A Appendix

A.1 Proofs

In this section we restate and provide proofs of the statements made in the main text.

Property 1. For any $\Pi \subseteq \Pi$, $\mathcal{V} \subseteq \mathbb{V}$ and $\mathcal{M} \subseteq \mathbb{M}$, it follows that $\mathcal{M}^k(\Pi, \mathcal{V}; 0) = \mathcal{M}^k(\Pi, \mathcal{V})$ and $\mathcal{M}^{\infty}(\Pi; 0) = \mathcal{M}^{\infty}(\Pi)$.

Proof. Any $\tilde{m} \in \mathcal{M}^k(\Pi, \mathcal{V}; 0)$ satisfies $\|\tilde{\mathcal{T}}_{\pi}^k v - \mathcal{T}_{\pi}^k v\| = 0 \ \forall \pi \in \Pi, \forall v \in \mathcal{V}$. Similarly any $\tilde{m} \in \mathcal{M}^k(\Pi, \mathcal{V})$ satisfies analogous equality constraints $\tilde{\mathcal{T}}_{\pi}^k v = \mathcal{T}_{\pi}^k v \ \forall \pi \in \Pi, \forall v \in \mathcal{V}$. Since $\|\cdot\|$ is a norm, we know that $\|\tilde{\mathcal{T}}_{\pi}^k v - \mathcal{T}_{\pi}^k v\| = 0 \iff \tilde{\mathcal{T}}_{\pi}^k v = \mathcal{T}_{\pi}^k v$, hence $\mathcal{M}^k(\Pi, \mathcal{V}; 0) = \mathcal{M}^k(\Pi, \mathcal{V})$. The same logic applies to APVE classes.

Property 2. For any
$$\epsilon \in \mathbb{R}^+$$
, $\mathcal{M} \subseteq \mathcal{M} \subseteq \mathbb{M}$, $\Pi \subseteq \Pi' \subseteq \Pi$ and $\mathcal{V} \subseteq \mathcal{V}' \subseteq \mathbb{V}$, it follows that
 $\mathcal{M}^k(\Pi', \mathcal{V}'; \epsilon) \subseteq \mathcal{M}^k(\Pi, \mathcal{V}; \epsilon) \subseteq \bar{\mathcal{M}}^k(\Pi, \mathcal{V}; \epsilon).$ (7)

Proof. An AVE class, $\mathcal{M}^k(\Pi', \mathcal{V}'; \epsilon)$ satisfies a series of constraints of the form $\|\tilde{\mathcal{T}}^k_{\pi}v - \mathcal{T}^k_{\pi}v\| \le \epsilon$ for each pair of $\pi, v \in \Pi' \times \mathcal{V}'$. Considering another pair of sub-sets $\Pi \subseteq \Pi'$ and $\mathcal{V} \subseteq \mathcal{V}'$, we can partition the first pair as follows:

$$\Pi' \times \mathcal{V}' = (\Pi' \setminus \Pi \times \mathcal{V}' \setminus \mathcal{V}) \uplus (\Pi' \setminus \Pi \times \mathcal{V}) \uplus (\Pi \times \mathcal{V}' \setminus \mathcal{V}) \uplus (\Pi \times \mathcal{V}' \setminus \mathcal{V})$$

accordingly,

$$\mathcal{M}^{k}(\Pi', \mathcal{V}'; \epsilon) = \mathcal{M}^{k}(\Pi' \setminus \Pi, \mathcal{V}' \setminus \mathcal{V}; \epsilon) \cap \mathcal{M}^{k}(\Pi' \setminus \Pi, \mathcal{V}; \epsilon) \cap \mathcal{M}^{k}(\Pi, \mathcal{V}' \setminus \mathcal{V}; \epsilon) \cap \mathcal{M}^{k}(\Pi, \mathcal{V}; \epsilon)$$
$$\subseteq \mathcal{M}^{k}(\Pi, \mathcal{V}; \epsilon),$$

satisfying the first subset relation in Eq. 7. For the next subset relation, we simply note that

$$\bar{\mathcal{M}}^k(\Pi, \mathcal{V}; \epsilon) = (\bar{\mathcal{M}} \setminus \mathcal{M})^k(\Pi, \mathcal{V}; \epsilon) \cup \mathcal{M}^k(\Pi, \mathcal{V}; \epsilon) \supseteq \mathcal{M}^k(\Pi, \mathcal{V}; \epsilon)$$

completing the proof.

