Theorem 4.1 (Pretraining vs. supervised learning). Suppose that Assumptions 1 and 2’ hold. Let
w0+Nsl be the output of (SGD) with optimally tuned initial stepsize, 0 source data and Nsl > 100
target data. Let wM+0 be the output of (SGD) with optimally tuned initial stepsize, M source data
and 0 target data. Let Meff := M/ log(M), Nsl

eff := Nsl/ log(Nsl). Suppose all SGD methods
are initialized from 0. Then for every covariate shift problem instance (w∗,H,G) such that H,G
commute, it holds that

ExcessRisk(wM+0) ≲ (1 + α∥w∗∥2G/σ2) · ExcessRisk(w0+Nsl)

provided that

Meff ≥ (Nsl
eff)

2 · 4∥HK∗∥G
αDsl

eff

,

where
K∗ := {k : λk ≥ 1/(Nsl

effγ
sl)}, Dsl

eff := |K∗|+ (Nsl
effγ

sl)2
∑
i/∈K∗

λ2
i ,

and γsl < 1/∥H∥2 refers to the optimal initial stepsize for supervised learning.

We now explain the implication of Theorem 4.1. First of all, it is of statistical interest to consider
a signal-to-noise ratio bounded from above, i.e., ∥w∗∥2G/σ2 ≲ 1. Note that Dsl

eff ≥ 1 when Nsl

is large. Moreover, recall that |K∗| ≤ Dsl
eff = o(Nsl

eff) when supervised learning can achieve a
vanishing excess risk. Finally, ∥HK∗∥G := ∥G− 1

2HK∗G− 1
2 ∥2 ≲ 1 can be satisfied if the top

|K∗| = o(Nsl
eff) eigenvalues subspace of H mostly falls into the top eigenvalues subspace of G.

Under these remarks, Theorem 4.1 suggests that: in the bounded signal-to-noise cases, pretraining
with O(N2) source data is no worse than supervised learning with N target data (ignoring constant
factors), for every covariate shift problem such that the top eigenvalues subspace of the target
covariance matrix aligns well with that of the source covariance matrix.

The Power of Pretraining-Finetuning. We next discuss the effect of pretraining-finetuning by
comparing Theorem 3.1 with Corollary 3.4.
Theorem 4.2 (Pretraining-finetuning vs. supervised learning). Suppose that Assumptions 1 and 2’
hold. Let w0+Nsl be the output of (SGD) with optimally tuned initial stepsize, 0 source data and
Nsl > 100 target data. Let wM+N be the output of (SGD) with optimally tuned initial stepsize,

7



M source data and N target data. Let Meff := M/ log(M), Neff := N/ log(N), Nsl
eff :=

Nsl/ log(Nsl). Suppose all SGD methods are initialized from 0. Then for every covariate shift
problem instance (w∗,H,G) such that H,G commute, it holds that

ExcessRisk(wM+N ) ≲ (1 + α∥w∗∥2G/σ2) · ExcessRisk(w0+Nsl)

provided that

Meff ≥ (Nsl
eff)

2 · 4∥HK†∥G
αDsl

eff

,

where

K† := {k : Nsl
eff log(N

sl
eff) tr(H)/(NeffD

sl
eff) > λk ≥ 1/(Nsl

effγ
sl)} ⊂ K∗,

and K∗, Dsl
eff, γsl are as defined in Theorem 4.1.

Theorem 4.2 can be interpreted in a similar way as Theorem 4.1. The only difference is that
Theorem 4.2 puts a milder condition regarding the alignment of H and G than Theorem 4.1. In
particular, Theorem 4.2 only requires the “middle” eigenvalues subspace of H mostly falls into the
top eigenvalues subspace of G. Moreover, the index set K† shrinks (hence ∥HK†∥G decreases) as
the number of target data for finetuning increases. This indicates that finetuning can help save the
amount of source data for pretraining.

The Limitation of Pretraining vs. the Power of Finetuning. The following example further
demonstrates the limitation of pretraining and the power of finetuning.

Example 4.3 (Pretraining-finetuning vs. pretraining vs. supervised learning). Let ϵ > 0 be a
sufficiently small constant. Consider a covariate shift problem instance given by

w∗ = (1, 1, 0, 0, . . . )⊤, σ2 = 1,

H = diag(1, ϵ0.5, . . . , ϵ0.5︸ ︷︷ ︸
2ϵ−0.5 copies

, 0, 0, . . . ), G = diag(ϵ2, 1, 0, 0, . . . ).

One may verify that tr(H) ≂ tr(G) ≂ 1 and that ∥w∗∥2H ≂ ∥w∗∥2G ≂ σ2 ≂ 1. The following holds
for the (SGD) output:

• supervised learning: for ExcessRisk(w0+N ) < ϵ, it is necessary to have that N ≳ ϵ−1.5;

• pretraining: for ExcessRisk(wM+0) < ϵ, it is necessary to have that M ≳ ϵ−2;

• pretrain-finetuning: for ExcessRisk(wM+N ) < ϵ, it suffices to set γ0 ≂ 1, γM ≂ ϵ, and
M ≂ ϵ−1 log(ϵ−1), N ≂ ϵ−1 log2(ϵ−1).

It is clear that whenever target data are available, the optimally tuned pretraining-finetuning method
is always no worse than the optiamlly tuned pretraining method, as one can simply set the finetuning
stepsize to be small (or zero) so that the former reduces to the latter. Moreover, Example 4.3
shows a covariate shift problem instance such that pretraining-finetuning can save polynomially
amount of data compared to pretraining (or supervised learning). This example demonstrates the
limitation of pretraining and the benefits of finetuning. As a final remark for Example 4.3, direct
computation implies that K∗ = {1, 2, . . . , 2ϵ−0.5 + 1} and K† = {2, 3, . . . , 2ϵ−0.5 + 1}, therefore
∥HK∗∥G = ϵ−2 ≫ ∥HK†∥G = ϵ0.5, so the implication of Example 4.3 is consistent with Theorems
4.1 and 4.2.

Numerical Simulations. We perform experiments on synthetic data to verify our theory. The code
and data for our experiments can be found on Github 3. Recall that the effectiveness of pretraining
and finetuning depends on the alignment between source and target covariance matrices, therefore we
design experiments where the source and target covariance matrices are aligned at different levels. In
particular, we consider commutable matrices G and H with eigenvalues {µi}i≥1 = {i−2}i≥1 and
(λi)i≥1 = (i−1.5)i≥1, respectively. To simulate different alignments between G and H, we first sort
them so that both of their eigenvalues are in descending order, and then reverse the top-k eigenvalues

3https://github.com/uclaml/pretrain-finetune-SGD
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(c) Problem P(k = 20)

Figure 1: A generalization comparison between pretraining, pretraining-finetuning, and supervised learning.
For each point in the curves, its x-axis represents the sample size and its y-axis represents the excess risk
achieved by an algorithm with the corresponding amount of samples under the optimally tuned stepsizes. For the
pretraining curves, the sample size refers to the amount of source data and the sample size appeared in the right
half of the plots should be added by 5, 000. The finetuning curves are generated from an initial model pretrained
with 5, 000 source data and its sample size refers to the amount of target data. For supervised learning curves,
the sample size refers to the amount of target data. The problem instances P(k = 5), P(k = 10), and P(k = 20)
are designed according to (4). The problem dimension is 200. The results are averaged over 20 independent
repeats.

of G. In mathematics, for a given k > 0, the problem instance P(k) := (w∗,H,G, σ2) is designed
as follows:

H = diag

(
1,

1

21.5
, . . . ,

1

k1.5
,

1

(k + 1)1.5
, . . .

