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Abstract

Model-based reinforcement learning agents must make compromises about which
aspects of the environment their models should capture. The value equivalence
(VE) principle posits that these compromises should be made considering the
model’s eventual use in value-based planning. Given sets of functions and policies,
a model is said to be order-k VE to the environment if k applications of the Bellman
operators induced by the policies produce the correct result when applied to the
functions. Prior work investigated the classes of models induced by VE when we
vary k and the sets of policies and functions. This gives rise to a rich collection
of topological relationships and conditions under which VE models are optimal
for planning. Despite this effort, relatively little is known about the planning
performance of models that fail to satisfy these conditions. This is due to the
rigidity of the VE formalism, as classes of VE models are defined with respect to
exact constraints on their Bellman operators. This limitation gets amplified by the
fact that such constraints themselves may depend on functions that can only be
approximated in practice. To address these problems we propose approximate value
equivalence (AVE), which extends the VE formalism by replacing equalities with
error tolerances. This extension allows us to show that AVE models with respect
to one set of functions are also AVE with respect to any other set of functions if
we tolerate a high enough error. We can then derive bounds on the performance
of VE models with respect to arbitrary sets of functions. Moreover, AVE models
more accurately reflect what can be learned by our agents in practice, allowing
us to investigate previously unexplored tensions between model capacity and the
choice of VE model class. In contrast to previous works, we show empirically that
there are situations where agents with limited capacity should prefer to learn more
accurate models with respect to smaller sets of functions over less accurate models
with respect to larger sets of functions.

1 Introduction

Reinforcement learning (RL) is a general framework in which an agent learns to maximize the reward
it receives from its environment by interacting with it [Sutton and Barto, 2018]. Though RL makes
no prescriptions about their internal processes, agents are sometimes endowed with the ability to
learn simulators of their environment, called models, which enable predicting the effects of sequences
of actions without executing them in the environment. The subfield of RL which studies such agents
is referred to as model-based reinforcement learning (MBRL).
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In classical MBRL, agents endeavor to learn models that accurately capture the dynamics of their
environments and subsequently use these models in their estimation of the values of different policies.
Though having an accurate model is sufficient for this task, they are frequently impractical to learn—
as MBRL agents are deployed in more complex environments, the demands of learning models
which accurately capture these complexities become more severe. Fortunately, such models are not
necessary for learning performant MBRL agents, as demonstrated by several recent works [Oh et al.,
2017, Silver et al., 2017, Farquhar et al., 2018, Schrittwieser et al., 2020]. The agents in these works
learn models that are accurate at what they are eventually used for: the estimation of policy values.
In particular, these models are learnt to be able to accurately predict the values of policies in the
environment rather than to be able to accurately predict the environment’s dynamics.

Grimm et al. [2020, 2021] provide a theoretical underpinning for models learned in this way by
establishing the value equivalence (VE) principle. VE partitions the space of models an agent can
learn into different VE classes according to properties of their Bellman operators. For a given
integer k, an order-k VE class consists of models whose k-step Bellman operators of certain policies
match the environment’s when applied to certain functions. The policies and functions used as VE
constraints are the identifiers of the equivalent classes. Accordingly, much of the prior work on VE
has concerned the selection of these sets such that the corresponding VE models are of use to an agent.
In particular, Grimm et al. [2021] proved that any model in the infinite-order VE—also known as
proper value equivalent or PVE—class induced by all deterministic policies is sufficient for optimal
planning. However, with the exception of this specific model class and its subsets, the analyses by
Grimm et al. [2020, 2021] offer no bounds on the performance of other VE classes.

In this work we extend the VE framework by developing an approximate theory of value equivalence
which augments VE classes with an error tolerance parameter that controls the degree to which models
can violate their class’ constraints (Definition 1). We call the resulting framework approximate value
equivalence (AVE). While previous work on VE demonstrated topological relationships between
specific instances of VE classes (e.g., between classes with order 1 [Grimm et al., 2020] or between
classes with fixed Π and V and orders that are multiples of one another [Grimm et al., 2021]),
we show that arbitrary pairs of AVE classes can be topologically related by tolerating sufficient
error (Proposition 1). This allows us to bound the performance of models in any AVE class in
terms of the minimum error that must be tolerated in order to topologically relate it to a subset of
the aforementioned PVE class (Proposition 2). In Section 4, we proceed by deriving a series of
topological relationships between AVE classes and leveraging this connection between topology
and performance to produce various performance bounds for AVE classes. We are ultimately able
to combine these relationships together to produce a general performance bound over AVE classes
with respect to arbitrary orders and function sets— dramatically expanding the set of VE model
classes with theoretical guarantees. Finally, we leverage our study of AVE classes to reveal previously
overlooked tensions between model capacity and the choice of model class. In particular, we
empirically demonstrate situations in which a low-capacity agent achieves higher performance by
learning a VE model with respect to fewer functions (and tolerating a lower approximation error)
than by learning one with respect to more functions (and tolerating a higher approximation error).