Property 3. For any $\Pi \subseteq \Pi$, $\mathcal{V} \subseteq \mathbb{V}$ and $\epsilon, \epsilon' \in \mathbb{R}^+$ such that $\epsilon' \geq \epsilon$, it follows that

$$\mathcal{M}^{k}(\Pi, \mathcal{V}; \epsilon) \subseteq \mathcal{M}^{k}(\Pi, \mathcal{V}; \epsilon').$$
(8)

Proof. For any $\tilde{m} \in \mathcal{M}^k(\Pi, \mathcal{V}; \epsilon)$ a number of AVE constraints are respected: $\|\tilde{\mathcal{T}}_{\pi}^k v - \mathcal{T}_{\pi}^k v\| \leq \epsilon$ for each pair $\pi, v \in \Pi \times \mathcal{V}$. Since $\epsilon' \geq \epsilon$, it follows that $\|\tilde{\mathcal{T}}_{\pi}^k v - \mathcal{T}_{\pi}^k v\| \leq \epsilon \leq \epsilon'$ as well and hence $\tilde{m} \in \mathcal{M}^k(\Pi, \mathcal{V}; \epsilon')$. Thus $\mathcal{M}^k(\Pi, \mathcal{V}; \epsilon) \subseteq \mathcal{M}^k(\Pi, \mathcal{V}; \epsilon')$ as needed. \Box

Proposition 1. For any $\epsilon \in \mathbb{R}^+$, $\Pi, \Pi' \subseteq \Pi, \mathcal{V}, \mathcal{V}' \subseteq \mathbb{V}$ and $k, K \in \mathbb{Z}^+$ there exists some $\epsilon' \in \mathbb{R}^+$ such that

$$\mathcal{M}^{k}(\Pi, \mathcal{V}; \epsilon) \subseteq \mathcal{M}^{K}(\Pi', \mathcal{V}'; \epsilon').$$
(9)

Moreover, if \mathcal{M} *,* \mathcal{V} *and* \mathcal{V}' *are bounded then* ϵ' *is finite.*

Proof. Denote $v_{\max} = \max_{s \in S, v \in \mathcal{V} \cup \mathcal{V}'} v(s)$, $\tilde{r}_{\max} = \max_{s \in S, a \in \mathcal{A}, \tilde{m} \in \mathcal{M}} r(s, a)$ and consider any $\tilde{m} \in \mathcal{M}^k(\Pi, \mathcal{V}; \epsilon)$. We can then write

$$\|\tilde{\mathcal{T}}_{\pi}^{K}v - \mathcal{T}_{\pi}^{K}v\| \le \max_{s} |\tilde{\mathcal{T}}_{\pi}^{K}v(s)| + \max_{s} |\mathcal{T}_{\pi}^{K}v(s)| \le 2\max\{\tilde{r}_{\max}, r_{\max}\}\frac{1-\gamma^{K}}{1-\gamma} + \gamma^{K}v_{\max}\}$$

for any $\pi \in \Pi'$, $v \in \mathcal{V}'$ and $\tilde{m} \in \mathcal{M}^k(\Pi, \mathcal{V}; \epsilon)$.

Clearly, when $\epsilon' = \infty$ the desired subset relation holds, as $\mathcal{M}^K(\Pi', \mathcal{V}'; \infty) = \mathcal{M} \supseteq \mathcal{M}^k(\Pi, \mathcal{V}; \epsilon)$ for any choices of sets, orders and ϵ . Additionally, when \mathcal{M}, \mathcal{V} and \mathcal{V}' are bounded, we know that \tilde{r}_{\max} and v_{\max} are finite. Thus, by selecting a finite $\epsilon' > 2 \max{\{\tilde{r}_{\max}, r_{\max}\}} \frac{1-\gamma^K}{1-\gamma} + \gamma^K v_{\max}$, we obtain $\tilde{m} \in \mathcal{M}^K(\Pi', \mathcal{V}'; \epsilon')$ and thus $\mathcal{M}^k(\Pi, \mathcal{V}; \epsilon) \subseteq \mathcal{M}^K(\Pi', \mathcal{V}'; \epsilon')$ as needed.

