Efficient and Effective Optimal Transport-Based Biclustering: Supplementary Material

Chakib Fettal
Centre Borelli UMR 9010
Université Paris Cité
Informatique Caisse des Dépôts et Consignations
chakib.fettal@etu.u-paris.fr

Lazhar Labiod
Centre Borelli UMR 9010
Université Paris Cité
lazhar.labiod@u-paris.fr

Mohamed Nadif
Centre Borelli UMR 9010
Université Paris Cité
mohamed.nadif@u-paris.fr

Appendix A Proofs

Proposition 1. For $\mathbf{w}, \mathbf{v}, \mathbf{r}$ and \mathbf{c} containing no zeros, the resulting optimal coupling matrices \mathbf{Z} and \mathbf{W} are always an h-almost hard clustering with $h \in\{0, \ldots, k-1\}$. Furthermore, when $n=k$ (resp. $d=k$) and $\mathbf{w}=\mathbf{r}$ (resp. $\mathbf{v}=\mathbf{c}$), \mathbf{Z} (resp. \mathbf{W}) represents a hard clustering $\mathbf{Z} \in \Gamma(n, n)$ (resp. $\mathbf{W} \in \Gamma(d, d))$.

Proof for proposition 1. The Kantorovich OT problem is a bounded linear program since $\Pi(\mathbf{w}, \mathbf{v})$ is a polytope i.e. a bounded polyhedron. The fundamental theorem of linear programming states that if the feasible set is non-empty then the solution lies in the extremity of the feasible region. This means that a solution \mathbf{Z} to the OT problem is an extreme point of $\Pi(\mathbf{w}, \mathbf{v})$. We have that the extreme points of $\Pi(\mathbf{w}, \mathbf{v})$ can have at most $n+d-1$ nonzero elements. To prove this we have to show that the bipartite graph induced by biadjacency matrix \mathbf{Z}, the solution to the optimal transport problem has no cycles. The maximum number of edges in an acyclic graph is $|V|-1$ where $|V|$ is the number of nodes in the graph. Since the number of edges in the bipartite graph induced by biadjacency matrix \mathbf{Z} is $n+d-1$, the matrix \mathbf{Z} can not have more than $n+d-1$ nonzero entries. For a detailed proof see proposition 3.3 in [6].
We also have to show that for probability measures \mathbf{w} and \mathbf{v} that have no zero probability events, there is at minimum $\max (n, d)$ number of nonzero elements in \mathbf{Z}. This is straightforward since \mathbf{w} and \mathbf{v} contain no zeros, there will always be at least one nonzero element in every row and column of \mathbf{Z} that represents some transfer of mass between elements of \mathbf{w} and \mathbf{v}.
BCOT is a bilinear program that has a finite global solution which means that there exists at least one optimal solution pair (\mathbf{Z}, \mathbf{W}) such that \mathbf{Z} is an extreme point of $\Pi(\mathbf{w}, \mathbf{r})$ and \mathbf{W} is an extreme point of $\Pi(\mathbf{v}, \mathbf{c})$ (theorem 1 in [3]).
We then have that, For BCOT, \mathbf{Z} has at most $n+k-1$ and at least $\max (n, k)=n$ nonzero entries and that \mathbf{W} has at most $d+k-1$ and at least $\max (d, k)=d$ elements which are both h-almost hard clusterings with $h \in\{0, \ldots, k-1\}$.
When $n=k$ and $\mathbf{w}=\mathbf{r}$, the solution \mathbf{Z} is a permutation matrix (up to a constant factor) and the number of nonzero elements in it is exactly n which means that it represents a hard partition
$\mathbf{Z} \in \Gamma(n, n)$. The proof is the same for \mathbf{W}.

Proposition 2. Suppose that the target row and column representative distributions are the same, i.e. $\mathbf{r}=\mathbf{c}$ with no zero entries. Then, given a solution pair \mathbf{Z} and \mathbf{W} to BCOT, the matrix $\mathbf{Q}=\mathbf{Z} \operatorname{diag}(1 / \mathbf{r}) \mathbf{W}^{\top}$ is an approximation of the optimal transport plan that is a solution to problem The the Kantorovich OT problem and whose rank is at $\operatorname{most} \min (\operatorname{rank}(\mathbf{Z}), \operatorname{rank}(\mathbf{W}))$.

Proof of proposition 2. From linear algebra, we have that $\operatorname{rank}(\mathbf{Q}) \leq$ $\min (\operatorname{rank}(\mathbf{Z}), \operatorname{rank}(\operatorname{diag}(1 / \mathbf{r})), \operatorname{rank}(\mathbf{W}))$. Since \mathbf{Z} and \mathbf{W} cannot have a rank greater than k due to their dimension, and since $\operatorname{diag}(1 / \mathbf{r})$ is a full rank matrix due to the assumption that \mathbf{r} has no zero entries, we then have that $\operatorname{rank}(\mathbf{Q}) \leq \min (\operatorname{rank}(\mathbf{Z}), \operatorname{rank}(\mathbf{W}))$.
For a proof that \mathbf{Q} is indeed a valid transport plan i.e. $\mathbf{Q} \in \Pi(\mathbf{w}, \mathbf{v})$, we refer the reader to proposition 2.2 in [6].