2 Background

An agent’s interaction with its environment is modeled using a Markov Decision Process (MDP)
[Puterman, 1994] denoted by ⟨S,A, r, p, γ⟩, where S is a state-space, A is a set of actions that can
be taken from each state, r(s, a) is the expected reward of taking action a from state s, p(s′|s, a)
is the probability of transitioning to state s′ when action a is taken from state s and γ ∈ [0, 1] is
a discount factor. We additionally make the standard assumption that the environment has a finite
maximum reward: rmax ≡ maxs,a r(s, a) < ∞. The behavior of an agent is specified by a policy,
π : S → P(A), where P(A) is the set of probability distributions over A. We denote the set of all
policies as Π and the set of all functions mapping S 7→ R as V. The performance of a policy in an
MDP is measured by its value function:

vπ(s) ≡ Eπ,p

[ ∞∑
t=0

γtr(St, At)|S0 = s

]
, (1)
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where Eπ,p[·] denotes expectation over trajectories generated by policy π in an MDP with transition
dynamics given by p, and St and At are random variables for the state occupied and action taken by the
agent at timestep t. We denote the set of all value functions in an environment as VΠ = {vπ : π ∈ Π}.

An RL agent’s goal is to find a policy with maximal value across all states [Sutton and Barto, 2018].
This process can be carried out by alternating between computing the value of the agent’s policy and
improving it. Value functions can be computed iteratively using the policy’s Bellman operator:

Tπ[v](s) ≡ EA∼π(·|s),S′∼p(·|s,A) [r(s,A) + γv(S′)] , (2)

which accepts a function v ∈ V and returns an updated function also in V. We use T k
π to refer to k

applications of Tπ , also known as the policy’s k-step Bellman operator. It is known that, in the limit, k-
step Bellman operators converge to their corresponding value functions: limk→∞ T k

π [v] = vπ ∀v ∈ V.
In RL it is assumed that the agent does not have access to r and p, and thus Tπ cannot be computed
directly. MBRL addresses this problem by learning a model, m̃ ≡ (r̃, p̃), that is used in place of the
environment’s reward and transition dynamics to construct model Bellman operators, denoted T̃π.
We denote the model’s maximum reward as r̃max ≡ maxs,a r̃(s, a).

Traditional MBRL methods attempt to learn models such that r̃ ≈ r and p̃ ≈ p [Sutton, 1991]. In
contrast, there are alternative paradigms in which a model is learned with its eventual use in mind,
such as value-aware model learning (VAML; [Farahmand et al., 2017]) and the VE principle [Grimm
et al., 2020]. This work concerns the VE principle, under which models are learned to support their
eventual use in estimating value functions. Accordingly, VE delineates models according to VE
constraints defined by policies π ∈ Π and functions v ∈ V . We denote the class of order-k VE
models with respect to a set of policies Π ⊆ Π and a set of functions V ⊆ V as

Mk(Π,V) ≡ {m̃ ∈ M : T̃ k
π v = T k

π v ∀π ∈ Π,∀v ∈ V}. (3)

In the limit of k → ∞, Grimm et al. [2021] showed that order-k VE classes converge to special
model classes whose models’ value functions ṽπ = limk→∞ T̃ k

π v match those of the environment:

M∞(Π) ≡ {m̃ ∈ M : ṽπ = vπ ∀π ∈ Π}. (4)

These limiting model classes are referred to as proper value equivalent (PVE) due to their dependence
on model and environment value functions. The PVE class with respect to all deterministic policies,
Πdet, is denoted by M∞(Πdet) and contains only models which can plan optimally. Notably, this is
the only non-trivial model class within the VE framework with such a performance guarantee [Grimm
et al., 2021].

We say that a set of functions V mapping S → R is bounded if there exists some vmax < ∞ such that
v(s) ≤ vmax for all v ∈ V and s ∈ S. We also consider a notion of boundedness for model classes,
referring to a model class as bounded if each model in it has bounded maximum reward: r̃max < ∞
for each model m̃ in the class.