 \square

Proposition 2. For any $\tilde{m} \in \mathcal{M}^k(\Pi, \mathcal{V}; \epsilon)$ it follows that

$$\|v_{\tilde{\pi}_*} - v_*\| \le 2 \cdot \mathcal{E}_{\epsilon}(\Pi, \mathcal{V}, k \,|\, \Pi, \infty),$$

where $\tilde{\pi}_*$ is any optimal policy of \tilde{m} .

Proof. From Proposition 1, we know that a minimum tolerated error, $\epsilon' = \mathcal{E}_{\epsilon}(\Pi, \mathcal{V}, k | \Pi, \infty)$, exists such that $\mathcal{M}^{k}(\Pi, \mathcal{V}; \epsilon) \subseteq \mathcal{M}^{\infty}(\Pi; \epsilon')$. We can then consider the performance of models in $\mathcal{M}^{\infty}(\Pi; \epsilon')$. For any $\tilde{m} \in \mathcal{M}^{\infty}(\Pi; \epsilon')$ we can write:

$$0 \ge \tilde{v}_{\pi_*}(s) - \tilde{v}_{\tilde{\pi}_*}(s) = (\tilde{v}_{\pi_*}(s) - v_{\pi_*}(s)) + (v_{\pi_*} - v_{\tilde{\pi}_*}(s)) + (v_{\tilde{\pi}_*}(s) - \tilde{v}_{\tilde{\pi}_*}(s))$$
(19)

for any $s \in S$ where π_* and $\tilde{\pi}_*$ are arbitrary optimal policies in the environment and \tilde{m} respectively and \tilde{v}_{π} denotes the model's value of a policy π .

Since $\tilde{m} \in \mathcal{M}^{\infty}(\Pi; \epsilon')$ we know the first and third terms are bounded below by $-\epsilon'$, giving:

$$0 \ge v_*(s) - v_{\tilde{\pi}_*}(s) - 2\epsilon'$$

$$\implies 2\epsilon' \ge v_*(s) - v_{\tilde{\pi}_*}(s) \ge 0$$

$$\implies \|v_* - v_{\tilde{\pi}_*}\| \le 2\epsilon',$$
(20)

as needed.

Proposition 3. For any $\epsilon \in \mathbb{R}^+$, $\Pi \subseteq \Pi$, $\mathcal{V} \subseteq \mathbb{V}$ such that $v \in \mathcal{V} \implies \mathcal{T}_{\pi}v \in \mathcal{V} \ \forall \pi \in \Pi$ and $k, K \in \mathbb{Z}^+$ such that k divides K, we have that

$$\mathcal{M}^{k}(\Pi, \mathcal{V}; \epsilon) \subseteq \mathcal{M}^{K}(\Pi, \mathcal{V}; \frac{\epsilon \cdot (1 - \gamma^{K})}{1 - \gamma^{k}}).$$
(10)

Proof. Let K = nk, and consider a model $\tilde{m} \in \mathcal{M}^k(\Pi, \mathcal{V}; \epsilon)$. It follows for any $\pi \in \Pi$ and $v \in \mathcal{V}$ that

$$\begin{aligned} \|\mathcal{T}_{\pi}^{K}v - \mathcal{T}_{\pi}^{K}v\| &= \|\mathcal{T}_{\pi}^{K}\mathcal{T}_{\pi}^{K-k}v - \mathcal{T}_{\pi}^{k}\mathcal{T}_{\pi}^{K-k}v\| \\ &= \|\tilde{\mathcal{T}}_{\pi}^{k}\tilde{\mathcal{T}}_{\pi}^{K-k}v - \mathcal{T}_{\pi}^{k}\mathcal{T}_{\pi}^{K-k}v + \tilde{\mathcal{T}}_{\pi}^{k}\mathcal{T}_{\pi}^{K-k}v - \tilde{\mathcal{T}}_{\pi}^{k}\mathcal{T}_{\pi}^{K-k}v\| \\ &\leq \|\tilde{\mathcal{T}}_{\pi}^{k}\mathcal{T}_{\pi}^{K-k}v - \mathcal{T}_{\pi}^{k}\mathcal{T}_{\pi}^{K-k}v\| + \|\tilde{\mathcal{T}}_{\pi}^{k}\tilde{\mathcal{T}}_{\pi}^{K-k}v - \tilde{\mathcal{T}}_{\pi}^{k}\mathcal{T}_{\pi}^{K-k}v\| \\ &\stackrel{(1)}{\leq} \epsilon + \|\tilde{\mathcal{T}}_{\pi}^{k}\tilde{\mathcal{T}}_{\pi}^{K-k}v - \tilde{\mathcal{T}}_{\pi}^{k}\mathcal{T}_{\pi}^{K-k}v\| \\ &\stackrel{(2)}{\leq} \epsilon + \gamma^{k}\|\tilde{\mathcal{T}}_{\pi}^{K-k}v - \mathcal{T}_{\pi}^{K-k}v\| \end{aligned}$$
(21)