Proposition 3. The computational complexity of the BCOT algorithm when using an exact OT solver is $\left.\mathcal{O}\left(t k\|\mathbf{B}\|_{0}+\operatorname{tnk}(n+k) \log (n+k)+t d k(d+k) \log (d+k)\right)\right)$, and when using entropic regularization the complexity is $\mathcal{O}\left(t k\|\mathbf{B}\|_{0}+t k n+t k d\right)$, where t is the number of iterations.

Proof of proposition 3. We suppose that $L(\mathbf{B})$ is a sparse matrix with the same number of nonzero entries as \mathbf{B}. The complexity of computing $L(\mathbf{B}) \mathbf{W}$ and $L(\mathbf{B}) \mathbf{W}$ in the BCOT algorithm is $\mathcal{O}\left(k\|\mathbf{B}\|_{0}\right)$.
The optimal transport problem can be formulated and solved as the Earth Mover's Distance (EMD) problem using any minimum-cost flow problem algorithm, such as one of the many variants of the network simplex algorithm. The authors in [5] proposed an algorithm for the network simplex in $\mathcal{O}(|V||E| \log |V|)$, where $|V|$ is the number of nodes and $|E|$ is the number of edges in the network. In our case, when solving the EMD for \mathbf{Z} and cost matrix $L(\mathbf{B}) \mathbf{W}$, the number of nodes is $|V|=n+k$ and the number of edges is $|E|=n k$, which means that the complexity of the operation is $\mathcal{O}(n k(n+k) \log (n+k))$. When computing the optimal transport plan for \mathbf{W}, for cost matrix $L(\mathbf{B})^{\top} \mathbf{Z}$, the complexity is $\mathcal{O}(d k(d+k) \log (d+k))$. The overall complexity of the BCOT algorithm is then $\left.\mathcal{O}\left(k\|\mathbf{B}\|_{0}\right)+\operatorname{tn} k(n+k) \log (n+k)+t d k(d+k) \log (d+k)\right)$
When using entropic regularization the complexity is smaller, since computing the optimal transport plan requires only a transformation of the inputs matrix, which takes $\mathcal{O}(n k)$ in the \mathbf{Z} computation step and $\mathcal{O}(d k)$ for \mathbf{W}. The ensuing application of the Sinkhorn-Knopp algorithm on the transformed matrices has complexities $\mathcal{O}(t n k)$ and $\mathcal{O}(t d k)$ for \mathbf{Z} and \mathbf{W} respectively, where t is the number of iterations necessary. The overall complexity of BCOT_{λ} is then $\left.\mathcal{O}\left(k\|\mathbf{B}\|_{0}\right)+t n k+t d k\right)$, here t includes the number of iterations of our algorithm as well as that of Sinkhorn-Knopp.

Appendix B Additional Experiments

B. 1 Experiments on Synthetic Data

Datasets. As datasets with labels along both rows and columns are unavailable, we use synthetic data as in [4, 7]. Their structure is shown in figure 1] while their characteristics are reported in table 1

Table 1: Characteristics of the synthetic datasets.

	Rows	Cols	Biclusters	Sizes	Sparse	Structure
A	500	500	10	equal	Yes	Block diagonal
B	800	1000	6	unequal	No	Block diagonal
C	800	800	7	equal	No	Checkerboard
D	2000	1200	4	unequal	No	Checkerboard

Figure 1: Synthetic datasets rearranged with respect to the true partition.

Metrics. From row π^{r} and column π^{c} clusters, we use the Co-Clustering Accuracy (CCA) proposed by [2] to compare two pairs of partitions. CCA is defined from Clustering Accuracy (CA) associated to π^{r} and π^{c} in comparison with the true row and column clusters; it is given by

$$
\mathrm{CCA}\left(\pi^{r}, \pi^{c}\right)=\mathrm{CA}\left(\pi^{r}\right)+\mathrm{CA}\left(\pi^{c}\right)-\mathrm{CA}\left(\pi^{r}\right) \times \mathrm{CA}\left(\pi^{c}\right)
$$

Results. We report the biclustering performance on the synthetic datasets in table 2 At least one of our models finds the perfect partition in all cases. These tests additionally allow us to show the utility of the the row cluster distribution \mathbf{r} and column cluster distribution \mathbf{c}. The use of these ground truth distributions resulted in an increase of 19.5 and 4.2 points for BCOT on C and D, and an increase of 0.3 and decrease of 0.8 for BCOT_{λ} on C and D .