3 Approximate value equivalence

We begin our treatment of the approximate theory of value equivalence by extending the definitions
of order-k VE and PVE classes given in Eqs. 3 and 4 to the approximate setting. Recall that the exact
versions of these model classes are characterized by sets of policies and functions which induce a set
of VE constraints on the models’ Bellman operators. In this work we will consider model classes
whose models can violate these constraints up to some limited degree, ϵ ∈ R̄+ where R̄+ denotes the
non-negative, extended real numbers: [0,∞]. We say that these approximate value equivalent (AVE)
classes tolerate ϵ error.
Definition 1. (Approximate Value Equivalence) Given Π ⊆ Π, V ⊆ V and ϵ ∈ R̄+, we denote the
set of order-k AVE models which tolerate ϵ error as:

Mk(Π,V; ϵ) = {m̃ ∈ M : ∥T̃ k
π v − T k

π v∥ ≤ ϵ ∀π ∈ Π,∀v ∈ V} (5)

where ∥ · ∥ denotes the ℓ∞-norm.

Moreover, we can analogously define approximate proper value equivalent (APVE) classes as follows:

M∞(Π; ϵ) = {m̃ ∈ M : ∥ṽπ − vπ∥ ≤ ϵ ∀π ∈ Π}. (6)
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3.1 Topological properties

In what follows we investigate the topological properties of AVE classes, ultimately showing that,
by introducing approximation to VE, we can relate arbitrary model classes. An order-k VE class is
specified in terms of four quantities: a model class M, a set of policies Π, a set of functions V , and
an order k. Grimm et al. [2020] illustrated a variety of topological properties of order-1 VE classes
by studying the effect of varying M, Π and V . These results were later extended by Grimm et al.
[2021], who also investigated the effect of varying the order k. We now conduct a similar analysis of
AVE classes, which are extensions of VE classes that depend on a fifth quantity: an error tolerance ϵ.
We start by showing that AVE models are a strict generalization of VE models, which are a special
case when ϵ = 0:
Property 1. For any Π ⊆ Π, V ⊆ V and M ⊆ M, it follows that Mk(Π,V; 0) = Mk(Π,V) and
M∞(Π; 0) = M∞(Π).

Proofs of these properties will be deferred to Appendix A.1. Since Property 1 tells us that AVE is a
generalization of exact VE, it is natural to inspect which other topological properties carry over.
Property 2. For any ϵ ∈ R̄+, M ⊆ M̄ ⊆ M, Π ⊆ Π′ ⊆ Π and V ⊆ V ′ ⊆ V, it follows that

Mk(Π′,V ′; ϵ) ⊆ Mk(Π,V; ϵ) ⊆ M̄k(Π,V; ϵ). (7)

Property 2 generalizes two of the topological properties described by Grimm et al. [2020] to AVE. In
particular, the first subset relation in Eq. 7 shows that, like with VE, as the sizes of the sets of policies
and functions increase, the corresponding AVE class shrinks. The second relation shows that as the
set of models M increases in size, so too do AVE classes.

We now investigate the effect of the new parameter, the error tolerance ϵ, on the topology of the
resulting AVE classes:
Property 3. For any Π ⊆ Π, V ⊆ V and ϵ, ϵ′ ∈ R̄+ such that ϵ′ ≥ ϵ, it follows that

Mk(Π,V; ϵ) ⊆ Mk(Π,V; ϵ′). (8)

Property 3 shows that increasing the tolerated error of an AVE class causes it to include more models.
While this is intuitive obvious, (e.g., “a model class that tolerates a higher error also tolerates a lower
error”), it may be less straightforward that this property can be used to relate AVE classes with respect
to arbitrary orders and sets of functions and policies.
Proposition 1. For any ϵ ∈ R̄+, Π,Π′ ⊆ Π, V,V ′ ⊆ V and k,K ∈ Z+ there exists some ϵ′ ∈ R̄+

such that
Mk(Π,V; ϵ) ⊆ MK(Π′,V ′; ϵ′). (9)

Moreover, if M, V and V ′ are bounded then ϵ′ is finite.

Proposition 1 shows that it is possible to relate arbitrary AVE classes. This is significantly broader
than previous topological results in which VE classes could be related only when their corresponding
sets of policies and functions were subsets of each other (when Π ⊆ Π′ or V ⊆ V ′) [Grimm et al.,
2020], or when the orders being compared were multiples of each other (when k divided K) [Grimm
et al., 2021]. The proposition follows directly from taking the limit of ϵ′ → ∞ in Property 3: by
tolerating a high enough error any AVE class can be made to contain any other (as illustrated in
Figure 1).

