A Appendix

A. 1 Proofs

In this section we restate and provide proofs of the statements made in the main text.
Property 1. For any $\Pi \subseteq \mathbb{\Pi}, \mathcal{V} \subseteq \mathbb{V}$ and $\mathcal{M} \subseteq \mathbb{M}$, it follows that $\mathcal{M}^{k}(\Pi, \mathcal{V} ; 0)=\mathcal{M}^{k}(\Pi, \mathcal{V})$ and $\mathcal{M}^{\infty}(\Pi ; 0)=\mathcal{M}^{\infty}(\Pi)$.

Proof. Any $\tilde{m} \in \mathcal{M}^{k}(\Pi, \mathcal{V} ; 0)$ satisfies $\left\|\tilde{\mathcal{T}}_{\pi}^{k} v-\mathcal{T}_{\pi}^{k} v\right\|=0 \forall \pi \in \Pi, \forall v \in \mathcal{V}$. Similarly any $\tilde{m} \in \mathcal{M}^{k}(\Pi, \mathcal{V})$ satisfies analogous equality constraints $\tilde{\mathcal{T}}_{\pi}^{k} v=\mathcal{T}_{\pi}^{k} v \forall \pi \in \Pi, \forall v \in \mathcal{V}$. Since $\|\cdot\|$ is a norm, we know that $\left\|\tilde{\mathcal{T}}_{\pi}^{k} v-\mathcal{T}_{\pi}^{k} v\right\|=0 \Longleftrightarrow \tilde{\mathcal{T}}_{\pi}^{k} v=\mathcal{T}_{\pi}^{k} v$, hence $\mathcal{M}^{k}(\Pi, \mathcal{V} ; 0)=\mathcal{M}^{k}(\Pi, \mathcal{V})$. The same logic applies to APVE classes.
Property 2. For any $\epsilon \in \overline{\mathbb{R}}^{+}, \mathcal{M} \subseteq \overline{\mathcal{M}} \subseteq \mathbb{M}, \Pi \subseteq \Pi^{\prime} \subseteq \mathbb{\square}$ and $\mathcal{V} \subseteq \mathcal{V}^{\prime} \subseteq \mathbb{V}$, it follows that

$$
\begin{equation*}
\mathcal{M}^{k}\left(\Pi^{\prime}, \mathcal{V}^{\prime} ; \epsilon\right) \subseteq \mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon) \subseteq \overline{\mathcal{M}}^{k}(\Pi, \mathcal{V} ; \epsilon) \tag{7}
\end{equation*}
$$

Proof. An AVE class, $\mathcal{M}^{k}\left(\Pi^{\prime}, \mathcal{V}^{\prime} ; \epsilon\right)$ satisfies a series of constraints of the form $\left\|\tilde{\mathcal{T}}_{\pi}^{k} v-\mathcal{T}_{\pi}^{k} v\right\| \leq \epsilon$ for each pair of $\pi, v \in \Pi^{\prime} \times \mathcal{V}^{\prime}$. Considering another pair of sub-sets $\Pi \subseteq \Pi^{\prime}$ and $\mathcal{V} \subseteq \mathcal{V}^{\prime}$, we can partition the first pair as follows:

$$
\Pi^{\prime} \times \mathcal{V}^{\prime}=\left(\Pi^{\prime} \backslash \Pi \times \mathcal{V}^{\prime} \backslash \mathcal{V}\right) \uplus\left(\Pi^{\prime} \backslash \Pi \times \mathcal{V}\right) \uplus\left(\Pi \times \mathcal{V}^{\prime} \backslash \mathcal{V}\right) \uplus(\Pi \times \mathcal{V})
$$

accordingly,

$$
\begin{aligned}
\mathcal{M}^{k}\left(\Pi^{\prime}, \mathcal{V}^{\prime} ; \epsilon\right) & =\mathcal{M}^{k}\left(\Pi^{\prime} \backslash \Pi, \mathcal{V}^{\prime} \backslash \mathcal{V} ; \epsilon\right) \cap \mathcal{M}^{k}\left(\Pi^{\prime} \backslash \Pi, \mathcal{V} ; \epsilon\right) \cap \mathcal{M}^{k}\left(\Pi, \mathcal{V}^{\prime} \backslash \mathcal{V} ; \epsilon\right) \cap \mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon) \\
& \subseteq \mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon)
\end{aligned}
$$

satisfying the first subset relation in Eq. 7 For the next subset relation, we simply note that

$$
\overline{\mathcal{M}}^{k}(\Pi, \mathcal{V} ; \epsilon)=(\overline{\mathcal{M}} \backslash \mathcal{M})^{k}(\Pi, \mathcal{V} ; \epsilon) \cup \mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon) \supseteq \mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon)
$$

completing the proof.
Property 3. For any $\Pi \subseteq \mathbb{\Pi}, \mathcal{V} \subseteq \mathbb{V}$ and $\epsilon, \epsilon^{\prime} \in \overline{\mathbb{R}}^{+}$such that $\epsilon^{\prime} \geq \epsilon$, it follows that

$$
\begin{equation*}
\mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon) \subseteq \mathcal{M}^{k}\left(\Pi, \mathcal{V} ; \epsilon^{\prime}\right) \tag{8}
\end{equation*}
$$

