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Abstract

Bipartite graphs can be used to model a wide variety of dyadic information such as
user-rating, document-term, and gene-disorder pairs. Biclustering is an extension
of clustering to the underlying bipartite graph induced from this kind of data. In
this paper, we leverage optimal transport (OT) which has gained momentum in
the machine learning community to propose a novel and scalable biclustering
model that generalizes several classical biclustering approaches. We perform
extensive experimentation to show the validity of our approach compared to other
OT biclustering algorithms along both dimensions of the dyadic datasets.

1 Introduction

Let G = (U, V,E) be a bipartite graph, which is a graph whose vertices can be divided into two
disjoint sets U = {1, 2, . . . , |U |} with |U | = n, V = {1, 2, . . . , |V |} with |V | = d and the set of
edges E where each edge connects a vertex of U to a vertex of V . The adjacency matrix for this type
of graph has the following structure

A =

(
0n×n B
B⊤ 0d×d

)
(1)

where B of size n× d is called the biadjacency matrix of G, its rows and columns corresponding to
the two sets of vertices; each entry represents an edge between a row and a column. Biclustering (or
Co-clustering) is the extention of clustering to this type of graph. Following [21], several biclustering
models have attempted to solve the problem by viewing B as a two-mode matrix and searching for a
simultaneous partition of its rows and columns [9]. In this way, biclustering seeks to reveal subsets of
U which exhibit a similar behaviour across a subset of V in matrix B.

Biclustering has been used in a number of different contexts. [12] used microarray data to find
relations between genes and conditions, finding that genes with similar functions often cluster
together. [20] applied this paradigm to data from the US Food and Drug Administration reporting
system in order to identify groups of drugs with adverse effects. [11] used it to find market segments
among tourists so as to enable more effective targeted marketing. There have been various other
applications [9, 33, 19].

Several solutions to the biclustering problem have been proposed in the literature (see [17]). [10]
used an information-theoretic approach to solve the problem by minimizing the difference in mutual
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information between B and a summary matrix; they implicitly assume that the data points are
generated from a Poisson latent block model [18]. [3] adapted classical modularity to bipartite
networks and then used it to identify modules within them. [35] proposed a biclustering paradigm
based on nonnegative matrix tri-factorization of the biadjacency matrix.

Recently, Optimal Transport (OT) has taken the machine learning community by storm. OT has
helped to solve a variety of data mining problems, and biclustering is no exception. [25] proposed
two models for biclustering: a first model, CCOT, which does co-clustering based on the scaling
vectors obtained by applying the Sinkhorn-Knopp algorithm on a square subsampled version of
matrix B, and a second model, CCOT-GW, which uses scaling vectors obtained by computing
entropic Gromov-Wasserstein barycenters, and which does not require subsampling. Then came
[34], where the authors did biclustering by minimizing a new metric, COOT, which generalizes the
Gromov-Wasserstein distance between B and a summary matrix, similarly to what was done in [10].
More specifically, they proposed two new metrics: COOT, together with an entropically regularized
metric COOTλ. However, both [25] and [34] have certain drawbacks. First, both algorithms do not
tackle the biclustering from the beginning; the co-clusters are deduced at the convergence. Thereby
biclustering is a consequence and not a main goal. Secondly, they suffer from high computational
complexity; CCOT and CCOT-GW also consume large amounts of memory. Finally, we will see that
these algorithms are not suited to dyadic sparse data.

In this paper, while integrating the biclustering objective from the beginning, we propose a generic
framework for biclustering through optimal transport, which generalizes some previous biclustering
approaches. We propose two efficient methods for solving this problem: one that gives an almost
hard biclustering, and another that gives a fuzzy or soft biclustering through entropic regularization.
These methods outperform other optimal transport biclustering models, in terms of both document
and term clustering, on several regular and large scale datasets, while being more computationally
and memory efficient. We emphasize once again that the approach we propose is specifically tailored
to datasets consisting of dyadic data.

2 Methodology

Notations. In what follows, ∆n = {p ∈ Rn
+|

∑n
i=1 pi = 1} denotes the n-dimensional standard

simplex. Π(w,v) = {Z ∈ Rn×k
+ |Z1 = w,Z⊤1 = v} denotes the transportation polytope, where

w ∈ ∆n and v ∈ ∆k are the marginals of the joint distribution Z and 1n is a vector of ones. Matrices
are denoted with uppercase boldface letters, and vectors with lowercase boldface letters. For a matrix
M, its i-th row is mi and its j-th column is m′

j We have that ∥.∥0 is the 0-norm which returns the
number of nonzero elements of its argument.