Why is it important to ensure that one AVE class is a sub-class of another? We know that, if a property
applies to a model class, it must also apply to any sub-class. Grimm et al. [2021] have shown that all
models in M∞(Πdet; 0) have the same optimal policy as the environment. They also showed that,
without further assumptions, this is the “largest” model class with this property. However, prior to
our work this was the only known theoretical statement about the performance of VE model classes.

Proposition 1 allows us to go much further and provide performance guarantees for any AVE class.
This is possible because we know we can relate arbitrary AVE classes of the form Mk(Π,V; ϵ) to
M∞(Πdet; 0) by tolerating a sufficiently large amount of error ϵ′ with respect to the latter model
class. Obviously, the tolerated error ϵ′ will play a role in the resulting performance guarantees. In
general, the larger this error the weaker the guarantees. So, we are interested in finding the minimum
ϵ′ that makes Proposition 1 true.
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Figure 1: An illustration of the impli-
cation of Proposition 1: as ϵ′ increases
MK(Π′,V ′; ϵ′) grows— eventually to
the point of containing Mk(Π,V; ϵ).

The minimum ϵ′ for which Proposition 1 holds between
any two AVE classes can also be thought of as a function,
which we will refer to as the minimum tolerated error.
Definition 2. (Minimum Tolerated Error) For any
AVE classes Mk(Π,V; ϵ) and MK(Π′,V ′; ϵ′) we de-
note the minimum ϵ′ ∈ R̄+ such that Mk(Π,V; ϵ) ⊆
MK(Π′,V ′; ϵ′) as Eϵ(Π,V, k |Π′,V ′,K).

When K = ∞ we omit V ′ to reflect the fact that APVE
classes do not depend on sets of functions, that is, we use
E(Π,V, k |Π′,∞) (and analogously for k = ∞ we omit
V). Note that the minimum tolerated error is well defined
for any two AVE classes. Equipped with this concept, we
can now present the following result:
Proposition 2. For any m̃ ∈ Mk(Π,V; ϵ) it follows that

∥vπ̃∗ − v∗∥ ≤ 2 · Eϵ(Π,V, k |Π,∞),

where π̃∗ is any optimal policy of m̃.

Proposition 2 shows that we can we can bound the per-
formance of any AVE class Mk(Π,V; ϵ) in terms of its topological relationship with M∞(Π)
expressed through the minimum error tolerance Eϵ(Π,V, k |Π,∞). Accordingly, understanding how
this function varies with respect to its inputs is crucial to determining the performance of models in
Mk(Π,V; ϵ). It is worth emphasizing that Eϵ(· | ·) is fundamentally a function concerned with the
topology of AVE classes and that Proposition 2 provides a link between such topological properties
and the performance of the corresponding models. In the following we will derive a series of novel
topological relationships between AVE classes and use them to produce upper bounds on different
minimum tolerated errors Eϵ(· | ·). Through combining these relationships and their associated upper
bounds we will ultimately be able to derive an upper bound on Eϵ(Π,V, k |Π,∞) which can be used
in conjunction with Proposition 2 to provide performance guarantees for a wide range of AVE classes.

4 Bounding the minimum tolerated error

Proposition 2 provides a means of converting upper bounds on minimum tolerated errors
Eϵ(Π,V, k |Π,∞) into performance guarantees for models in Mk(Π,V; ϵ). In this section we
show how we can use topological relationships between AVE classes to produce such upper bounds.
Remark 1. For any ϵ, ϵ′ ∈ R̄+, Π,Π′ ⊆ Π, V,V ′ ⊆ V and k,K ∈ Z+

Mk(Π,V; ϵ) ⊆ MK(Π′,V ′; ϵ′) =⇒ Eϵ(Π,V, k |Π′,V ′,K) ≤ ϵ′.

Remark 1 is a direct consequence of Definition 2, but is useful to state it explicitly since it connects
the ensuing topological relationships to the upper bounds on minimum tolerated errors which will be
used to construct our performance guarantees. Having established this, we will now develop a series
of topological relationships between AVE classes of different kinds and use Remark 1 to generate
upper bounds. To facilitate our analysis, we will begin by varying aspects of these AVE classes in
isolation, first focusing on those that differ in orders k and K and then those that differ in function
sets V and V ′. Later, we combine these results to obtain an upper bound on Eϵ(Π,V, k |Π,∞) which
will in turn yield a generic performance bound for models in any AVE class, Mk(Π,V; ϵ), where k
and V are arbitrary orders and function sets.