Proof. For any $\tilde{m} \in \mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon)$ a number of AVE constraints are respected: $\left\|\tilde{\mathcal{T}}_{\pi}^{k} v-\mathcal{T}_{\pi}^{k} v\right\| \leq \epsilon$ for each pair $\pi, v \in \Pi \times \mathcal{V}$. Since $\epsilon^{\prime} \geq \epsilon$, it follows that $\left\|\tilde{\mathcal{T}}_{\pi}^{k} v-\mathcal{T}_{\pi}^{k} v\right\| \leq \epsilon \leq \epsilon^{\prime}$ as well and hence $\tilde{m} \in \mathcal{M}^{k}\left(\Pi, \mathcal{V} ; \epsilon^{\prime}\right)$. Thus $\mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon) \subseteq \mathcal{M}^{k}\left(\Pi, \mathcal{V} ; \epsilon^{\prime}\right)$ as needed.
Proposition 1. For any $\epsilon \in \overline{\mathbb{R}}^{+}, \Pi, \Pi^{\prime} \subseteq \llbracket, \mathcal{V}, \mathcal{V}^{\prime} \subseteq \mathbb{V}$ and $k, K \in \mathbb{Z}^{+}$there exists some $\epsilon^{\prime} \in \overline{\mathbb{R}}^{+}$ such that

$$
\begin{equation*}
\mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon) \subseteq \mathcal{M}^{K}\left(\Pi^{\prime}, \mathcal{V}^{\prime} ; \epsilon^{\prime}\right) \tag{9}
\end{equation*}
$$

Moreover, if \mathcal{M}, \mathcal{V} and \mathcal{V}^{\prime} are bounded then ϵ^{\prime} is finite.
Proof. Denote $v_{\max }=\max _{s \in \mathcal{S}, v \in \mathcal{V} \cup \mathcal{V}^{\prime}} v(s), \tilde{r}_{\max }=\max _{s \in \mathcal{S}, a \in \mathcal{A}, \tilde{m} \in \mathcal{M}} r(s, a)$ and consider any $\tilde{m} \in \mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon)$. We can then write

$$
\left\|\tilde{\mathcal{T}}_{\pi}^{K} v-\mathcal{T}_{\pi}^{K} v\right\| \leq \max _{s}\left|\tilde{\mathcal{T}}_{\pi}^{K} v(s)\right|+\max _{s}\left|\mathcal{T}_{\pi}^{K} v(s)\right| \leq 2 \max \left\{\tilde{r}_{\max }, r_{\max }\right\} \frac{1-\gamma^{K}}{1-\gamma}+\gamma^{K} v_{\max }
$$

for any $\pi \in \Pi^{\prime}, v \in \mathcal{V}^{\prime}$ and $\tilde{m} \in \mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon)$.
Clearly, when $\epsilon^{\prime}=\infty$ the desired subset relation holds, as $\mathcal{M}^{K}\left(\Pi^{\prime}, \mathcal{V}^{\prime} ; \infty\right)=\mathcal{M} \supseteq \mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon)$ for any choices of sets, orders and ϵ. Additionally, when \mathcal{M}, \mathcal{V} and \mathcal{V}^{\prime} are bounded, we know that $\tilde{r}_{\text {max }}$ and $v_{\max }$ are finite. Thus, by selecting a finite $\epsilon^{\prime}>2 \max \left\{\tilde{r}_{\max }, r_{\max }\right\} \frac{1-\gamma^{K}}{1-\gamma}+\gamma^{K} v_{\max }$, we obtain $\tilde{m} \in \mathcal{M}^{K}\left(\Pi^{\prime}, \mathcal{V}^{\prime} ; \epsilon^{\prime}\right)$ and thus $\mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon) \subseteq \mathcal{M}^{K}\left(\Pi^{\prime}, \mathcal{V}^{\prime} ; \epsilon^{\prime}\right)$ as needed.