where (1) follows from the assumption on \mathcal{V} and (2) follows from the fact that $\tilde{\mathcal{T}}_{\pi}$ is a contraction. Next, using induction we can say that:

$$\|\tilde{\mathcal{T}}_{\pi}^{K}v_{\pi} - \mathcal{T}_{\pi}^{K}v_{\pi}\| \leq \epsilon \cdot \left(1 + \gamma^{k} + \gamma^{2k} + \dots + \gamma^{(n-1)k}\right)$$

$$= \epsilon \cdot \sum_{t=0}^{n-1} \gamma^{kt}$$

$$= \epsilon \cdot \frac{1 - (\gamma^{k})^{n}}{1 - \gamma^{k}}$$

$$= \epsilon \cdot \frac{1 - \gamma^{K}}{1 - \gamma^{k}}$$
(22)

where the last equality follows because K = nk.

This suffices to show that $\tilde{m} \in \mathcal{M}^{K}(\Pi, \mathcal{V}; \epsilon \cdot \frac{1-\gamma^{K}}{1-\gamma^{k}})$ and thus: $\mathcal{M}^{k}(\Pi, \mathcal{V}; \epsilon) \subseteq \mathcal{M}^{K}(\Pi, \mathcal{V}; \epsilon \cdot \frac{1-\gamma^{K}}{1-\gamma^{k}})$ as needed.

Corollary 1. For any set of policies $\Pi \subseteq \Pi$, set of functions $\mathcal{V} \in \mathbb{V}$ such that $\{v_{\pi} : \pi \in \Pi\} \subseteq \mathcal{V}$ and $k \in \mathbb{Z}^+$, it follows that

$$\mathcal{M}^{k}(\Pi, \mathcal{V}; \epsilon) \subseteq \mathcal{M}^{\infty}(\Pi; \frac{\epsilon}{1 - \gamma^{k}}).$$
(11)

Proof.

$$\mathcal{M}^{k}(\Pi, \mathcal{V}; \epsilon) = \bigcap_{\pi \in \Pi} \bigcap_{v \in \mathcal{V}} \mathcal{M}^{k}(\{\pi\}, \{v\}; \epsilon) \subseteq \bigcap_{\pi \in \Pi} \mathcal{M}^{k}(\{\pi\}, \{v_{\pi}\}; \epsilon)$$
(23)

where the subset-relation holds from our assumption that $\{v_{\pi} : \pi \in \Pi\} \subseteq \mathcal{V}$.

Next we examine $\tilde{m} \in \mathcal{M}^k(\{\pi\}, \{v_\pi\}; \epsilon)$ for individual $\pi \in \Pi$. We know that for any such model:

$$\begin{aligned} \|\tilde{\mathcal{T}}_{\pi}^{nk}v_{\pi} - v_{\pi}\| &\leq \|\tilde{\mathcal{T}}_{\pi}^{nk}v_{\pi} - \tilde{\mathcal{T}}_{\pi}^{k}v_{\pi}\| + \|\tilde{\mathcal{T}}_{\pi}^{k}v_{\pi} - v_{\pi}\| \\ &\leq \gamma^{k}\|\tilde{\mathcal{T}}_{\pi}^{(n-1)k}v_{\pi} - v_{\pi}\| + \epsilon. \end{aligned}$$

By repeatedly applying this inequality we can obtain:

$$\|\tilde{\mathcal{T}}_{\pi}^{nk}v_{\pi} - v_{\pi}\| \leq \sum_{t=0}^{n-1} \epsilon \cdot \gamma^{(tk)} = \epsilon \cdot \frac{1 - \gamma^{nk}}{1 - \gamma^{k}}.$$