4.1 Model class order and error tolerance

In this section we consider pairs of model classes that share a common set of policies Π and functions
V , but have different orders k and K. In particular, we explore this dependence in the special case in
which k divides K and that V is closed under environment Bellman updates with respect to any of
the policies in Π.
Proposition 3. For any ϵ ∈ R̄+, Π ⊆ Π, V ⊆ V such that v ∈ V =⇒ Tπv ∈ V ∀π ∈ Π and
k,K ∈ Z+ such that k divides K, we have that

Mk(Π,V; ϵ) ⊆ MK(Π,V; ϵ·(1−γK)
1−γk ). (10)
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Proposition 3 shows that, in our special case, our upper bound on the minimum tolerated error
increases according to a multiplicative factor that depends on the orders k and K. For a fixed k, as K
grows our upper bound will also grow, however the rate of growth is decreasing since the numerator
of this factor, (1 − γK), approaches 1 as K → ∞. The fact that our upper bound does not grow
without bound suggests that there is a similar relationship between order-k AVE and APVE classes.
Indeed, by sending K → ∞ we obtain such a relationship.

Corollary 1. For any set of policies Π ⊆ Π, set of functions V ∈ V such that {vπ : π ∈ Π} ⊆ V and
k ∈ Z+, it follows that

Mk(Π,V; ϵ) ⊆ M∞(Π; ϵ
1−γk ). (11)

Notice in Corollary 1 how the constraint on V has been relaxed, since now it is no longer required
that V be closed under arbitrary compositions of the Bellman operators of the policies in Π. Instead,
V must contain the value functions associated with Π. This looser constraint implies that V can be
finite when Π is finite.

4.2 Function sets and error tolerance

In this section we consider two AVE classes with the same order k and set of policies Π but different
function sets, that is, we compare Mk(Π,V; ϵ) and Mk(Π,V ′; ϵ′). Though we are able to provide
an upper bound on the minimum tolerated error for arbitrary function sets, it can be shown to scale
differently when there are special relationships between V and V ′. We begin by examining this
special case.

4.2.1 Related function sets

We begin by examining the case in which V ′ consists of constrained linear combinations of the
elements of V . In particular, we consider a set V ′ of the following form:

c-vspan(V) ≡

{∑
i

αivi(s) : ∀αi

∑
i

αi = 1,
∑
i

|αi| ≤ c

}
, (12)

which we refer to as the constrained vspan of V with parameter c. The coefficients of the linear
combinations in c-vspan(V) are constrained to sum to 1 and to have magnitudes which sum to less
than c.

Grimm et al. [2020] studied a special case of Eq. 12 without the coefficient magnitude constraint (by
taking c → ∞) and showed that M1(Π,V; 0) = M1(Π,V ′; 0) (where V ′ = ∞-vspan(V)). Notice
how, in the language of Proposition 1, we have just related two VE classes with different sets of
functions V and V ′ without tolerating any additional error. However, this result is relatively narrow,
only applying to exact order-1 VE classes. In what follows we extend this relationship to order-k
AVE classes:

Proposition 4. For any set of policies Π ⊆ Π, set of functions V ∈ V, c > 1 and error ϵ ∈ R̄+, we
have

Mk(Π, c-vspan(V); ϵ) ⊆ Mk(Π,V; ϵ) ⊆ Mk(Π, c-vspan(V); c · ϵ). (13)

Proposition 4 shows how Mk(Π,V; ϵ) is “squeezed” between two other model classes whose function
sets are replaced by c-vspan(V). In particular, by considering the rightmost subset relationship in
Eq. 13, we see that the error term scales multiplicatively with c. It is interesting to note that, for
particular choices of ϵ and c, the left- and right-most terms in Eq. 13 can be made identical, reducing
the expression to an equality.