)
, G = diag

(
1

k2
, . . . ,

1

22
, 1,

1

(k + 1)2
, . . .

)
,

w∗ =
(
1, 1, . . . , 1︸ ︷︷ ︸

k copies

, 1/(k + 1), 1/(k + 2), . . .
)⊤

, σ2 = 1.
(4)

One can verify that tr(H) ≂ tr(G) ≂ 1 and that ∥w∗∥2H ≂ ∥w∗∥2G ≂ σ2 ≂ 1. Clearly, a larger
k implies a worse alignment between G and H. We then test three problem instances P(k = 5),
P(k = 10), and P(k = 20), and compare the excess risk achieved by pretraining, pretraining-
finetuning, and supervised learning. The results are presented in Figure 1, which lead to the following
informative observations:

• For problem P(k = 5) where H and G are aligned very well, pretraining (without finetuning!) can
already match the generalization performance of supervised learning. This verifies the power of
pretraining for tackling transfer learning with mildly shifted covariate.

• For problem P(k = 10) where H and G are moderately aligned, there is a significant gap between
the risk of pretraining and that of supervised learning. Yet, the gap is closed when the pretrained
model is finetuned with scarce target data. This demonstrates the limitation of pretraining and the
power of finetuning for tackling transfer learning with moderate shifted covariate.

• For problem P(k = 20) where H and G are poorly aligned, the risk of pretraining can hardly
compete with that of supervised learning. Moreover, for finetuning to match the performance of
supervised learning, it requires nearly the same amount of target data as that used by supervised
learning. This reveals the limitation of pretraining and finetuning for tackling transfer learning with
severely shifted covariate.

5 Concluding Remarks

We consider linear regression under covariate shift, and a SGD estimator that is firstly trained with
source domain data and then finetuned with target domain data. We derive sharp upper and lower
bounds for the estimator’s target domain excess risk. Based on the derived bounds, we show that
for a large class of covariate shift problems, pretraining with O(N2) source data can match the
performance of supervised learning with N target data. Moreover, we show that finetuning with
scarce target data can significantly reduce the amount of source data required by pretraining. Finally,
when applied to supervised linear regression, our results improve the upper bound in [Wu et al., 2021]
by a logarithmic factor, and close its gap with the lower bound (ignoring constant factors) when the
signal-to-noise ratio is bounded.

Several future directions are worth discussing.
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Model Shift. An immediate follow-up problem is to extend our results from the covariate shift setting
to more general transfer learning settings, e.g., with both covariate shift and model shift, where the
true parameter w∗ could also be different for source and target distributions. Under model shift,
the power of pretraining with source data is limited, and we expect that finetuning with target data
becomes even more important.

Ridge Regression. For infinite-dimensional least-squares in the supervised learning context, instance-
wisely tight bounds for both ridge regression and SGD have been established by Bartlett et al. [2020],
Tsigler and Bartlett [2020], Zou et al. [2021b], Wu et al. [2021]. For infinite-dimensional least-
squares under covariate shift, this paper presents nearly instance-wisely tight bounds for SGD. As
ridge regression is popular in covariate shift literature (see Ma et al. [2022] and references herein),
an interesting future direction is studying the instance-wisely tight bounds for ridge regression in
the setting of infinite-dimensional least-squares under covariate shift — a tight bias analysis is of
particular interest.

Unlabeled Data. In this work we assume the provided source and target data are both labeled.
However in many practical scenarios, additional unlabeled source and target data are also available.
In this case our results cannot be directly applied as it remains unclear how to utilize unlabeled data
with SGD. An important future direction is to extend our framework to incorporate with unlabeled
source and target data.
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A A Comparison of Pretraining-Finetuning, Pretraining and Supervised
Learning

In Table 1, we make a detailed comparison of the bounds for (1) pretraining-finetuning with M
source data and N target data, (2) pretraining with M source data, and (3) supervised learning with
N target data. The presented bounds are from Theorem 3.1, Corollaries 3.3 and 3.4. For simplicity,
we assume that all SGD iterates are initialized from w0 = 0, and that the signal-to-noise ratios are
bounded from above.

Table 1: A comparison of pretraining-finetuning, pretraining and supervised learning.
Pretraining-Finetuning Pretraining Supervised Learning

initial
stepsizes γ0, γM γ0 γ0(= γM )

number of
data M +N M + 0 0 +N

effective
number of
source data

(Meff)

M

log(M)

M

log(M)
0

effective
number of
target data

(Neff)

N

log(N)
0

N

log(N)

source
effective

dimension
(Dsource

eff )

tr
(N−1∏

t=0

(I− γM+tH)2H·

(
G−1

J +M2
effγ

2
0GJc

)) tr(HG−1
J )+

M2
effγ

2
0 tr(HGJc)

0

target
effective

dimension
(Dtarget

eff )

|K|+N2
effγ

2
M

∑
i/∈K λ2

i 0 |K|+N2
effγ

2
0

∑
i/∈K λ2

i

learnable
indexes J = {j : µj ≥ 1/(γ0Meff)}, K = {k : λk ≥ 1/(γMNeff)}

Signal to
noise ratio

(SNR)

∥w∗∥2G + ∥
∏M−1

t=0 (I− γtG)w∗∥2H
σ2

∥w∗∥2G
σ2

∥w∗∥2H
σ2

effective
bias error
(biaseff)

∥∥∥M+N−1∏
t=M

(I− γtH)
M−1∏
t=0

(I− γtG)w∗
∥∥∥2

H

∥∥∥N−1∏
t=0

(I− γtG)w∗
∥∥∥2

H

∥∥∥N−1∏
t=0

(I− γtH)w∗
∥∥∥2

H

unified
risk bound biaseff + (1 + σ2) · SNR ·

(
Dsource

eff

Meff

+
Dtarget

eff

Neff

)

B Preliminaries

Notations. Define the following operators on symmetric matrices:

I := I⊗ I,

MG := Esource[x⊗ x⊗ x⊗ x], MH := Etarget[x⊗ x⊗ x⊗ x],
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M̃G := G⊗G, M̃H := H⊗H,

TG(γ) := G⊗ I+ I⊗G− γMG, TH(γ) := H⊗ I+ I⊗H− γMH,

T̃G(γ) := G⊗ I+ I⊗G− γG⊗G, T̃H(γ) := H⊗ I+ I⊗H− γH⊗H

For the linear operators we have the following technical lemma from Zou et al. [2021b].

Lemma B.1 (Lemma B.1, Zou et al. [2021b]). An operator O defined on symmetric matrices is
called PSD mapping, if A ⪰ 0 implies O ◦A ⪰ 0. Then we have

1. MG, MH, M̃G and M̃H are all PSD mappings.

2. I − γTG(γ), I − γTH(γ), I − γT̃G(γ) and I − γT̃H(γ) are all PSD mappings.

3. MG − M̃G, MH − M̃H, T̃G − TG and T̃H − TH are all PSD mappings.

4. If 0 < γ < 1/∥G∥2, then T̃ −1
G exists, and is a PSD mapping. Similarly, if 0 < γ < 1/∥H∥2, then

T̃ −1
H exists, and is a PSD mapping.

5. If 0 < γ < 1/(α tr(G)), then T −1
G ◦A exists for PSD matrix A, and T −1

G is a PSD mapping.
Similarly, if 0 < γ < 1/(α tr(H)), then T −1

H ◦A exists for PSD matrix A, and T −1
H is a PSD

mapping.