Proposition 2. For any $\tilde{m} \in \mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon)$ it follows that

$$
\left\|v_{\tilde{\pi}_{*}}-v_{*}\right\| \leq 2 \cdot \mathcal{E}_{\epsilon}(\Pi, \mathcal{V}, k \mid \Pi, \infty)
$$

where $\tilde{\pi}_{*}$ is any optimal policy of \tilde{m}.
Proof. From Proposition 1, we know that a minimum tolerated error, $\epsilon^{\prime}=\mathcal{E}_{\epsilon}(\Pi, \mathcal{V}, k \mid \Pi, \infty)$, exists such that $\mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon) \subseteq \mathcal{M}^{\infty}\left(\square ; \epsilon^{\prime}\right)$. We can then consider the performance of models in $\mathcal{M}^{\infty}\left(\mathbb{\square} ; \epsilon^{\prime}\right)$. For any $\tilde{m} \in \mathcal{M}^{\infty}\left(\mathbb{\square} ; \epsilon^{\prime}\right)$ we can write:

$$
\begin{align*}
0 & \geq \tilde{v}_{\pi_{*}}(s)-\tilde{v}_{\tilde{\pi}_{*}}(s) \\
& =\left(\tilde{v}_{\pi_{*}}(s)-v_{\pi_{*}}(s)\right)+\left(v_{\pi_{*}}-v_{\tilde{\pi}_{*}}(s)\right)+\left(v_{\tilde{\pi}_{*}}(s)-\tilde{v}_{\tilde{\pi}_{*}}(s)\right) \tag{19}
\end{align*}
$$

for any $s \in \mathcal{S}$ where π_{*} and $\tilde{\pi}_{*}$ are arbitrary optimal policies in the environment and \tilde{m} respectively and \tilde{v}_{π} denotes the model's value of a policy π.
Since $\tilde{m} \in \mathcal{M}^{\infty}\left(\mathbb{\square} ; \epsilon^{\prime}\right)$ we know the first and third terms are bounded below by $-\epsilon^{\prime}$, giving:

$$
\begin{align*}
& 0 \geq v_{*}(s)-v_{\tilde{\pi}_{*}}(s)-2 \epsilon^{\prime} \\
\Longrightarrow & 2 \epsilon^{\prime} \geq v_{*}(s)-v_{\tilde{\pi}_{*}}(s) \geq 0 \tag{20}\\
\Longrightarrow & \left\|v_{*}-v_{\tilde{\pi}_{*}}\right\| \leq 2 \epsilon^{\prime}
\end{align*}
$$

as needed.
Proposition 3. For any $\epsilon \in \overline{\mathbb{R}}^{+}, \Pi \subseteq \Pi, \mathcal{V} \subseteq \mathbb{V}$ such that $v \in \mathcal{V} \Longrightarrow \mathcal{T}_{\pi} v \in \mathcal{V} \forall \pi \in \Pi$ and $k, K \in \mathbb{Z}^{+}$such that k divides K, we have that

$$
\begin{equation*}
\mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon) \subseteq \mathcal{M}^{K}\left(\Pi, \mathcal{V} ; \frac{\epsilon \cdot\left(1-\gamma^{K}\right)}{1-\gamma^{k}}\right) \tag{10}
\end{equation*}
$$

Proof. Let $K=n k$, and consider a model $\tilde{m} \in \mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon)$. It follows for any $\pi \in \Pi$ and $v \in \mathcal{V}$ that

$$
\begin{align*}
\left\|\tilde{\mathcal{T}}_{\pi}^{K} v-\mathcal{T}_{\pi}^{K} v\right\| & =\left\|\tilde{\mathcal{T}}_{\pi}^{k} \tilde{\mathcal{T}}_{\pi}^{K-k} v-\mathcal{T}_{\pi}^{k} \mathcal{T}_{\pi}^{K-k} v\right\| \\
& =\left\|\tilde{\mathcal{T}}_{\pi}^{k} \tilde{\mathcal{T}}_{\pi}^{K-k} v-\mathcal{T}_{\pi}^{k} \mathcal{T}_{\pi}^{K-k} v+\tilde{\mathcal{T}}_{\pi}^{k} \mathcal{T}_{\pi}^{K-k} v-\tilde{\mathcal{T}}_{\pi}^{k} \mathcal{T}_{\pi}^{K-k} v\right\| \\
& \leq\left\|\tilde{\mathcal{T}}_{\pi}^{k} \mathcal{T}_{\pi}^{K-k} v-\mathcal{T}_{\pi}^{k} \mathcal{T}_{\pi}^{K-k} v\right\|+\left\|\tilde{\mathcal{T}}_{\pi}^{k} \tilde{\mathcal{T}}_{\pi}^{K-k} v-\tilde{\mathcal{T}}_{\pi}^{k} \mathcal{T}_{\pi}^{K-k} v\right\| \tag{21}\\
& \stackrel{(1)}{\leq} \epsilon+\left\|\tilde{\mathcal{T}}_{\pi}^{k} \tilde{\mathcal{T}}_{\pi}^{K-k} v-\tilde{\mathcal{T}}_{\pi}^{k} \mathcal{T}_{\pi}^{K-k} v\right\| \\
& \stackrel{(2)}{\leq} \epsilon+\gamma^{k}\left\|\tilde{\mathcal{T}}_{\pi}^{K-k} v-\mathcal{T}_{\pi}^{K-k} v\right\|
\end{align*}
$$