Corollary 2. When either c = 1 or ϵ = 0, for any Π ⊆ Π, V ⊆ V it follows that

Mk(Π,V; ϵ) = Mk(Π, c-vspan(V); ϵ). (14)

Note that, when ϵ = 0, Corollary 2 recovers Grimm et al. [2020]’s result by sending c → ∞.
On the other hand, when c = 1, c-vspan(V) reduces to the convex hull of V . In the context of
Proposition 1, this means that, regardless of ϵ and k, we do not need to tolerate any additional error
for Mk(Π, 1-vspan(V); ϵ) to contain Mk(Π,V; ϵ).
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4.2.2 Unrelated function sets

In the previous section we studied the case in which the set V ′ coincided with c-vspan(V); we now
consider a more general scenario where V and V ′ are not assumed to have any relationship to each
other. In this setting, we will measure the similarity of sets of functions using a distance function
β : 2V × 2V → R defined as

β(V||V ′) ≡ max
v′∈V′

min
v∈V

∥v − v′∥. (15)

In words, β measures the greatest distance from any element in V ′ to its closest element in V . Before
we continue, it is worth pointing out some interesting properties of β.

Proposition 5.

1. (Asymmetry) For any V ⊆ V ′ ⊆ V ′′ ⊆ V it follows that

0 = β(V||V) ≤ β(V||V ′) ≤ β(V||V ′′) and 0 = β(V ′′||V ′′) ≤ β(V ′||V ′′) ≤ β(V||V ′′).

2. (Convex, Compact V) When V is convex and compact it follows that

β(V||V ′) = β(V||1-vspan(V ′)).

Proposition 5 illustrates several interesting features of β. Firstly, it measures the similarity between
sets V and V ′ asymmetrically: if V ′ grows then β also increases, since there are more elements to
maximize over; however, if V grows, β decreases instead, since there are more elements to minimize
over. Secondly, when V is a convex compact set, V ′ can be replaced with its convex-hull (equivalently,
1-vspan(·)) without changing β.

Using the similarity measure β, we can then determine the amount of error an AVE class with respect
to V ′ must tolerate to contain a counterpart defined with respect to V .

Proposition 6. For any Π ∈ Π, V,V ′ ∈ V and ϵ ∈ R̄+, it follows that

Mk(Π,V; ϵ) ⊆ Mk(Π,V ′; ϵ+ 2γkβ(V||V ′)),

moreover, if V is convex and compact, we obtain:

Mk(Π,V; ϵ) ⊆ Mk(Π, 1-vspan(V ′); ϵ+ 2γkβ(V||V ′)).

Proposition 6 shows that, for any two sets of functions V and V ′, our upper bound on the minimum
tolerated error is proportional to β(V||V ′), which we analyzed in Proposition 5. In particular, we
know that our upper bound increases as V ′ grows and decreases as V grows. In addition, in the special
case in which V is a convex compact set, V ′ can be replaced by its convex hull without any increase
in our upper bound.

4.3 Unifying results

In the previous sections we studied upper bounds on the minimum tolerated error such that models
in particular kinds of AVE classes would be contained in other kinds of AVE classes. Each section
concerned a different type of upper bound constructed by varying certain aspects of the AVE classes:
Section 4.1 held function sets fixed and varied model-class orders whereas Section 4.2 held model-
class orders fixed and varied function sets. Now, we combine these results to obtain a more general
theorem.

Theorem 1. For any Π ⊆ Π, V ⊆ V, k ∈ Z+, and ϵ ∈ R̄+ it follows that

Mk(Π,V; ϵ) ⊆ M∞(Π; 1
1−γk ·min

c≥1
(c · ϵ+ 2γkβ(c-vspan(V)||VΠ)))

which implies that

Eϵ(Π,V, k |Π,∞) ≤ 1
1−γk ·min

c≥1
(c · ϵ+ 2γkβ(c-vspan(V)||VΠ).
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Proof. The proof follows by a sequential application of our previous results.

Mk(Π,V; ϵ) ⊆ Mk(Π, c-vspan(V); c · ϵ) (Proposition 4)

⊆ Mk(Π,VΠ; c · ϵ+ 2γkβ(c-vspan(V)||VΠ)) (Proposition 6)

=
⋂
π∈Π

⋂
vπ′∈VΠ

Mk({π}, {vπ′}; c · ϵ+ 2γkβ(c-vspan(V)||VΠ))

⊆
⋂
π∈Π

Mk({π}, {vπ}; c · ϵ+ 2γkβ(c-vspan(V)||VΠ))

⊆
⋂
π∈Π

M∞({π}; 1
1−γk (c · ϵ+ 2γkβ(c-vspan(V)||VΠ))) (Corollary 1)

= M∞(Π; 1
1−γk (c · ϵ+ 2γkβ(c-vspan(V)||VΠ))).

(16)

Since Eq. 16 holds for all c ≥ 1, it follows that:

Mk(Π,V; ϵ) ⊆ M∞(Π; 1
1−γk ·min

c≥1
(c · ϵ+ 2γkβ(c-vspan(V)||VΠ))).