6. For every γ > 0 and every PSD matrices A and B, we have

⟨A, (I − γTG(γ)) ◦B
〉
=

〈
(I − γTG(γ)) ◦A, B⟩,

⟨A, (I − γTH(γ)) ◦B
〉
=

〈
(I − γTH(γ)) ◦A, B⟩.

Proof. Proof to the first five claims can be found in Lemma B.1 in Zou et al. [2021b]. The last claim
is by definition.

Define

ΣG := Esource[(y − ⟨w∗,x⟩)2xx⊤], ΣH := Esource[(y − ⟨w∗,x⟩)2x.x⊤]

Then for the SGD iterates, we can consider their associated bias iterates and variance iterates:
B0 = (w0 −w∗)(w0 −w∗)⊤;

Bt = (I − γt−1TG(γt−1)) ◦Bt−1, t = 1, . . . ,M ;

BM+t = (I − γM+t−1TH(γM+t−1)) ◦BM+t−1, t = 1, . . . , N ;

(5)


C0 = 0;

Ct = (I − γt−1TG(γt−1)) ◦Ct−1 + γ2
tΣG, t = 1, . . . ,M ;

CM+t = (I − γM+t−1TH(γM+t−1)) ◦CM+t−1 + γ2
M+t−1ΣH, t = 1, . . . , N.

(6)

Lemma B.2 (Bias-variance decomposition). Suppose that Assumption 2 holds. Then we have

E[ExcessRisk(wM+N )] ≤ ⟨H,BM+N ⟩+ ⟨H,CM+N ⟩.

Proof. This follows from Lemma 2 in Wu et al. [2021].

Lemma B.3 (Bias-variance decomposition, lower bound). Suppose that Assumption 2’ holds. Then
we have

E[ExcessRisk(wM+N )] =
1

2
⟨H,BM+N ⟩+ 1

2
⟨H,CM+N ⟩.

Proof. This follows from Lemma 3 in Wu et al. [2021].
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C Variance Error Analysis

C.1 Upper Bounds

The following Assumption 1’ is implied by Assumption 1A by setting R2 = max{α tr(H), α tr(G)}.
In this part we will work with the weaker Assumption 1’.
Assumption 1’ (Fourth moment condition, relaxed version). There exists a constant R > 0 such that

Esource[xx
⊤xx⊤] ⪯ R2G, Etarget[xx

⊤xx⊤] ⪯ R2H.

Lemma C.1 (Crude bound on the variance iterates). Suppose that Assumptions 1’ and 2 hold.
Suppose that max{γ0, γM} ≤ γ < 1/R2. Then it holds that

Ct ≤
γσ2

1− γR2
I, for every t = 0, 1, . . . ,M +N.

Proof. The proof idea has appeared in Jain et al. [2017a], Ge et al. [2019], Wu et al. [2021]. We
prove the lemma by induction. For t = 0, it is clear that C0 = 0 ⪯ γσ2

1−γR2 I. Now suppose that

Ct−1 ≤ γσ2

1−γR2 I, and consider Ct according to (6). If t ≤ M , then according to (6) we have

Ct =
(
I − γt−1TG(γt−1)

)
◦Ct−1 + γ2

t−1ΣG

⪯ γσ2

1− γR2
·
(
I − γt−1TG(γt−1)

)
◦ I+ γ2

t−1σ
2 ·G (7)

⪯ γσ2

1− γR2
· (I− 2γt−1G+ γ2

t−1 ·R2 ·G) + γ2
t−1σ

2 ·G

=
γσ2

1− γR2
· I− (2γt−1γ − γ2

t−1) ·
σ2

1− γR2
·G

⪯ γσ2

1− γR2
· I.

If t > M , similarly according to (6) we have

Ct =
(
I − γt−1TH(γt−1)

)
◦Ct−1 + γ2

t−1ΣH

⪯ γσ2

1− γR2
·
(
I − γt−1TH(γt−1)

)
◦ I+ γ2

t−1σ
2 ·H (8)

⪯ γσ2

1− γR2
· (I− 2γt−1H+ γ2

t−1 ·R2 ·H) + γ2
t−1σ

2 ·H

=
γσ2

1− γR2
· I− (2γt−1γ − γ2

t−1) ·
σ2

1− γR2
H

⪯ γσ2

1− γR2
· I.

Putting everything together we complete the induction.

Lemma C.2 (Upper bounds on the variance iterates). Suppose that Assumptions 1’ and 2 hold.
Suppose that max{γ0, γM} ≤ γ < 1/R2. Let Meff := M/ log(M), Neff := N/ log(N).

• For every index set J ⊂ N+, it holds that

CM ⪯ 8σ2

1− γR2
·
( 1

Meff

·G−1
J +Meffγ

2
0 ·GJc

)
.

• For every index set K ⊂ N+, it holds that

N−1∑
t=0

γ2
M+t

N−1∏
i=t+1

(I− γM+iH)2H ⪯ 8 ·
(

1

Neff

H−1
K +Neffγ

2
M ·HKc

)
.
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Proof. These are from the proof of Theorem 5 in Wu et al. [2021].

Theorem C.1 (Variance error upper bound). Suppose that Assumptions 1’ and 2 hold. Suppose that
max{γ0, γM} ≤ γ < 1/R2. Let Meff := M/ log(M), Neff := N/ log(N). Then it holds that

⟨H, CM+N ⟩ ≤ 8σ2

1− γR2
·
(
Dfinetune

eff

Meff

+
Deff

Neff

)
,

where

Deff := tr(HH−1
K ) +N2

effγ
2
M · tr(HHKc),

Dfinetune
eff := tr

(N−1∏
t=0

(I− γM+tH)2H ·
(
G−1

J +M2
effγ

2
0 ·GJc

))
,

and K, J can be arbitrary index sets.

Proof of Theorem C.1. The core idea is to relate CM+N to CM via (6). For every t = 0, . . . , N − 1,
according to (6) we have

CM+t+1 =
(
I − γM+tTH(γM+t)

)
◦CM+t + γ2

M+tΣH

⪯
(
I − γM+tT̃H(γM+t)

)
◦CM+t + γ2

M+t · MH ◦CM+t + γ2
M+tσ

2 ·H

⪯
(
I − γM+tT̃H(γM+t)

)
◦CM+t +

γ2
M+tR

2 · γσ2

1− γR2
·H+ γ2

M+tσ
2 ·H (by Lemma C.1)

=
(
I − γM+tT̃H(γM+t)

)
◦CM+t +

γ2
M+tσ

2

1− γR2
·H.

Solving the above recursion from t = 0 to t = N − 1 we obtain

CM+N ⪯
N−1∏
t=0

(
I − γM+tT̃H(γM+t)

)
◦CM (9)

+
σ2

1− γR2
·
N−1∑
t=0

γ2
M+t

N−1∏
i=t+1

(
I − γM+iT̃H(γM+i)

)
◦H

=

N−1∏
t=0

(
I − γM+tT̃H(γM+t)

)
◦CM +

σ2

1− γR2
·
N−1∑
t=0

γ2
M+t

N−1∏
i=t+1

(I− γM+iH)2H.