where (1) follows from the assumption on \mathcal{V} and (2) follows from the fact that $\tilde{\mathcal{T}}_{\pi}$ is a contraction. Next, using induction we can say that:

$$
\begin{align*}
\left\|\tilde{\mathcal{T}}_{\pi}^{K} v_{\pi}-\mathcal{T}_{\pi}^{K} v_{\pi}\right\| & \leq \epsilon \cdot\left(1+\gamma^{k}+\gamma^{2 k}+\cdots+\gamma^{(n-1) k}\right) \\
& =\epsilon \cdot \sum_{t=0}^{n-1} \gamma^{k t} \tag{22}\\
& =\epsilon \cdot \frac{1-\left(\gamma^{k}\right)^{n}}{1-\gamma^{k}} \\
& =\epsilon \cdot \frac{1-\gamma^{K}}{1-\gamma^{k}}
\end{align*}
$$

where the last equality follows because $K=n k$.
This suffices to show that $\tilde{m} \in \mathcal{M}^{K}\left(\Pi, \mathcal{V} ; \epsilon \cdot \frac{1-\gamma^{K}}{1-\gamma^{k}}\right)$ and thus: $\mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon) \subseteq \mathcal{M}^{K}\left(\Pi, \mathcal{V} ; \epsilon \cdot \frac{1-\gamma^{K}}{1-\gamma^{k}}\right)$ as needed.

Corollary 1. For any set of policies $\Pi \subseteq \Pi$, set of functions $\mathcal{V} \in \mathbb{V}$ such that $\left\{v_{\pi}: \pi \in \Pi\right\} \subseteq \mathcal{V}$ and $k \in \mathbb{Z}^{+}$, it follows that

$$
\begin{equation*}
\mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon) \subseteq \mathcal{M}^{\infty}\left(\Pi ; \frac{\epsilon}{1-\gamma^{k}}\right) \tag{11}
\end{equation*}
$$

Proof.

$$
\begin{equation*}
\mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon)=\bigcap_{\pi \in \Pi} \bigcap_{v \in \mathcal{V}} \mathcal{M}^{k}(\{\pi\},\{v\} ; \epsilon) \subseteq \bigcap_{\pi \in \Pi} \mathcal{M}^{k}\left(\{\pi\},\left\{v_{\pi}\right\} ; \epsilon\right) \tag{23}
\end{equation*}
$$

where the subset-relation holds from our assumption that $\left\{v_{\pi}: \pi \in \Pi\right\} \subseteq \mathcal{V}$.
Next we examine $\tilde{m} \in \mathcal{M}^{k}\left(\{\pi\},\left\{v_{\pi}\right\} ; \epsilon\right)$ for individual $\pi \in \Pi$. We know that for any such model:

$$
\begin{aligned}
\left\|\tilde{\mathcal{T}}_{\pi}^{n k} v_{\pi}-v_{\pi}\right\| & \leq\left\|\tilde{\mathcal{T}}_{\pi}^{n k} v_{\pi}-\tilde{\mathcal{T}}_{\pi}^{k} v_{\pi}\right\|+\left\|\tilde{\mathcal{T}}_{\pi}^{k} v_{\pi}-v_{\pi}\right\| \\
& \leq \gamma^{k}\left\|\tilde{\mathcal{T}}_{\pi}^{(n-1) k} v_{\pi}-v_{\pi}\right\|+\epsilon
\end{aligned}
$$

By repeatedly applying this inequality we can obtain:

$$
\left\|\tilde{\mathcal{T}}_{\pi}^{n k} v_{\pi}-v_{\pi}\right\| \leq \sum_{t=0}^{n-1} \epsilon \cdot \gamma^{(t k)}=\epsilon \cdot \frac{1-\gamma^{n k}}{1-\gamma^{k}}
$$

Next, from the continuity of $\|\cdot\|$, we can take limits to obtain:

$$
\epsilon \cdot \frac{1}{1-\gamma^{k}} \geq \lim _{n \rightarrow \infty}\left\|\tilde{\mathcal{T}}_{\pi}^{n k} v_{\pi}-v_{\pi}\right\|=\left\|\lim _{n \rightarrow \infty} \tilde{\mathcal{T}}_{\pi}^{n k} v_{\pi}-v_{\pi}\right\|=\left\|\tilde{v}_{\pi}-v_{\pi}\right\|
$$

giving us that $\mathcal{M}^{k}\left(\{\pi\},\left\{v_{\pi}\right\} ; \epsilon\right) \subseteq \mathcal{M}^{\infty}\left(\{\pi\} ; \epsilon \cdot \frac{1}{1-\gamma^{k}}\right)$. We can plug this result back into Eq. 23 to obtain:

$$
\mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon) \subseteq \bigcap_{\pi \in \Pi} \mathcal{M}^{k}\left(\{\pi\},\left\{v_{\pi}\right\} ; \epsilon\right) \subseteq \bigcap_{\pi \in \Pi} \mathcal{M}^{\infty}\left(\{\pi\} ; \epsilon \cdot \frac{1}{1-\gamma^{k}}\right)=\mathcal{M}^{\infty}\left(\Pi ; \epsilon \cdot \frac{1}{1-\gamma^{k}}\right)
$$

as needed.
Proposition 4. For any set of policies $\Pi \subseteq \mathbb{\square}$, set of functions $\mathcal{V} \in \mathbb{V}$, $c>1$ and error $\epsilon \in \overline{\mathbb{R}}^{+}$, we have

$$
\begin{equation*}
\mathcal{M}^{k}(\Pi, c-\operatorname{vspan}(\mathcal{V}) ; \epsilon) \subseteq \mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon) \subseteq \mathcal{M}^{k}(\Pi, c-\operatorname{vspan}(\mathcal{V}) ; c \cdot \epsilon) \tag{13}
\end{equation*}
$$

Proof. Clearly, $\mathcal{V} \subseteq c-\operatorname{vspan}(\mathcal{V})$ and thus $\mathcal{M}^{k}(\Pi, c-\operatorname{vspan}(\mathcal{V}) ; \epsilon) \subseteq \mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon)$. We now prove that $\mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon) \subseteq \mathcal{M}^{k}(\Pi, \mathcal{V} ; c \cdot \epsilon)$. We first consider any $\tilde{m} \in \mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon)$ and $v^{\prime} \in c$-vspan (\mathcal{V}). Since $v^{\prime} \in c$-vspan (\mathcal{V}) we can write $v^{\prime}=\sum_{i=1}^{n} \alpha_{i} v_{i}$ where $v_{i} \in \mathcal{V}$ for each i and $\sum_{i=1}^{n}\left|\alpha_{i}\right| \leq c$. From here we observe:

$$
\begin{align*}
\left\|\tilde{\mathcal{T}}_{\pi}^{k} v^{\prime}-\mathcal{T}_{\pi}^{k} v^{\prime}\right\| & =\left\|\tilde{\mathcal{T}}_{\pi}^{k}\left(\sum_{i=1}^{n} \alpha_{i} v_{i}\right)-\mathcal{T}_{\pi}^{k}\left(\sum_{i=1}^{n} \alpha_{i} v_{i}\right)\right\| \\
& \leq\left\|\sum_{i=1}^{n} \alpha_{i}\left(\tilde{\mathcal{T}}_{\pi}^{k} v_{i}-\mathcal{T}_{\pi}^{k} v_{i}\right)\right\| \\
& \leq \sum_{i=1}^{n}\left|\alpha_{i}\right|\left\|\tilde{\mathcal{T}}_{\pi}^{k} v_{i}-\mathcal{T}_{\pi}^{k} v_{i}\right\| \tag{24}\\
& \leq \sum_{i=1}^{n}\left|\alpha_{i}\right| \epsilon \\
& \leq c \cdot \epsilon
\end{align*}
$$

which shows that $\mathcal{M}^{k}(\Pi, c$-vspan $(\mathcal{V}) ; c \cdot \epsilon)$ as needed.
Corollary 2. When either $c=1$ or $\epsilon=0$, for any $\Pi \subseteq \square, \mathcal{V} \subseteq \mathbb{V}$ it follows that

$$
\begin{equation*}
\mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon)=\mathcal{M}^{k}(\Pi, c-\operatorname{vspan}(\mathcal{V}) ; \epsilon) \tag{14}
\end{equation*}
$$

Proof. The proof follows directly from Proposition 4. When either $c \in\{0,1\}$ the left-most and rightmost terms in Eq. 13 are equal, squeezing $\mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon)=\mathcal{M}^{k}(\Pi, c$-vspan $(\mathcal{V}) ; \epsilon)$ as needed.

Proposition 5.

1. (Asymmetry) For any $\mathcal{V} \subseteq \mathcal{V}^{\prime} \subseteq \mathcal{V}^{\prime \prime} \subseteq \mathbb{V}$ it follows that

$$
0=\beta(\mathcal{V} \| \mathcal{V}) \leq \beta\left(\mathcal{V} \| \mathcal{V}^{\prime}\right) \leq \beta\left(\mathcal{V} \| \mathcal{V}^{\prime \prime}\right) \quad \text { and } \quad 0=\beta\left(\mathcal{V}^{\prime \prime} \| \mathcal{V}^{\prime \prime}\right) \leq \beta\left(\mathcal{V}^{\prime} \| \mathcal{V}^{\prime \prime}\right) \leq \beta\left(\mathcal{V} \| \mathcal{V}^{\prime \prime}\right)
$$

2. (Convex, Compact $\mathcal{V})$ When \mathcal{V} is convex and compact it follows that

$$
\beta\left(\mathcal{V} \| \mathcal{V}^{\prime}\right)=\beta\left(\mathcal{V} \| 1-\operatorname{vspan}\left(\mathcal{V}^{\prime}\right)\right)
$$

Proof.