Finally, using Remark 1 we obtain the associated upper bound on Eϵ(Π,V, k |Π,∞).

Theorem 1 reveals an interesting tension. Notice how the quantity inside the minimum is determined
by two terms, c · ϵ and 2γkβ(c-vspan(V)||V ′). As c grows, the first term increases; however, due to
the properties of β described in Proposition 5, the second term will shrink.

5 Bounds on model performance

Taken together Propositions 1 and 2 and Remark 1 provide a pipeline for quantifying the performance
for any AVE class Mk(Π,V; ϵ). Propositions 1 and 2 form a powerful connection between the general
topology of AVE classes and model performance in terms of minimum tolerated errors (Definition 2).
Remark 1 then allows us to use specific topological relationships between kinds of AVE classes
to quantify these minimum tolerated errors using upper bounds (see Section 4). Accordingly, in
Section 4 we produced topological results about AVE models when policy sets Π and either order
or function sets are held fixed. We ultimately combined these results into Theorem 1 resulting in a
bound on the minimum tolerated error Eϵ(Π,V, k |Π,∞).

By combining Theorem 1 with Proposition 2 we can obtain a performance bound on AVE classes
with respect to arbitrary orders and function sets:
Theorem 2. For any m̃ ∈ Mk(Π,V; ϵ) it follows that

∥v∗ − vπ̃∗∥ ≤ 2
1−γk ·min

c≥1

(
c · ϵ+ 2γkβ(c-vspan(V)||VΠ)

)
, (17)

where π̃∗ is an optimal policy of m̃.

Theorem 2 suggests that ideal AVE classes have low error ϵ and function sets such that c-vspan(V) ⊇
VΠ. However, in practice an agent does not directly have control over the error ϵ with which it learns
a model. Rather, this error is dependent on the choice of V: some functions may be harder to learn
VE models with respect to than others. Since finding a model that is VE with respect to a small
number of functions is generally easier, this dependence between ϵ and V introduces a tension in the
selection of the set V . The smaller the number of functions in V , the smaller the resulting ϵ tends to
be, but on the other hand the distance β(c-vspan(V)||VΠ) generally increases (see Section 6 for an
empirical illustration of this tension).

One option for choosing V , which was explored in both Grimm et al. [2020] and Grimm et al. [2021],
is to use some manageable set of value functions: {vπi}ni=1. This is sensible as it is known that value
functions form a polytope VΠ which could be covered by c-vspan(·) [Dadashi et al., 2019]. However,
value functions are quantities of the environment which are not assumed to be known by the agent.
At best, an agent can produce estimates of such quantities.
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Interestingly, our AVE formalism can address not only the error in the satisfaction of VE constraints
but also in the estimation of functions that the constraints depend upon. If an agent can estimate each
vπi by v̂πi with bounded approximation error ∥vπi − v̂πi∥ ≤ ϵapprox, we have:

Mk(Π, {v̂πi
}ni=1; ϵ) ⊆ Mk(Π, {vπi

}ni=1; ϵ+ 2γkβ({v̂πi
}ni=1||{vπi

}ni=1))

⊆ Mk(Π, {vπi}ni=1; ϵ+ 2γkϵapprox).
(18)

Eq. 18 shows that we can exchange the estimation error of functions in VE function sets for error in
the satisfaction of VE constraints. That is, any model in the AVE class with respect to approximate
value functions is also AVE with respect to actual value functions if we tolerate additional error
proportional to their estimation error. This ultimately means that we can bound the performance of
models which are approximately VE with respect to functions that are not in VΠ (that is, that are not
value functions).

Corollary 3. Let V̂Π = {v̂π : π ∈ Π} be a set of approximate value functions satisfying ∥vπ − v̂π∥ ≤
ϵapprox for all π ∈ Π. Then for any m̃ ∈ Mk(Π, V̂Π; ϵ) it follows that:

∥v∗ − vπ̃∗∥ ≤
2(ϵ+ 2γkϵapprox)

1− γk
,

where π̃∗ is any optimal policy in m̃.

6 Trade-offs between model capacity and function set size

In this section we show that our approximate formulation of VE can guide the choice of functions
to learn a VE model with respect to when model capacity is limited. In particular, we show that,
depending on the situation, an agent may prefer to either learn a VE model with respect to a larger
class of functions (and tolerate a higher approximation error ϵ) or learn a VE model with respect
to a smaller class of functions (and tolerate a lower ϵ). These situations are interesting because,
as we showed in Theorem 2, higher approximation error results in worse bounds on the planning
performance of the associated models—which raises the possibility that in certain situations a model
with limited capacity might plan better when it is VE with respect to fewer functions.