Next, from the continuity of $\|\cdot\|$, we can take limits to obtain:

$$\epsilon \cdot \frac{1}{1-\gamma^k} \ge \lim_{n \to \infty} \|\tilde{\mathcal{T}}_{\pi}^{nk} v_{\pi} - v_{\pi}\| = \|\lim_{n \to \infty} \tilde{\mathcal{T}}_{\pi}^{nk} v_{\pi} - v_{\pi}\| = \|\tilde{v}_{\pi} - v_{\pi}\|,$$

giving us that $\mathcal{M}^k(\{\pi\}, \{v_\pi\}; \epsilon) \subseteq \mathcal{M}^\infty(\{\pi\}; \epsilon \cdot \frac{1}{1-\gamma^k})$. We can plug this result back into Eq. 23 to obtain:

$$\mathcal{M}^{k}(\Pi, \mathcal{V}; \epsilon) \subseteq \bigcap_{\pi \in \Pi} \mathcal{M}^{k}(\{\pi\}, \{v_{\pi}\}; \epsilon) \subseteq \bigcap_{\pi \in \Pi} \mathcal{M}^{\infty}(\{\pi\}; \epsilon \cdot \frac{1}{1 - \gamma^{k}}) = \mathcal{M}^{\infty}(\Pi; \epsilon \cdot \frac{1}{1 - \gamma^{k}}),$$

as needed.

Proposition 4. For any set of policies $\Pi \subseteq \Pi$, set of functions $\mathcal{V} \in \mathbb{V}$, c > 1 and error $\epsilon \in \mathbb{R}^+$, we have

$$\mathcal{M}^{k}(\Pi, c\operatorname{-vspan}(\mathcal{V}); \epsilon) \subseteq \mathcal{M}^{k}(\Pi, \mathcal{V}; \epsilon) \subseteq \mathcal{M}^{k}(\Pi, c\operatorname{-vspan}(\mathcal{V}); c \cdot \epsilon).$$
(13)

Proof. Clearly, $\mathcal{V} \subseteq c\text{-vspan}(\mathcal{V})$ and thus $\mathcal{M}^k(\Pi, c\text{-vspan}(\mathcal{V}); \epsilon) \subseteq \mathcal{M}^k(\Pi, \mathcal{V}; \epsilon)$. We now prove that $\mathcal{M}^k(\Pi, \mathcal{V}; \epsilon) \subseteq \mathcal{M}^k(\Pi, \mathcal{V}; c \cdot \epsilon)$. We first consider any $\tilde{m} \in \mathcal{M}^k(\Pi, \mathcal{V}; \epsilon)$ and $v' \in c\text{-vspan}(\mathcal{V})$. Since $v' \in c\text{-vspan}(\mathcal{V})$ we can write $v' = \sum_{i=1}^n \alpha_i v_i$ where $v_i \in \mathcal{V}$ for each i and $\sum_{i=1}^n |\alpha_i| \leq c$. From here we observe:

$$\begin{split} \|\tilde{\mathcal{T}}_{\pi}^{k}v' - \mathcal{T}_{\pi}^{k}v'\| &= \|\tilde{\mathcal{T}}_{\pi}^{k}(\sum_{i=1}^{n}\alpha_{i}v_{i}) - \mathcal{T}_{\pi}^{k}(\sum_{i=1}^{n}\alpha_{i}v_{i})\| \\ &\leq \|\sum_{i=1}^{n}\alpha_{i}(\tilde{\mathcal{T}}_{\pi}^{k}v_{i} - \mathcal{T}_{\pi}^{k}v_{i})\| \\ &\leq \sum_{i=1}^{n}|\alpha_{i}|\|\tilde{\mathcal{T}}_{\pi}^{k}v_{i} - \mathcal{T}_{\pi}^{k}v_{i}\| \\ &\leq \sum_{i=1}^{n}|\alpha_{i}|\epsilon \\ &\leq c \cdot \epsilon \end{split}$$

$$(24)$$

which shows that $\mathcal{M}^k(\Pi, c\text{-vspan}(\mathcal{V}); c \cdot \epsilon)$ as needed.