1. Recall $\beta\left(\mathcal{V} \| \mathcal{V}^{\prime}\right)=\max _{v^{\prime} \in \mathcal{V}^{\prime}} \min _{v \in \mathcal{V}}\left\|v^{\prime}-v\right\|$. Increasing the size of \mathcal{V}^{\prime} means that more elements can be maximized over, thereby increasing $\beta\left(\mathcal{V} \| \mathcal{V}^{\prime}\right)$. Similarly, increasing the size of \mathcal{V} means that more elements can be minimized over, thereby decreasing $\beta\left(\mathcal{V} \| \mathcal{V}^{\prime}\right)$. When $\mathcal{V}=\mathcal{V}^{\prime}$, we know that

$$
0 \leq \beta\left(\mathcal{V} \| \mathcal{V}^{\prime}\right)=\max _{v^{\prime} \in \mathcal{V}^{\prime}} \min _{v \in \mathcal{V}}\left\|v^{\prime}-v\right\| \leq \max _{v^{\prime} \in \mathcal{V}^{\prime}}\left\|v^{\prime}-v^{\prime}\right\|=0
$$

where second inequality follows since $\mathcal{V}=\mathcal{V}^{\prime}$.
2. We begin by considering the function $g\left(v^{\prime}\right)=\min _{v \in \mathcal{V}}\left\|v-v^{\prime}\right\|$. We begin by showing that this function is convex. Consider $v_{1}^{\prime}, v_{2}^{\prime} \in \mathcal{V}^{\prime}$ and denote $v_{1}=\operatorname{argmin}_{v \in \mathcal{V}}\left\|v-v_{1}^{\prime}\right\|$ and $v_{2}=\operatorname{argmin}_{v \in \mathcal{V}}\left\|v-v_{2}^{\prime}\right\|$. Then for any $\lambda \in[0,1]$ we can write:

$$
\begin{align*}
\lambda g\left(v_{1}^{\prime}\right)+(1-\lambda) g\left(v_{2}^{\prime}\right) & =\lambda\left\|v_{1}^{\prime}-v_{1}\right\|+(1-\lambda)\left\|v_{2}^{\prime}-v_{2}\right\| \tag{25}\\
& \geq\left\|\left(\lambda v_{1}^{\prime}+(1-\lambda) v_{2}^{\prime}\right)-\left(\lambda v_{1}+(1-\lambda) v_{2}\right)\right\|
\end{align*}
$$

since \mathcal{V} is convex $\left(\lambda v_{1}+(1-\lambda) v_{2}\right) \in \mathcal{V}$, thus:

$$
\begin{align*}
\left\|\left(\lambda v_{1}^{\prime}+(1-\lambda) v_{2}^{\prime}\right)-\left(\lambda v_{1}+(1-\lambda) v_{2}\right)\right\| & \geq \min _{v \in \mathcal{V}}\left\|\left(\lambda v_{1}^{\prime}+(1-\lambda) v_{2}^{\prime}\right)-v\right\| \tag{26}\\
& =g\left(\lambda v_{1}^{\prime}+(1-\lambda) v_{2}^{\prime}\right)
\end{align*}
$$

which suffices to show that g is a convex function.
Next we consider any element $v^{\prime} \in 1-\operatorname{vspan}\left(\mathcal{V}^{\prime}\right)$ such that $v^{\prime}=\sum_{i} \alpha_{i} v_{i}^{\prime}$ with $\sum_{i} \alpha_{i}=1$ and $\alpha_{i} \geq 0$ for all i. We can then write:

$$
\begin{equation*}
g\left(v^{\prime}\right)=g\left(\sum_{i} \alpha_{i} v_{i}^{\prime}\right) \leq \sum_{i} \alpha_{i} g\left(v_{i}^{\prime}\right) \leq \max _{i} g\left(v_{i}^{\prime}\right) \leq \max _{v^{\prime} \in \mathcal{V}^{\prime}} g\left(v^{\prime}\right)=\beta\left(\mathcal{V} \| \mathcal{V}^{\prime}\right) \tag{27}
\end{equation*}
$$

Since $g\left(v^{\prime}\right) \leq \beta\left(\mathcal{V} \| \mathcal{V}^{\prime}\right)$ for every $v^{\prime} \in 1$-vspan $\left(V^{\prime}\right)$ it then follows that

$$
\begin{equation*}
\beta\left(\mathcal{V} \| 1-\operatorname{vspan}\left(\mathcal{V}^{\prime}\right)\right)=\max _{v^{\prime} \in 1-\mathrm{vspan}\left(\mathcal{V}^{\prime}\right)} g\left(v^{\prime}\right) \leq \beta\left(\mathcal{V} \| \mathcal{V}^{\prime}\right) \tag{28}
\end{equation*}
$$