Therefore the variance error is

⟨H, CM+N ⟩

≤
〈
H,

N−1∏
t=0

(
I − γM+tT̃H(γM+t)

)
◦CM

〉
+

σ2

1− γR2

〈
H,

N−1∑
t=0

γ2
M+t

N−1∏
i=t+1

(I− γM+iH)2H
〉

=
〈N−1∏

t=0

(
I − γM+tT̃H(γM+t)

)
◦H, CM

〉
+

σ2

1− γR2

〈
H,

N−1∑
t=0

γ2
M+t

N−1∏
i=t+1

(I− γM+iH)2H
〉

=
〈N−1∏

t=0

(I− γM+tH)2H, CM

〉
+

σ2

1− γR2

〈
H,

N−1∑
t=0

γ2
M+t

N−1∏
i=t+1

(I− γM+iH)2H
〉
.

Finally, applying Lemma C.2 completes the proof.

C.2 Lower Bounds

Lemma C.3 (Lower bounds on the variance iterates). Suppose that Assumptions 1B and 2’ hold.
Suppose that γ0 < 1/∥G∥2, γM < 1/∥H∥2. Let Meff := M/ log(M), Neff := N/ log(N).

• For J := {j ∈ N+ : µj ≥ 1/(Meffγ0)}, it holds that

CM ⪰ σ2

400
·
( 1

Meff

·G−1
J +Meffγ

2
0 ·GJc

)
.
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• For K := {k ∈ N+ : λk ≥ 1/(NeffγM )}, it holds that
N−1∑
t=0

γ2
M+t

N−1∏
i=t+1

(I− γM+iH)2H ⪰ 1

400
·
(

1

Neff

H−1
K +Neffγ

2
M ·HKc

)
.

Proof. There are from the proof of Theorem 7 in Wu et al. [2021].

Theorem C.2 (Variance error lower bound ). Suppose that Assumptions 1B and 2’ hold. Suppose that
γ0 < 1/∥G∥2, γM < 1/∥H∥2. Let Meff := M/ log(M), Neff := N/ log(N). The it holds that

⟨H, CM+N ⟩ ≥ σ2

400
·
(
Dfinetune

eff

Meff

+
Deff

Neff

)
,

where

Deff := tr(HH−1
K ) +N2

effγ
2
M · tr(HHKc),

Dfinetune
eff := tr

(N−1∏
t=0

(I− γM+tH)2H ·
(
G−1

J +M2
effγ

2
0 ·GJc

))
,

and

K := {k ∈ N+ : λk ≥ 1/(NeffγM )}, J := {j ∈ N+ : µj ≥ 1/(Meffγ0)}.

Proof of Theorem C.2. The proof idea is similar to that of Theorem C.1. For every t = 0, . . . , N − 1,
it holds that

CM+t+1 =
(
I − γM+tTH(γM+t)

)
◦CM+t + γ2

M+tσ
2 ·H

⪰
(
I − γM+tT̃H(γM+t)

)
◦CM+t + γ2

M+tσ
2 ·H.

Solving the above recursion from t = 0 to t = N − 1 we obtain

CM+N ⪰
N−1∏
t=0

(
I − γM+tT̃H(γM+t)

)
◦CM + σ2 ·

N−1∑
t=0

γ2
M+t

N−1∏
i=t+1

(
I − γM+iT̃H(γM+i)

)
◦H

=

N−1∏
t=0

(
I − γM+tT̃H(γM+t)

)
◦CM + σ2 ·

N−1∑
t=0

γ2
M+t

N−1∏
i=t+1

(I− γM+iH)2H.

Therefore the variance error is

⟨H, CM+N ⟩

≥
〈
H,

N−1∏
t=0

(
I − γM+tT̃H(γM+t)

)
◦CM

〉
+ σ2

〈
H,

N−1∑
t=0

γ2
M+t

N−1∏
i=t+1

(I− γM+iH)2H
〉

=
〈N−1∏

t=0

(
I − γM+tT̃H(γM+t)

)
◦H, CM

〉
+ σ2

〈
H,

N−1∑
t=0

γ2
M+t

N−1∏
i=t+1

(I− γM+iH)2H
〉

=
〈N−1∏

t=0

(I− γM+tH)2H, CM

〉
+ σ2

〈
H,

N−1∑
t=0

γ2
M+t

N−1∏
i=t+1

(I− γM+iH)2H
〉
.

Finally, applying Lemma C.3 completes the proof.

D Bias Error Analysis

D.1 Upper Bounds

Lemma D.1 (Bounds on the summation of bias iterates). Suppose that Assumption 1A holds. Suppose
that γ < 1/(α tr(G)). Then for every n ≥ 1, it holds that

1

2γ
·
(
I− (I− γG)2n

)
⪯

n−1∑
t=0

(
I − γ · TG(γ)

)t ◦G ⪯ 1

γ
·
(
I− (I− γG)2n

)
.
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Proof. By definition and Assumption 1A, we have

TG(γ) ◦ I = 2G− γ · MG ◦ I
{
⪯ 2G;

⪰ G.

Notice that T −1
G (γ) is a PSD mapping (when operates on PSD matrices), therefore

1

2
· I ⪯ T −1

G (γ) ◦G ⪯ I.

Similarly, T̃ −1
G (γ) is also a PSD mapping and that we have

T̃G(γ) ◦ I = 2G− γ ·G2

{
⪯ 2G;

⪰ G,

therefore
1

2
· I ⪯ T̃ −1

G (γ) ◦G ⪯ I.

With the above, we prove the upper bound as follows:
n−1∑
t=0

(
I − γ · TG(γ)

)t ◦G =
1

γ
·
(
I −

(
I − γTG(γ)

)n) ◦ T −1
G (γ) ◦G

⪯ 1

γ
·
(
I −

(
I − γT̃G(γ)

)n) ◦ T −1
G (γ) ◦G (since T̃ − T is PSD)

⪯ 1

γ
·
(
I −

(
I − γT̃G(γ)

)n) ◦ I (since T −1
G (γ) ◦G ⪯ I )

=
1

γ
·
(
I− (I− γG)2n

)
.

The lower bound is because
n−1∑
t=0

(
I − γ · TG(γ)

)t ◦G ⪰
n−1∑
t=0

(
I − γ · T̃G(γ)

)t ◦G (since T̃ − T is PSD )

=
1

γ
·
(
I −

(
I − γT̃G(γ)

)T) ◦ T̃ −1
G (γ) ◦G

⪰ 1

2γ
·
(
I −

(
I − γT̃G(γ)

)T) ◦ I (since T̃ −1
G (γ) ◦G ⪰ 0.5I)

=
1

2γ
·
(
I− (I− γG)2n

)
.

Lemma D.2 (Crude bounds on the bias iterates). Suppose that Assumption 1A holds. Suppose that
γ < 1/(2α tr(G)). Then the following holds for every n ≥ 0:

(
I − γ · TG(γ)

)n ◦G ⪯

{
(1 + αγ tr(G)) ·G,

1
1−2αγ tr(G) ·

1
max{n,1}γ · I.

In particular, the following holds for every n ≥ 1 and every index set J ⊂ N+:(
I − γ · TG(γ)

)n ◦G ⪯ 1

1− 2αγ tr(G)
·
( IJ
nγ

+GJc
)
.

Proof. Notice the following decomposition:(
I − γTG(γ)

)n ◦G

=
(
I − γT̃G(γ)

)n ◦G+ γ2
n−1∑
t=0

(
I − γT̃G(γ)

)n−1−t ◦ (MG − M̃G) ◦
(
I − γTG(γ)

)t ◦G
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⪯ (I− γG)2nG+ αγ2
n−1∑
t=0

(
I − γT̃G(γ)

)n−1−t ◦G ·
〈
G,

(
I − γTG(γ)

)t ◦G〉
= (I− γG)2nG+ αγ2

n−1∑
t=0

(
I− γG

)2(n−1−t)
G ·

〈
G,

(
I − γTG(γ)

)t ◦G〉
. (10)

Based on (10) we show the first conclusion as follows:

(
I − γTG(γ)

)n ◦G ⪯ G+ αγ2
n−1∑
t=0

G ·
〈
G,

(
I − γTG(γ)

)t ◦G〉
⪯ G+ αγ2G ·

〈
G,

1

γ

(
I− (I− γG)2n

)〉
(by Lemma D.1)

⪯ G+ αγ2
〈
G,

1

γ
I
〉
=

(
1 + αγ tr(G)

)
·G.