Corollary 2. When either c = 1 or $\epsilon = 0$, for any $\Pi \subseteq \Pi$, $\mathcal{V} \subseteq \mathbb{V}$ it follows that

$$\mathcal{M}^{k}(\Pi, \mathcal{V}; \epsilon) = \mathcal{M}^{k}(\Pi, c\text{-vspan}(\mathcal{V}); \epsilon).$$
(14)

Proof. The proof follows directly from Proposition 4. When either $c \in \{0, 1\}$ the left-most and right-most terms in Eq. 13 are equal, squeezing $\mathcal{M}^k(\Pi, \mathcal{V}; \epsilon) = \mathcal{M}^k(\Pi, c\text{-vspan}(\mathcal{V}); \epsilon)$ as needed. \Box

Proposition 5.

1. (Asymmetry) For any $\mathcal{V} \subseteq \mathcal{V}' \subseteq \mathcal{V}'' \subseteq \mathbb{V}$ it follows that

$$0 = \beta(\mathcal{V}||\mathcal{V}) \leq \beta(\mathcal{V}||\mathcal{V}') \leq \beta(\mathcal{V}||\mathcal{V}'') \quad and \quad 0 = \beta(\mathcal{V}''||\mathcal{V}'') \leq \beta(\mathcal{V}'||\mathcal{V}'') \leq \beta(\mathcal{V}||\mathcal{V}'').$$

2. (Convex, Compact \mathcal{V}) When \mathcal{V} is convex and compact it follows that

$$\beta(\mathcal{V}||\mathcal{V}') = \beta(\mathcal{V}||1\text{-vspan}(\mathcal{V}')).$$

Proof.

1. Recall $\beta(\mathcal{V}||\mathcal{V}') = \max_{v' \in \mathcal{V}'} \min_{v \in \mathcal{V}} ||v' - v||$. Increasing the size of \mathcal{V}' means that more elements can be maximized over, thereby increasing $\beta(\mathcal{V}||\mathcal{V}')$. Similarly, increasing the size of \mathcal{V} means that more elements can be minimized over, thereby decreasing $\beta(\mathcal{V}||\mathcal{V}')$. When $\mathcal{V} = \mathcal{V}'$, we know that

$$0 \leq \beta(\mathcal{V}||\mathcal{V}') = \max_{v' \in \mathcal{V}'} \min_{v \in \mathcal{V}} \|v' - v\| \leq \max_{v' \in \mathcal{V}'} \|v' - v'\| = 0,$$

where second inequality follows since $\mathcal{V} = \mathcal{V}'$.

2. We begin by considering the function $g(v') = \min_{v \in \mathcal{V}} \|v - v'\|$. We begin by showing that this function is convex. Consider $v'_1, v'_2 \in \mathcal{V}'$ and denote $v_1 = \operatorname{argmin}_{v \in \mathcal{V}} \|v - v'_1\|$ and $v_2 = \operatorname{argmin}_{v \in \mathcal{V}} \|v - v'_2\|$. Then for any $\lambda \in [0, 1]$ we can write:

$$\lambda g(v_1') + (1 - \lambda)g(v_2') = \lambda \|v_1' - v_1\| + (1 - \lambda)\|v_2' - v_2\| \\ \ge \|(\lambda v_1' + (1 - \lambda)v_2') - (\lambda v_1 + (1 - \lambda)v_2)\|$$
(25)

since \mathcal{V} is convex $(\lambda v_1 + (1 - \lambda)v_2) \in \mathcal{V}$, thus:

$$\|(\lambda v_1' + (1-\lambda)v_2') - (\lambda v_1 + (1-\lambda)v_2)\| \ge \min_{v \in \mathcal{V}} \|(\lambda v_1' + (1-\lambda)v_2') - v\|$$

= $g(\lambda v_1' + (1-\lambda)v_2')$ (26)

which suffices to show that g is a convex function.

Next we consider any element $v' \in 1$ -vspan (\mathcal{V}') such that $v' = \sum_i \alpha_i v'_i$ with $\sum_i \alpha_i = 1$ and $\alpha_i \ge 0$ for all i. We can then write:

$$g(v') = g(\sum_{i} \alpha_i v'_i) \le \sum_{i} \alpha_i g(v'_i) \le \max_{i} g(v'_i) \le \max_{v' \in \mathcal{V}'} g(v') = \beta(\mathcal{V}||\mathcal{V}')$$
(27)