To illustrate situations where this might occur, we consider the tabular Four Rooms domain [Sutton
et al., 1999] and learn tabular VE models whose per-action transition matrices are constrained to
have rank at most R. We learn these models to be in the VE class M(Π,V), where V is a set of D
functions generated by sampling v(s) ∼ Uniform(−10, 10) for each v ∈ V and each s ∈ S. Due to
the rank constraint on the model, we will only be able to learn approximate VE models with varying
error tolerances for different settings of R and D.

Figure 2 shows a histogram of the planning performance of such models. Each cell in the figure
corresponds to a model associated with specific values of R and D, and the cells’ color denotes
the value of the model’s optimal policy averaged over states and over 10 independent executions.
Interestingly, near the bottom left portion of the histogram there is a region in which low-capacity VE
models with respect to small sets of functions perform better than their counterparts generated using
more functions.

7 Related work
Our work directly extends previous theoretical results on VE to the approximate setting. This naturally
situates us closest to the works that originally explicated value equivalence and its higher order
analogues [Grimm et al., 2020, 2021]. Our effort in deriving performance guarantees for VE is also
reminiscent of classical works that studied approximate forms of policy and value iteration [Bertsekas
and Tsitsiklis, 1995, Munos, 2005].

A closely related line of work is value-aware model learning (VAML, IterVAML, VaGraM) [Farah-
mand et al., 2017, Farahmand, 2018, Voelcker et al., 2021]). In VAML models are learned in order to
minimize the discrepancy between their Bellman optimality operators and those of the environment.
In practice, a family of functions is constructed and a model is learned to minimize the maximum
discrepancy across this family. In IterVAML, instead of minimizing the worst case discrepency across
a family of functions, the functions are generated by the model during a value iteration procedure.
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In VaGraM, the authors consider a similar discrepancy-based loss as in VAML, but use a Taylor
series approximation to avoid having loss terms involving the values of predicted future states. This
ultimately gives rise to a squared-error loss between predicted and actual next states weighted by the
gradients of a value function. VE and VAML can be seen as complementary: both concern models
that are learned with their eventual use in mind, but VAML focuses on the associated optimization
problems of finding such models whereas VE focuses on characterizing these models into classes
(and also on providing performance guarantees in this work).
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Figure 2: Illustration of the trade-offs between VE model
capacity and the size of V . From left-to-right the capacity
of the models increase, from bottom-to-top the size of V
increases. Each cell is colored according to the average value
of the model’s optimal policy.

There have also been several re-
cent empirical works which explored
concepts adjacent to VE. Farquhar
et al. [2021] explored adding auxil-
iary terms to different model learn-
ing procedures which encouraged the
learned models’ Bellman operators
and value estimates to satisfy the
Bellman equations (i.e., to be self-
consistent). They show that there are
circumstances in which this leads to
better data-efficiency in practice. An-
other example is Nikishin et al. [2021],
who study the problem of learning
models whose Bellman optimality op-
erators induce optimal policies in the
environment. In the service of this,
they propose using implicit differenti-
ation [Christianson, 1994] to compute
gradients from the model’s optimal-
ity operator all the way to its optimal
policy.

8 Conclusion and future
work
We provided an approximate theory of value equivalence that extends the existing VE formalism
[Grimm et al., 2020, 2021]. The main concept introduced was a family of AVE classes whose models
can violate VE constraints up to a limited degree. We showed that, as a product of introducing
approximation to VE, arbitrary AVE classes can be related to each other topologically. Moreover, we
showed that, by relating them to specific VE classes for which there are performance guarantees, we
can derive bounds on the performance of arbitrary AVE classes in terms of their topological properties.
Motivated by this link between topology and performance bounds, we proceed to derive isolated
topological relationships between AVE classes whose function sets, orders and error tolerances vary,
which we then can combine to produce bounds which hold over AVE classes with respect to arbitrary
orders, functions sets and error tolerances. This addresses a fundamental open question in the VE
theory: how to provide performance guarantees for models that do not satisfy the VE constraints
exactly. It may be possible to derive topological relationships considering all constraints of a VE
class jointly and, in so doing, provide tighter performance bounds, but we leave this for future work.
We also believe that the performance bounds we have introduced might give rise to new algorithms
that attempt to minimize them, either directly or indirectly.
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