We now prove the second conclusion by induction. For n = 1, it holds because of Lemma D.1:

(
I − γTG(γ)

)
◦G ⪯

1∑
t=0

(
I − γTG(γ)

)t ◦G ⪯ 1

γ
· I.

Now consider n ≥ 2 based on (10). We bound the second term in (10) separately for
∑n/2−1

t=0 and∑n−1
t=n/2. For the first part,

n/2−1∑
t=0

(
I− γG

)2(n−1−t)
G ·

〈
G,

(
I − γTG(γ)

)t ◦G〉
⪯

(
I− γG

)n
G ·

〈
G,

n/2−1∑
t=0

(
I − γTG(γ)

)t ◦G〉
⪯

(
I− γG

)n
G ·

〈
G,

1

γ
I
〉

(by Lemma D.1)

⪯ tr(G)

γ
· (I− γG)nG ⪯ tr(G)

γ
· 1

nγ
· I. (11)

For the second part,
n−1∑

t=n/2

(
I− γG

)2(n−1−t)
G ·

〈
G,

(
I − γTG(γ)

)t ◦G〉
⪯

n−1∑
t=n/2

(
I− γG

)2(n−1−t)
G ·

〈
G,

1

1− 2αγ tr(G)
· 2

nγ
· I
〉

(by induction hypothesis)

⪯ tr(G)

1− 2αγ tr(G)
· 2

nγ
·

n−1∑
t=n/2

(
I− γG

)(n−1−t)
G

=
tr(G)

1− 2αγ tr(G)
· 2

nγ
· 1
γ
·
(
I− (I− γG)n/2

)
⪯ tr(G)

1− 2αγ tr(G)
· 2

nγ
· 1
γ
· I. (12)

Inserting (11) and (12) into (10), and apply that (I− γG)2nG ⪯ 1
2nγ · I, we obtain that(

I − γTG(γ)
)n ◦G ⪯ 1

2nγ
· I+ α tr(G)

n
· I+ α tr(G)

1− 2αγ tr(G)
· 2
n
· I

=
(1
2
+ αγ tr(G) +

2αγ tr(G)

1− 2αγ tr(G)

)
· 1

nγ
· I
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⪯ 1

1− 2αγ tr(G)
· 1

nγ
· I.

We have completed the induction.

Lemma D.3 (Bounds on the summation of bias iterates). Suppose that Assumption 1A holds. Suppose
that γ0 < 1/(2α tr(G)). Then the following holds for every index set J ⊂ N+:

Meff∑
t=1

⟨G, Bt−1⟩ ≤
1

γ0
· ⟨IJ + 2Meffγ0GJc , B0⟩.

Proof. Notice that

Meff∑
t=1

⟨G, Bt−1⟩ =
Meff∑
t=1

〈
G,

(
I − γ0TG(γ0)

)t−1 ◦B0

〉
=

〈Meff∑
t=1

(
I − γ0TG(γ0)

)t−1 ◦G, B0

〉
.

Then we apply Lemma D.1 to obtain that

Meff∑
t=1

(
I − γ0 · TG(γ0)

)t−1 ◦G ⪯ 1

γ0
·
(
I− (I− γ0G)2Meff

)
⪯ 1

γ0
·
(
IJ + 2Meffγ0GJc

)
.

This completes the proof.

Lemma D.4 (Crude bounds on the bias iterates). Suppose that Assumption 1A holds. Suppose that
γ0 < 1/(2α tr(G)). Then the following holds for every index set J ⊂ N+ and t ≥ Meff:

⟨G,Bt⟩ ≤
e

1− 2α tr(G)γ0
·
〈 1

Meffγ0
· I0:j +Gj:∞, B0

〉
.

Proof. Let L(t) = ⌊t log(M)/M⌋ = ⌊t/Meff⌋, then L(t) ≥ 1 as t ≥ Meff. Notice that

⟨G,Bt⟩ :=
〈
G,

t−1∏
t=0

(
I − γt · TG(γt)

)
◦B0

〉
=

〈
G,

(
I − γ0

2L(t)
· TG

( γ0
2L(t)

))t−L(t) log(M)

◦
L(t)−1∏
ℓ=0

(
I − γ0

2ℓ
· TG

(γ0
2ℓ

))Meff

◦B0

〉
=

〈 0∏
ℓ=L(t)−1

(
I − γ0

2ℓ
· TG

(γ0
2ℓ

))Meff

◦
(
I − γ0

2L(t)
· TG

( γ0
2L(t)

))t−L(t) log(M)

◦G, B0

〉
.

We then recursively use Lemma D.2 to obtain that

0∏
ℓ=L(t)−1

(
I − γ0

2ℓ
· TG

(γ0
2ℓ

))Meff

◦
(
I − γ0

2L(t)
· TG

( γ0
2L(t)

))t−L(t) log(M)

◦G

⪯
(
1 +

γ0
2L(t)

· α tr(G)
)
·

0∏
ℓ=L(t)−1

(
I − γ0

2ℓ
· TG

(γ0
2ℓ

))Meff

◦G

⪯
L(t)∏
ℓ=1

(
1 +

γ0
2ℓ

· α tr(G)
)
·
(
I − γ0 · TG(γ0)

)Meff ◦G

⪯ eα tr(G)
∑L(t)

ℓ=1 γ0/2
ℓ

·
(
I − γ0 · TG(γ0)

)Meff ◦G

⪯ eα tr(G)γ0 ·
(
I − γ0 · TG(γ0)

)Meff ◦G

⪯ e ·
(
I − γ0 · TG(γ0)

)Meff ◦G ⪯ e

1− 2α tr(G)γ0
·
( 1

Meffγ0
· IJ +GJc

)
.

Combining everything we complete the proof.
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Lemma D.5 (Upper bounds for the bias iterates). Suppose that Assumption 1A holds. Suppose that
γ0 < 1/(2α tr(G)). Let Meff := M/ log(M). Then the following holds for every index set J ⊂ N+:

BM ⪯
M∏
t=1

(I− γtG) ·B0 ·
M∏
t=1

(I− γtG)

+
12eα

1− 2α tr(G)γ0
·
〈 IJ
Meffγ0

+GJc , B0

〉
·
G−1

J +M2
effγ

2
0 ·GJc

Meff

.