Table 2: Biclustering performance on four synthetic datasets. gnd stands for ground truth.

Method	A	B	C	D
k-means	100.0 ± 0.0	95.0 ± 5.0	95.3 ± 4.0	96.6 ± 4.7
CCOT	54.4 ± 3.5	70.0 ± 0.0	29.7 ± 0.4	55.7 ± 1.8
CCOT-GW	99.1 ± 0.0	83.5 ± 0.0	83.4 ± 0.0	75.3 ± 0.0
COOT	99.8 ± 0.0	78.8 ± 2.0	99.8 ± 0.0	93.7 ± 1.2
COOT_{λ}	39.9 ± 2.4	84.9 ± 4.6	28.2 ± 0.0	60.7 ± 0.0
BCOT	99.8 ± 0.0	80.4 ± 2.2	99.6 ± 0.1	91.3 ± 0.7
BCOT_{λ}	100.0 ± 0.0	99.1 ± 0.4	100.0 ± 0.0	100.0 ± 0.0
BCOT (gnd r, c)	same r, c	99.9 ± 0.0	same r, c	95.5 ± 2.3
$\mathrm{BCOT}_{\lambda}(\mathrm{gnd} \mathbf{r}, \mathbf{c}$)	same r, c	100.0 ± 0.0	same r, c	99.2 ± 0.9

B. 2 Experiments on Gene Expression Data

Datasets. The gene-expression matrices used are the Cumida Breast Cancer and Leukemia datasets. Their characteristics are shown in Table 3

Table 3: Characteristics of the gene expression datasets.

Dataset	Samples	Genes	k	Sparsity (\%)
Breast Cancer [1]	26	42945	2	0.0
Leukemia [1]	64	22283	5	0.0

Metrics. The metrics are the same as for document clustering.

Performance In table 4, we report results on the two micro-array datasets, BCOT_{λ} has the best performance on both of them.

Table 4: Gene clustering performance on the two microarray datasets.

Method	Breast Cancer			Leukemia		
	CA	NMI	ARI	CA	NMI	ARI
k-means	75.8 ± 18.0	41.9 ± 40.5	31.2 ± 49.0	74.8 ± 7.2	72.1 ± 5.4	50.1 ± 8.3
CCOT		OOM		40.6 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
CCOT-GW		OOM			OOM	
COOT $_{n}$	63.1 ± 5.2	5.4 ± 8.7	-1.2 ± 2.9	36.2 ± 2.7	14.0 ± 3.6	5.4 ± 3.2
COOT $_{\lambda}$	61.5 ± 0.0	5.4 ± 0.0	2.2 ± 0.0	32.5 ± 3.3	8.7 ± 2.7	$-.5 \pm 2.1$
BCOT 3	76.9 ± 0.0	37.2 ± 0.0	26.7 ± 0.0	71.2 ± 5.4	59.6 ± 6.9	39.9 ± 6.3
BCOT $_{\lambda}$	$\mathbf{8 4 . 6} \pm \mathbf{0 . 0}$	$\mathbf{4 8 . 3} \pm \mathbf{0 . 0}$	$\mathbf{4 6 . 0} \pm \mathbf{0 . 0}$	$\mathbf{8 0 . 9} \pm \mathbf{3 . 8}$	$\mathbf{7 0 . 9} \pm \mathbf{4 . 1}$	$\mathbf{5 5 . 3} \pm \mathbf{3 . 3}$

References

[1] Bruno César Feltes, Eduardo Bassani Chandelier, Bruno Iochins Grisci, and Márcio Dorn. Cumida: An extensively curated microarray database for benchmarking and testing of machine learning approaches in cancer research. Journal of Computational Biology, 26(4):376-386, 2019.
[2] Gérard Govaert and Mohamed Nadif. Block clustering with bernoulli mixture models: Comparison of different approaches. Computational Statistics \& Data Analysis, 52(6):3233-3245, 2008.
[3] Hiroshi Konno. A cutting plane algorithm for solving bilinear programs. Mathematical Programming, 11(1):14-27, 1976.
[4] Charlotte Laclau, Ievgen Redko, Basarab Matei, Younes Bennani, and Vincent Brault. Coclustering through optimal transport. In International Conference on Machine Learning, pages 1955-1964. PMLR, 2017.
[5] James B Orlin. A polynomial time primal network simplex algorithm for minimum cost flows. Mathematical Programming, 78(2):109-129, 1997.
[6] Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport. Center for Research in Economics and Statistics Working Papers, (2017-86), 2017.
[7] Vayer Titouan, Ievgen Redko, Rémi Flamary, and Nicolas Courty. Co-optimal transport. Advances in Neural Information Processing Systems, 33:17559-17570, 2020.