Since $g(v') \leq \beta(\mathcal{V}||\mathcal{V}')$ for every $v' \in 1$ -vspan(V') it then follows that

$$\beta(\mathcal{V}||1\text{-vspan}(\mathcal{V}')) = \max_{v' \in 1\text{-vspan}(\mathcal{V}')} g(v') \le \beta(\mathcal{V}||\mathcal{V}').$$
(28)

We obtain the reverse equality by noting that $\mathcal{V}' \subseteq 1\text{-vspan}(\mathcal{V}')$ and thus $\beta(\mathcal{V}||\mathcal{V}') \leq \beta(\mathcal{V}||1\text{-vspan}(\mathcal{V}'))$. Hence $\beta(\mathcal{V}||1\text{-vspan}(\mathcal{V}')) = \beta(\mathcal{V}||\mathcal{V}')$ as needed.

Proposition 6. For any $\Pi \in \Pi$, $\mathcal{V}, \mathcal{V}' \in \mathbb{V}$ and $\epsilon \in \mathbb{R}^+$, it follows that

$$\mathcal{M}^{k}(\Pi, \mathcal{V}; \epsilon) \subseteq \mathcal{M}^{k}(\Pi, \mathcal{V}'; \epsilon + 2\gamma^{k}\beta(\mathcal{V}||\mathcal{V}')),$$

moreover, if V is convex and compact, we obtain:

$$\mathcal{M}^{k}(\Pi, \mathcal{V}; \epsilon) \subseteq \mathcal{M}^{k}(\Pi, 1\text{-vspan}(\mathcal{V}'); \epsilon + 2\gamma^{k}\beta(\mathcal{V}||\mathcal{V}')).$$

Proof. Fix an arbitrary model $\tilde{m} \in \mathcal{M}^k(\Pi, \mathcal{V}; \epsilon)$ and any $\pi \in \Pi$. We now select some $v' \in \mathcal{V}'$ and examine the tolerance with which \tilde{m} is value equivalent with respect to $\{\pi\}$ and $\{v'\}$.

Notice that for any $v \in \mathcal{V}$ we can write

$$\begin{split} \|\tilde{\mathcal{T}}_{\pi}^{k}v' - \mathcal{T}_{\pi}^{k}v'\| &= \|\tilde{\mathcal{T}}_{\pi}^{k}v' - \mathcal{T}_{\pi}^{k}v' + \tilde{\mathcal{T}}_{\pi}^{k}v - \tilde{\mathcal{T}}_{\pi}^{k}v\| \\ &\leq \|\tilde{\mathcal{T}}_{\pi}^{k}v' - \tilde{\mathcal{T}}_{\pi}^{k}v\| + \|\tilde{\mathcal{T}}_{\pi}^{k}v - \mathcal{T}_{\pi}^{k}v'\| \\ &= \|\tilde{\mathcal{T}}_{\pi}^{k}v' - \tilde{\mathcal{T}}_{\pi}^{k}v\| + \|\tilde{\mathcal{T}}_{\pi}^{k}v - \mathcal{T}_{\pi}^{k}v' + \mathcal{T}_{\pi}^{k}v - \mathcal{T}_{\pi}^{k}v\| \\ &\leq \|\tilde{\mathcal{T}}_{\pi}^{k}v' - \tilde{\mathcal{T}}_{\pi}^{k}v\| + \|\tilde{\mathcal{T}}_{\pi}^{k}v - \mathcal{T}_{\pi}^{k}v\| + \|\mathcal{T}_{\pi}^{k}v - \mathcal{T}_{\pi}^{k}v'\| \qquad (29) \\ &\stackrel{(1)}{\leq} 2\gamma^{k}\|v' - v\| + \|\tilde{\mathcal{T}}_{\pi}^{k}v - \mathcal{T}_{\pi}^{k}v\| \\ &\stackrel{(2)}{\leq} 2\gamma^{k}\|v' - v\| + \epsilon \end{split}$$

where (1) follows from the Bellman operators $\tilde{\mathcal{T}}_{\pi}$ and \mathcal{T}_{π} being contractions and (2) follows the assumption that $\tilde{m} \in \mathcal{M}^k(\Pi, \mathcal{V})$.