Proof. We begin with the following inequality:

Bt+1 =
(
I − γtT̃G(γt)

)
◦Bt + γ2

t · (MG − M̃G) ◦Bt

⪯
(
I − γtT̃G(γt)

)
◦Bt + αγ2

t ·G · ⟨G, Bt⟩,
which implies that

BM ⪯
M−1∏
t=0

(
I − γtT̃G(γt)

)
◦B0 + α ·

M−1∑
t=0

γ2
t ·

M−1∏
i=t+1

(
I − γiT̃G(γi)

)
◦G · ⟨G, Bt⟩

=

M−1∏
t=0

(I − γtT̃G(γt)) ◦B0 + α ·
M−1∑
t=0

γ2
t ·

M∏
i=t+1

(I− γiG)2G · ⟨G, Bt⟩. (13)

We next bound the second term in (13) separately for
∑Meff−1

t=0 (·) and
∑M−1

t=Meff
(·). For the first part,

Meff−1∑
t=0

γ2
t ·

M∏
i=t+1

(I− γiG)2G · ⟨G, Bt⟩ = γ2
0 ·

Meff−1∑
t=0

M∏
i=t+1

(I− γiG)2G · ⟨G, Bt⟩

≤ γ2
0 ·

Meff−1∑
t=0

2Meff−1∏
i=Meff

(I− γiG)2G · ⟨G, Bt⟩ = γ2
0 ·

(
I− γ0

2
G
)2Meff

G ·
Meff−1∑
t=0

⟨G, Bt⟩

≤ γ0 ·
(
I− γ0

2
G
)2Meff

G · ⟨IJ + 2Meffγ0GJc , B0⟩ (by Lemma D.3)

≤ 8

M2
effγ0

·
(
G−1

J +M2
effγ

2
0GJc

)
· ⟨IJ +Meffγ0GJc , B0⟩, (14)

where in the last inequality we use that(
I− γ0

2
G
)2Meff

⪯
( 2

Meffγ0
G−1

J + IJc
)2

⪯ 4 ·
( 1

M2
effγ

2
0

G−2
J + IJc

)
.

For the second part, we apply Lemma D.4 to obtain that
M−1∑
t=Meff

γ2
t ·

M∏
i=t+1

(I− γiG)2G · ⟨G, Bt⟩

≤ e

1− 2α tr(G)γ0
·
〈 1

Meffγ0
· IJ +GJc , B0

〉
·

M−1∑
t=Meff

γ2
t ·

M∏
i=t+1

(I− γiG)2G

≤ 8e

1− 2α tr(G)γ0
·
〈 1

Meffγ0
· IJ +GJc , B0

〉
·
( 1

Meff

G−1
J +Meffγ

2
0 ·GJc

)
, (15)

where in the last inequality we use Lemma C.2 (by setting H to G).

Finally, inserting (14) and (15) into (13) completes the proof.

Theorem D.1 (Bias error upper bound). Suppose that Assumption 1A holds. Suppose that γ0 <
min{1/(4α tr(G)), 1/(α tr(H))}, γM < 1/(4α tr(H)). Let Meff := M/ log(M), Neff :=
N/ log(N). Then it holds that

⟨H,BM+N ⟩ ≤
∥∥∥M+N−1∏

t=M

(I− γtH)

M−1∏
t=0

(I− γtG)(w0 −w∗)
∥∥∥2
H
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+ 24eα ·
∥∥w0 −w∗∥∥2 IJ

Meffγ0
+GJc

· D
finetune
eff

Meff

+ 576e2α ·
(∥∥∥M−1∏

t=0

(I− γtG)(w0 −w∗)
∥∥∥2

IK
NeffγM

+HKc

+
∥∥w0 −w∗∥∥2 IJ

Meffγ0
+GJc

)
· Deff

Neff

,

where

Deff := tr(HH−1
K ) +N2

effγ
2
M · tr(HHKc),

Dfinetune
eff := tr

(N−1∏
t=0

(I− γM+tH)2H ·
(
G−1

J +M2
effγ

2
0 ·GJc

))
,

and K, J can be arbitrary index sets.

Proof. We first apply Lemma D.5 by setting B0 to BM , γ0 to γM , M to N and G to H, so that we
have

BM+N ⪯
N−1∏
t=0

(I− γM+tH)BM

N−1∏
t=0

(I− γM+tH)

+ 24eα ·
〈 IK
NeffγM

+HKc , BM

〉
·
H−1

K +N2
effγ

2
M ·HKc

Neff

.

Taking inner product with H we obtain

⟨H, BM+N ⟩ ⪯
〈
H,

N−1∏
t=0

(I− γM+tH)BM

N−1∏
t=0

(I− γM+tH)
〉

+ 24eα ·
〈 IK
NeffγM

+HKc , BM

〉
· Deff

Neff

=
〈N−1∏

t=0

(I− γM+tH)2H, BM

〉
++24eα ·

〈 IK
NeffγM

+HKc , BM

〉
· Deff

Neff

.

Now applying the upper bound for BM in Lemma D.5, we obtain

⟨H, BM+N ⟩

⪯
〈N−1∏

t=0

(I− γM+tH)2H,

M−1∏
t=0

(I− γtG)B0

M∏
t=1

(I− γtG)
〉

︸ ︷︷ ︸
(♠)

+ 24eα ·
〈 IJ
Meffγ0

+GJc , B0

〉
︸ ︷︷ ︸

(♡)

·D
finetune
eff

Meff

+ 24eα ·
〈 IK
NeffγM

+HKc ,

M−1∏
t=0

(I− γtG)B0

M∏
t=1

(I− γtG)
〉

︸ ︷︷ ︸
(♢)

·Deff

Neff

+ 576e2α ·
〈 IJ
Meffγ0

+GJc , B0

〉
︸ ︷︷ ︸

(♡)

·α
〈 IK
NeffγM

+HKc ,
G−1

J +M2
effγ

2
0 ·GJc

Meff

〉
︸ ︷︷ ︸

(♣)

·Deff

Neff

.

By definition we know that

(♠) =
∥∥∥M+N−1∏

t=M

(I− γtH)

M−1∏
t=0

(I− γtG)(w0 −w∗)
∥∥∥2
H
,

(♡) =
∥∥w0 −w∗∥∥2 IJ

Meffγ0
+GJc

,
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(♢) =
∥∥∥M−1∏

t=0

(I− γtG)(w0 −w∗)
∥∥∥2

IK
NeffγM

+HKc

.

As for (♣), we can choose K = ∅ and J = {j : µj ≥ 1/(Meffγ0)} so that

(♣) ≤ α⟨H, γ0I⟩ ≤ αγ0 tr(H) ≤ 1.

Putting everything together completes the proof.

D.2 Lower Bounds

Lemma D.6 (Lower bounds for the bias iterates). Suppose that Assumption 1B holds. Suppose
that γ0 < 1/∥G∥2. Let Meff := M/ log(M) and suppose that Meff ≥ 10. Let J := {j : µj ≥
1/(Meffγ0)}. Then it holds that

BM ⪰
M−1∏
t=0

(I− γtG)B0

M∏
t=1

(I− γtG) +
β

1200
· ⟨GJc , B0⟩ ·

G−1
J +M2

effγ
2
0 ·GJc

Meff

.

Proof. This is from Theorem 8 in Wu et al. [2021].

Theorem D.2 (Lower bounds for the bias error). Suppose that Assumption 1B holds. Suppose that
γ0 < 1/∥G∥2, γM < 1/∥H∥2. Let Meff := M/ log(M), Neff := N/ log(N), and suppose that
Meff, Neff ≥ 10. Let J := {j : µj ≥ 1/(Meffγ0)}, K := {k : λk ≥ 1/(NeffγM )}. Then it holds
that

⟨H,BM+N ⟩ ≥
∥∥∥M+N−1∏

t=M

(I− γtH)

M−1∏
t=0

(I− γtG)(w0 −w∗)
∥∥∥2
H

+
β

1200
· ∥w0 −w∗∥2GJc

· D
finetune
eff

Meff

+
β

1200
·
∥∥∥M−1∏

t=0

(I− γtG)(w0 −w∗)
∥∥∥2
HKc

· Deff

Neff

,

where

Deff := tr(HH−1
K ) +N2

effγ
2
M · tr(HHKc),

Dfinetune
eff := tr

(N−1∏
t=0

(I− γM+tH)2H ·
(
G−1

J +M2
effγ

2
0 ·GJc

))
.