We obtain the reverse equality by noting that $\mathcal{V}^{\prime} \subseteq 1-\operatorname{vspan}\left(\mathcal{V}^{\prime}\right)$ and thus $\beta\left(\mathcal{V} \| \mathcal{V}^{\prime}\right) \leq$ $\beta\left(\mathcal{V} \| 1-\operatorname{vspan}\left(\mathcal{V}^{\prime}\right)\right)$. Hence $\beta\left(\mathcal{V} \| 1-\operatorname{vspan}\left(\mathcal{V}^{\prime}\right)\right)=\beta\left(\mathcal{V} \| \mathcal{V}^{\prime}\right)$ as needed.

Proposition 6. For any $\Pi \in \mathbb{\square}, \mathcal{V}, \mathcal{V}^{\prime} \in \mathbb{V}$ and $\epsilon \in \overline{\mathbb{R}}^{+}$, it follows that

$$
\mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon) \subseteq \mathcal{M}^{k}\left(\Pi, \mathcal{V}^{\prime} ; \epsilon+2 \gamma^{k} \beta\left(\mathcal{V} \| \mathcal{V}^{\prime}\right)\right)
$$

moreover, if \mathcal{V} is convex and compact, we obtain:

$$
\mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon) \subseteq \mathcal{M}^{k}\left(\Pi, 1-\operatorname{vspan}\left(\mathcal{V}^{\prime}\right) ; \epsilon+2 \gamma^{k} \beta\left(\mathcal{V} \| \mathcal{V}^{\prime}\right)\right)
$$

Proof. Fix an arbitrary model $\tilde{m} \in \mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon)$ and any $\pi \in \Pi$. We now select some $v^{\prime} \in \mathcal{V}^{\prime}$ and examine the tolerance with which \tilde{m} is value equivalent with respect to $\{\pi\}$ and $\left\{v^{\prime}\right\}$.

Notice that for any $v \in \mathcal{V}$ we can write

$$
\begin{align*}
\left\|\tilde{\mathcal{T}}_{\pi}^{k} v^{\prime}-\mathcal{T}_{\pi}^{k} v^{\prime}\right\| & =\left\|\tilde{\mathcal{T}}_{\pi}^{k} v^{\prime}-\mathcal{T}_{\pi}^{k} v^{\prime}+\tilde{\mathcal{T}}_{\pi}^{k} v-\tilde{\mathcal{T}}_{\pi}^{k} v\right\| \\
& \leq\left\|\tilde{\mathcal{T}}_{\pi}^{k} v^{\prime}-\tilde{\mathcal{T}}_{\pi}^{k} v\right\|+\left\|\tilde{\mathcal{T}}_{\pi}^{k} v-\mathcal{T}_{\pi}^{k} v^{\prime}\right\| \\
& =\left\|\tilde{\mathcal{T}}_{\pi}^{k} v^{\prime}-\tilde{\mathcal{T}}_{\pi}^{k} v\right\|+\left\|\tilde{\mathcal{T}}_{\pi}^{k} v-\mathcal{T}_{\pi}^{k} v^{\prime}+\mathcal{T}_{\pi}^{k} v-\mathcal{T}_{\pi}^{k} v\right\| \\
& \leq\left\|\tilde{\mathcal{T}}_{\pi}^{k} v^{\prime}-\tilde{\mathcal{T}}_{\pi}^{k} v\right\|+\left\|\tilde{\mathcal{T}}_{\pi}^{k} v-\mathcal{T}_{\pi}^{k} v\right\|+\left\|\mathcal{T}_{\pi}^{k} v-\mathcal{T}_{\pi}^{k} v^{\prime}\right\| \tag{29}\\
& \stackrel{(1)}{\leq} 2 \gamma^{k}\left\|v^{\prime}-v\right\|+\left\|\tilde{\mathcal{T}}_{\pi}^{k} v-\mathcal{T}_{\pi}^{k} v\right\| \\
& \stackrel{(2)}{\leq} 2 \gamma^{k}\left\|v^{\prime}-v\right\|+\epsilon
\end{align*}
$$

where (1) follows from the Bellman operators $\tilde{\mathcal{T}}_{\pi}$ and \mathcal{T}_{π} being contractions and (2) follows the assumption that $\tilde{m} \in \mathcal{M}^{k}(\Pi, \mathcal{V})$.
Since the above upper bound on $\left\|\tilde{\mathcal{T}}_{\pi}^{k} v^{\prime}-\mathcal{T}_{\pi}^{k} v^{\prime}\right\|$ holds for any $v \in \mathcal{V}$ we can write that

$$
\begin{equation*}
\left\|\tilde{\mathcal{T}}_{\pi}^{k} v^{\prime}-\mathcal{T}_{\pi}^{k} v^{\prime}\right\| \leq \epsilon+2 \gamma^{k} \min _{v \in \mathcal{V}}\left\|v^{\prime}-v\right\| \tag{30}
\end{equation*}
$$