Since the above upper bound on $\|\tilde{\mathcal{T}}_{\pi}^{k}v' - \mathcal{T}_{\pi}^{k}v'\|$ holds for any $v \in \mathcal{V}$ we can write that

$$\|\tilde{\mathcal{T}}_{\pi}^{k}v' - \mathcal{T}_{\pi}^{k}v'\| \le \epsilon + 2\gamma^{k} \min_{v \in \mathcal{V}} \|v' - v\|.$$
(30)

Thus far we have shown that $\mathcal{M}^k(\Pi, \mathcal{V}; \epsilon) \subseteq \mathcal{M}^k(\Pi, \{v'\}; \epsilon + 2\gamma^k \min_{v \in \mathcal{V}} \|v' - v\|)$. To find a tolerance that holds for all $v' \in \mathcal{V}'$ we simply take a maximum over the element-wise tolerance:

$$\max_{v'\in\mathcal{V}}\epsilon + 2\gamma^k \min_{v\in\mathcal{V}} \|v' - v\| = \epsilon + 2\gamma^k \beta(\mathcal{V}\|\mathcal{V})$$
(31)

This completes the proof.

Theorem 2. For any $\tilde{m} \in \mathcal{M}^k(\mathbb{T}, \mathcal{V}; \epsilon)$ it follows that

$$\|v_* - v_{\tilde{\pi}_*}\| \le \frac{2}{1 - \gamma^k} \cdot \min_{c \ge 1} \left(c \cdot \epsilon + 2\gamma^k \beta(c \operatorname{-vspan}(\mathcal{V}) || \mathbb{V}_{\mathbb{I}}) \right),$$
(17)

where $\tilde{\pi}_*$ is an optimal policy of \tilde{m} .

Proof. From Theorem 1, we know by tolerating an error of

$$\epsilon' = \frac{1}{1 - \gamma^k} \min_{c \ge 1} (c \cdot \epsilon + 2\gamma^k \beta(c \text{-vspan}\mathcal{V}) || \mathbb{V}_{\mathbb{D}})),$$

that $\mathcal{M}^k(\mathbb{T}, \mathcal{V}; \epsilon) \subseteq \mathcal{M}^{\infty}(\mathbb{T}; \epsilon')$. Thus $\mathcal{E}_{\epsilon}(\mathbb{T}, \mathcal{V}, k \mid \mathbb{T}, \infty) \leq \epsilon'$. By applying Proposition 2, we obtain $||v_* - v_{\tilde{\pi}_*}|| \leq 2\epsilon'$ as needed.

Corollary 3. Let $\hat{\mathbb{V}}_{\mathbb{D}} = {\hat{v}_{\pi} : \pi \in \mathbb{D}}$ be a set of approximate value functions satisfying $||v_{\pi} - \hat{v}_{\pi}|| \le \epsilon_{approx}$ for all $\pi \in \mathbb{D}$. Then for any $\tilde{m} \in \mathcal{M}^{k}(\mathbb{D}, \hat{\mathbb{V}}_{\mathbb{D}}; \epsilon)$ it follows that:

$$\|v_* - v_{\tilde{\pi}_*}\| \le \frac{2(\epsilon + 2\gamma^k \epsilon_{approx})}{1 - \gamma^k},$$

where $\tilde{\pi}_*$ is any optimal policy in \tilde{m} .

Proof. From the definition of $\hat{\mathbb{V}}_{\mathbb{T}}$, we know that $\beta(\mathbb{V}_{\mathbb{T}} || \hat{\mathbb{V}}_{\mathbb{T}}) \leq \epsilon_{\text{approx}}$. Thus by Proposition 6 and Corollary 1 we know that

$$\mathcal{M}^{k}(\mathbb{\Pi}, \hat{\mathbb{V}}_{\mathbb{\Pi}}; \epsilon) \subseteq \mathcal{M}^{k}(\mathbb{\Pi}, \mathbb{V}_{\mathbb{\Pi}}; \epsilon + 2\gamma^{k} \epsilon_{\operatorname{approx}}) \subseteq \mathcal{M}^{\infty}(\mathbb{\Pi}; \frac{\epsilon + 2\gamma^{k} \epsilon_{\operatorname{approx}}}{1 - \gamma^{k}}),$$

thus $\mathcal{E}_{\epsilon}(\Pi, \hat{\mathbb{V}}_{\Pi}, k \mid \Pi, \infty) \leq \frac{\epsilon + 2\gamma^k \epsilon_{\text{approx}}}{1 - \gamma^k}$, which gives us the desired performance bound by an application of Theorem 2.