Proof. We first apply Lemma D.6 by setting B0 to BM , γ0 to γM , M to N and G to H, so that we
have

BM+N ⪰
N−1∏
t=0

(I− γM+tH)BM

N−1∏
t=0

(I− γM+tH) +
β

1200
⟨HKc , BM ⟩

H−1
K +N2

effγ
2
M ·HKc

Neff

.

Taking inner product with H we obtain

⟨H, BM+N ⟩ ⪰
〈
H,

N−1∏
t=0

(I− γM+tH)BM

N−1∏
t=0

(I− γM+tH)
〉
+

β

1200
· ⟨HKc , BM ⟩ · Deff

Neff

=
〈N−1∏

t=0

(I− γM+tH)2H, BM

〉
+

β

1200
· ⟨HKc , BM ⟩ · Deff

Neff

.

Now applying the lower bound for BM in Lemma D.6, we obtain

⟨H, BM+N ⟩ ⪰
〈N−1∏

t=0

(I− γM+tH)2H,

M−1∏
t=0

(I− γtG)B0

M∏
t=1

(I− γtG)
〉

+
β

1200
· ⟨GJc , B0⟩ ·

〈N−1∏
t=0

(I− γM+tH)2H,
G−1

J +M2
effγ

2
0 ·GJc

Meff

〉
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+
β

1200
·
〈
HKc ,

M−1∏
t=0

(I− γtG)B0

M∏
t=1

(I− γtG)
〉
· Deff

Neff

=
∥∥∥M+N−1∏

t=M

(I− γtH)

M−1∏
t=0

(I− γtG)(w0 −w∗)
∥∥∥2
H

+
β

1200
· ∥w0 −w∗∥2GJc

· D
finetune
eff

Meff

+
β

1200
·
∥∥∥M−1∏

t=0

(I− γtG)(w0 −w∗)
∥∥∥2
HKc

· Deff

Neff

,

which completes the proof.

E Proof of Theorems in Main Text

E.1 Proof of Theorem 3.1

Proof of Theorem 3.1. This is by combining Theorems C.1 and D.1.

E.2 Proof of Theorem 3.2

Proof of Theorem 3.2. This is by combining Theorems C.2 and D.2.

E.3 Proof of Theorem 4.1

Proof of Theorem 4.1. During the proof, we use γsl and γ0 to denote the initial stepsizes for super-
vised learning and pretraining, respectively. Then Corollaries 3.4 and 3.3 sharply characterize the risk
bounds for supervised learning and pretraining, respectively. In particular, let SNR := α∥w∗∥2G/σ2,
then we have

ExcessRisk(w0+Nsl) ≳
∥∥∥N−1∏

t=0

(I− γslt H)(w0 −w∗)
∥∥∥2
H
+ σ2 · D

sl
eff

Nsl
eff

, (16)

ExcessRisk(wM+0) ≲
∥∥∥M−1∏

t=0

(I− γtG)(w0 −w∗)
∥∥∥2
H
+ (1 + SNR)σ2 · D

pretrain
eff

Meff

. (17)

Fix hyperparameters (Nsl
eff, γ

sl) for supervised learning, we now identify hyperparameters (Meff, γ0)
for pretraining so that its risk (17) is no larger than that of supervised learning (16) upto a constant
factor. To this end, we claim that

Dpretrain
eff

Meff

≤ Dsl
eff

Nsl
eff

given that γ0 ≤ Dsl
eff

Nsl
eff tr(H)

. (18)

∥∥∥M−1∏
t=0

(I− γtG)(w0 −w∗)
∥∥∥2
H

≲
∥∥∥N−1∏

t=0

(I− γslt H)(w0 −w∗)
∥∥∥2
H

given that Meffγ0 ≥ 4Nsl
effγ

sl∥H0:k∗∥G.

(19)

To prove (18), we consider the optimal index set J∗ := {j : µj ≥ 1/(Meffγ0)} as defined in
Corollary 3.3, then by definition we have

D
pretrain
eff

Meff

≤ 1

Meff

·
∑
j∈J∗

Hjj ·
1

µj
+Meffγ0 ·

∑
j /∈J∗

Hjj · µj

≤ γ0 ·
∑
j∈J∗

Hjj + γ0 ·
∑
j /∈J∗

Hjj = γ0 tr(H),

which justifies (18).
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To prove (19), we consider the bias error separately in its head part and its tail part, divided by the
optimal index k∗ := min{k : λk ≥ 1/(Nsl

effγ
sl)} as defined in Corollary 3.4. For a tail index

k > k∗, we have

M−1∏
t=0

(1− γtµk)
2 ≤ 1 ≤ 100 · (1− 2γslλk)

2Nsl
eff ≤ 100 ·

Nsl−1∏
t=0

(1− γslt λk)
2, (20)

where the second inequality is because that γslλk ≥ 1/Nsl
eff and Nsl

eff ≥ 10. For a head index
k ≤ k∗, we have

M−1∏
t=0

(1− γtµk)
2 ≤ (1− γ0µk)

2Meff ≤ (1− 2γslλk)
2Nsl

eff ≤
Nsl−1∏
t=0

(1− γslt λk)
2, (21)

where the second inequality is because:

(1− γ0µk)
Meff
Nsl

eff ≤ 1− Meff

2Nsl
eff

· γ0µk (since ab ≤ (a+ b)/2 for 0 < a, b < 1)

≤ 1− Meff

2Nsl
eff∥H0:k∗∥G

· γ0λk (since ∥H0:k∗∥G := max{λk/µk : k ≤ k∗})

≤ 1− 2γslλk. (use the condition in (19))

Combining (20), (21) and the definition of bias error justifies (19).

Finally, we choose γ0 = Dsl
eff/(N

sl
eff tr(H)) and

Meff ≥ (Nsl
eff)

2 · 4∥H0:k∗∥G
αDeff

≥ (Nsl
eff)

2 · 4γ
sl tr(H)∥H0:k∗∥G

Dsl
eff

=
4Nsl

effγ
sl∥H0:k∗∥G
γ0

,

so that both (18) and (21) hold, which imply that the risk of pretraining (17) is no lager than of
supervised learning (16) upto a constant factor.

E.4 Proof of Theorem 4.2

Proof of Theorem 4.2. During the proof, we use γsl, γ0 and γM to denote the initial stepsizes for
supervised learning, pretraining and finetuning, respectively. Then Corollary 3.4 and Theorem 3.1
sharply characterize the risk bounds for supervised learning and pretraining-finetuning, respectively.
In particular, let SNR := α

(
∥w∗∥2G + ∥w∗∥2H)

/
σ2, then we have the following upper bound for

pretraining-finetuning:

ExcessRisk(wM+N ) ≲
∥∥∥M+N−1∏

t=M

(I− γtH)

M−1∏
t=0

(I− γtG)(w0 −w∗)
∥∥∥2
H

+ (1 + SNR)σ2 ·
(
Dfinetune

eff

Meff

+
Deff

Neff

)
,

(22)

and we have a lower bound for supervised learning shown in (16). Fix hyperparameters (Nsl
eff, γ

sl)
for supervised learning, we now identify hyperparameters (Meff, Neff, γ0, γM ) for pretraining-
finetuning so that its risk (22) is no larger than that of supervised learning (16) upto a constant factor.
To this end, we claim that

Deff

Neff

≤ Dsl
eff

Nsl
eff

given that γM ≤ Dsl
eff

Nsl
eff tr(H)

(23)

Dfinetune
eff

Meff

≤ Dsl
eff

Nsl
eff

given that γ0 ≤ Dsl
eff

Nsl
eff tr

(∏N−1
t=0 (I− γM+tH)2H

) . (24)

∥∥∥M+N−1∏
t=M

(I− γtH)

M−1∏
t=0

(I− γtG)w∗
∥∥∥2
H

≲
∥∥∥N−1∏

t=0

(I− γslt H)w∗
∥∥∥2
H
+ ∥w∗∥2H · D

sl
eff

Nsl
eff

given that Meffγ0 ≥ 4Nsl
effγ

sl∥Hk†:k∗∥G.