Thus far we have shown that $\mathcal{M}^{k}(\Pi, \mathcal{V} ; \epsilon) \subseteq \mathcal{M}^{k}\left(\Pi,\left\{v^{\prime}\right\} ; \epsilon+2 \gamma^{k} \min _{v \in \mathcal{V}}\left\|v^{\prime}-v\right\|\right)$. To find a tolerance that holds for all $v^{\prime} \in \mathcal{V}^{\prime}$ we simply take a maximum over the element-wise tolerance:

$$
\begin{equation*}
\max _{v^{\prime} \in \mathcal{V}} \epsilon+2 \gamma^{k} \min _{v \in \mathcal{V}}\left\|v^{\prime}-v\right\|=\epsilon+2 \gamma^{k} \beta\left(\mathcal{V} \| \mathcal{V}^{\prime}\right) \tag{31}
\end{equation*}
$$

This completes the proof.
Theorem 2. For any $\tilde{m} \in \mathcal{M}^{k}(\mathbb{\square}, \mathcal{V} ; \epsilon)$ it follows that

$$
\begin{equation*}
\left\|v_{*}-v_{\tilde{\pi}_{*}}\right\| \leq \frac{2}{1-\gamma^{k}} \cdot \min _{c \geq 1}\left(c \cdot \epsilon+2 \gamma^{k} \beta\left(c-\operatorname{vspan}(\mathcal{V}) \| \mathbb{V}_{\rrbracket}\right)\right) \tag{17}
\end{equation*}
$$

where $\tilde{\pi}_{*}$ is an optimal policy of \tilde{m}.
Proof. From Theorem 1. we know by tolerating an error of

$$
\left.\epsilon^{\prime}=\frac{1}{1-\gamma^{k}} \min _{c \geq 1}\left(c \cdot \epsilon+2 \gamma^{k} \beta(c-\operatorname{sspan} \mathcal{V}) \| \mathbb{V}_{\pi}\right)\right)
$$

that $\mathcal{M}^{k}(\mathbb{\Pi}, \mathcal{V} ; \epsilon) \subseteq \mathcal{M}^{\infty}\left(\mathbb{\square} ; \epsilon^{\prime}\right)$. Thus $\mathcal{E}_{\epsilon}(\mathbb{\square}, \mathcal{V}, k \mid \llbracket, \infty) \leq \epsilon^{\prime}$. By applying Proposition 2 we obtain $\left\|v_{*}-v_{\tilde{\pi}_{*}}\right\| \leq 2 \epsilon^{\prime}$ as needed.

Corollary 3. Let $\hat{\vee}_{\Pi}=\left\{\hat{v}_{\pi}: \pi \in \mathbb{T}\right\}$ be a set of approximate value functions satisfying $\left\|v_{\pi}-\hat{v}_{\pi}\right\| \leq$ $\epsilon_{\text {approx }}$ for all $\pi \in \mathbb{\Pi}$. Then for any $\tilde{m} \in \mathcal{M}^{k}\left(\mathbb{\Pi}, \hat{\mathbb{V}}_{\Pi} ; \epsilon\right)$ it follows that:

$$
\left\|v_{*}-v_{\tilde{\pi}_{*}}\right\| \leq \frac{2\left(\epsilon+2 \gamma^{k} \epsilon_{\text {approx }}\right)}{1-\gamma^{k}}
$$

where $\tilde{\pi}_{*}$ is any optimal policy in \tilde{m}.
Proof. From the definition of $\hat{\mathbb{V}}_{\square}$, we know that $\beta\left(\mathbb{V}_{\square} \| \hat{\mathbb{V}}_{\pi}\right) \leq \epsilon_{\text {approx }}$. Thus by Proposition 6 and Corollary 1 we know that

$$
\mathcal{M}^{k}\left(\mathbb{\square}, \hat{\mathbb{V}}_{\llbracket} ; \epsilon\right) \subseteq \mathcal{M}^{k}\left(\mathbb{\Pi}, \mathbb{V}_{\rrbracket} ; \epsilon+2 \gamma^{k} \epsilon_{\text {approx }}\right) \subseteq \mathcal{M}^{\infty}\left(\mathbb{\square} ; \frac{\epsilon+2 \gamma^{k} \epsilon_{\text {approx }}}{1-\gamma^{k}}\right)
$$

thus $\mathcal{E}_{\epsilon}\left(\mathbb{\square}, \hat{\mathbb{V}}_{\square}, k \mid \mathbb{\Pi}, \infty\right) \leq \frac{\epsilon+2 \gamma^{k} \epsilon_{\text {approx }}}{1-\gamma^{k}}$, which gives us the desired performance bound by an application of Theorem 2