(25)
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To prove (23) and (24), one only needs to repeat the proof for (18).

To prove (25), we consider the bias error separately in its head part, middle part and tail part, divided
by the index

k† := {k : λk ≥ log(Nsl
eff)/(NeffγM )}

and the index k∗ := min{k : λk ≥ 1/(Nsl
effγ

sl)} as defined in Corollary 3.4. For a tail index
k > k∗, we have

M+N−1∏
t=M

(1−γtλk)
2
M−1∏
t=0

(1−γtµk)
2 ≤ 1 ≤ 100·(1−2γslλk)

2Nsl
eff ≤ 100·

Nsl−1∏
t=0

(1−γslt λk)
2, (26)

where the second inequality is because that γslλk ≥ 1/Nsl
eff and Nsl

eff ≥ 10. For a middle index
k† < k ≤ k∗, we have

M+N−1∏
t=M

(1−γtλk)
2
M−1∏
t=0

(1−γtµk)
2 ≤ (1−γ0µk)

2Meff ≤ (1−2γslλk)
2Nsl

eff ≤
Nsl−1∏
t=0

(1−γslt λk)
2,

(27)
where the second inequality is because:

(1− γ0µk)
Meff
Nsl

eff ≤ 1− Meff

2Nsl
eff

· γ0µk (since ab ≤ (a+ b)/2 for 0 < a, b < 1)

≤ 1− Meffγ0λk

2Nsl
eff∥Hk†:k∗∥G

(since ∥Hk†:k∗∥G := max{λk/µk : k† < k ≤ k∗})

≤ 1− 2γslλk. (use the condition in (25))

For a head index k ≤ k†, we have

M+N−1∏
t=M

(1− γtλk)
2
M−1∏
t=0

(1− γtµk)
2 ≤ (1− γMλk)

2Neff ≤ e−2NeffγMλk ≤ Dsl
eff

Nsl
eff

, (28)

where in the last inequality we use λk ≥ λk† ≥ log(Nsl
eff)/(NeffγM ).

Combining (26), (27) (28) and the definition of bias error justifies (25).

Finally, we choose
γ0 = γM = Dsl

eff/(N
sl
eff tr(H)),

k† := {k : λk ≥ log(Nsl
eff)/(NeffγM ) = Nsl

eff log(N
sl
eff) tr(H)/(NeffD

sl
eff)},

and

Meff ≥ (Nsl
eff)

2 · 4∥Hk†:k∗∥G
αDsl

eff

≥ (Nsl
eff)

2 · 4γ
sl tr(H)∥Hk†:k∗∥G

Dsl
eff

=
4Nsl

effγ
sl∥Hk†:k∗∥G
γ0

,

so that all (23), (24) and (28) hold, which imply that the risk of pretraining (22) is no lager than of
supervised learning (16) upto a constant factor.

E.5 Proof of Example 4.3

Proof of Example 4.3. One may verify that tr(H) ≂ tr(G) ≂ 1 and that ∥w∗∥2H ≂ ∥w∗∥2G ≂
σ2 ≂ 1. Therefore

γ0 ≲ 1/(tr(H)) ≂ 1, γM ≲ 1/(tr(G)) ≂ 1.

Pretraining. From Corollary 3.3, we know that

ExcessRisk(wM+0) ≥ λ1(1− 2γ0µ1)
2Meff(w∗[1])2 ≥ (1− 2γ0ϵ

2)2Meff ,

for which to be smaller than ϵ one has to set

Meff ≳ γ−1
0 ϵ−2 log ϵ−1 ≳ ϵ−2.
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Supervised Learning. As for supervised learning, we discuss its rate based on Corollary 3.4 and
the choice of K = {k : λk ≥ 1/(Neffγ0)}.

• If |K| > ϵ−0.5, then by Corollary 3.4 we have

ExcessRisk(w0+N ) ≳ σ2 · |K|
Neff

≳
ϵ−0.5

Neff

,

for which to be smaller than ϵ one has to have Neff ≳ ϵ−1.5.

• If |K| ≤ ϵ−0.5, then by Corollary 3.4 we have

ExcessRisk(w0+N ) ≳ σ2 ·Neffγ
2
0

∑
i>k∗

λ2
i ≳ Neffγ

2
0ϵ

0.5,

for which to be smaller than ϵ one has to have

Neffγ
2
0 ≲ ϵ0.5. (29)

On the other hand, by Corollary 3.4 we have

ExcessRisk(w0+N ) ≥ λ2(1− 2γ0λ2)
2Neff(w∗[2])2 ≥ ϵ0.5 · (1− 2γ0ϵ

0.5)2Neff ,

for which to be smaller than ϵ one need to set

Neffγ0 ≳ ϵ−0.5 log ϵ−0.5 ≳ ϵ−0.5. (30)

Then (29) and (30) together imply that Neff ≳ ϵ−1.5.

In sum, for ExcessRisk(w0+N ) ≤ ϵ one has to set

Neff ≳ ϵ−1.5.

Pretraining-Finetuning. Now we consider pretraining-finetuning by Theorem 3.1. We set

γ0 ≂ 1, γM ≂ ϵ, Meff ≂ ϵ−1, Neff ≂ ϵ−1 log(ϵ−2). (31)

Under (31), we see that

λ1(1− γMλ1)
2Neff ≤ e−2NeffγM ≲ ϵ2. (32)

We now verify that ExcessRisk(wM+N ) ≲ ϵ.

According to the proof of (18), it holds that
Deff

Neff

≲ γM tr(H) ≲ ϵ. (33)

Now we choose J = {1, 2} so that

Dfinetune
eff

Meff

≲
1

Meff

· λ1(1− γMλ1)
2Neff

µ1
+

1

Meff

· λ2(1− γMλ2)
2Neff

µ2
+ 0

≲ ϵ · ϵ
2

ϵ2
+ ϵ · ϵ

0.5 · 1
1

(by (32))

≲ ϵ (34)

For the bias error we have that∥∥∥M+N−1∏
t=M

(I− γtH)

M−1∏
t=0

(I− γtG)(w0 −w∗)
∥∥∥2
H

≤ λ1(1− γ0µ1)
2Meff(1− γMλ1)

2Neff(w∗[1])2 + λ2(1− γ0µ2)
2Meff(1− γMλ2)

2Neff(w∗[2])2

≤ (1− γ0µ1)
2Meff(1− γMλ1)

2Neff + ϵ0.5(1− γ0µ2)
2Meff(1− γMλ2)

2Neff

≤ (1− γMλ1)
2Neff + ϵ0.5(1− γ0µ2)

2Meff

≲ ϵ. (by (32) and (31) ) (35)

(33), (34) and (35) together imply that ExcessRisk(wM+N ) ≲ ϵ.
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