2.1 Preliminaries

We first need to introduce exact discrete OT and its entropically regularized counterpart, and show
how biclustering can be posed as an integer program.

Discrete OT as a linear program. The goal of discrete optimal transport is to find a minimal cost
transport plan between a source probability distribution w and a target distribution v. Here we are
interested in the discrete case of the Kantorovich formulation of OT, that is

OT(M,w,v) ≜ min
Z∈Π(w,v)

⟨M,Z⟩ (2)

where M ∈ Rn×k is the cost matrix, and mij quantifies the effort needed to transport a probability
mass from wi to vj .

Discrete entropy regularized OT. It has been suggested in the literature [6, 5] that the use of
a regularization such as entropic regularization can lead to better computational and statistical
efficiency.

OTλ(M,w,v) ≜ min
Z∈Π(w,v)

⟨M,Z⟩ − λH (Z) (3)
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where H is the entropy defined as H(Z) ≜ −
∑

i,j zij log zij and λ controls the strength of regular-
ization. The computational efficiency comes from the fact that the unique solution of this problem is
of the structure Z := diag(a) exp(−M/λ)diag(b), a rescaled elementwise negative exponential
of the cost M, where a and b are scaling vectors. These vectors can be found efficiently using the
Sinkhorn-Knopp algorithm.

Biclustering as an integer program. The Block seriation problem [27] consists in finding two
permutation matrices, one for the rows and one for the columns s.t. dense blocks appear along the
diagonal of the permuted matrix. A possible definition of the block seriation problem is as follows:
given a matrix B ∈ Rn×d s.t bij gives the strength of the association between row i and column j
(such as in the case of a biadjacency matrix, for example), we have

max
C

∑
i,j

bijcij (4)

subject to ∀ i, j cij ∈ {0, 1}

∀ j
∑

i
cij ≥ 1

∀ i
∑

j
cij ≥ 1

∀ i, j, i′, j′ cij + cij′ + ci′j′ − ci′j ≤ 2

ci′j′ + ci′j + cij − cij′ ≤ 2

ci′j + cij + cij′ − ci′j′ ≤ 2

cij′ + ci′j′ + ci′j − cij ≤ 2

A solution C is a block diagonal matrix up to a permutation of its rows and columns. The block
seriation problem is an integer programming problem that is NP-hard. One approach for solving this
problem uses a simplified version where a rank constraint rank(C) ≤ k is added for k the number
of desired biclusters. Integrating this constraint into (4), we can define a new problem by low-rank
factorization of C, i.e. C = ZW⊤, which we formulate as

max
Z∈Γ(n,k)
W∈Γ(d,k)

∑
i,j,h

bijzihwjh (5)

where Γ(n, k) = {Z ∈ {0, 1}n×k | Z1 = 1} is the set of hard partitions of dimension n × k. A
simple heuristic for solving this problem involves alternatingly solving for Z given W, and vice-versa,
using classical clustering algorithms, before identifying biclusters through the rearranged matrix C,
which displays a block diagonal structure, as shown in figure 1a. The biclusters are identified by
grouping together the rows and columns that form a block along the diagonal.

2.2 Biclustering using Optimal Transport

Here we propose a new biclustering problem based on block seriation and optimal transport. For this
purpose we first define what we term an anti-adjacency matrix. Note that a similar concept has been
discussed in [36].

Definition 1 (Anti-adjacency matrix) Given a graph characterized by an adjacency matrix A, we
have a corresponding anti-adjacency matrix A s.t. aij quantifies the discrepancy between nodes i
and j.

We consider a bipartite graph characterized by its biadjacency matrix B = (bij) ∈ Rn×d. The rows
of B are endowed with weights w ∈ ∆n and its columns with weights v ∈ ∆d. We also consider
a row exemplar distribution r ∈ ∆r and a column exemplar distribution c ∈ ∆c. Depending on
the availability of a priori information about the data, these weight vectors can be set to uniform
distributions.

Now let its anti-biadjacency matrix be B = L(B), where L : Rn×d → Rn×d means that bij , the
association between node i and node j, is transformed into a discrepancy measure L(B)ij . Thus, we
define the optimal transport block seriation problem as the following bilinear program

BCOT(w,v, r, c) ≜ min
Z∈Π(w,r)
W∈Π(v,c)

∑
i,j,k

L(B)ijzikwjk ≡ min
Z∈Π(w,r)
W∈Π(v,c)

〈
L(B),ZW⊤〉 (6)

where Z is a transport plan (or coupling) between between the row distribution w and the row
exemplar distribution r, and similarly for W w.r.t. the column distribution v and the column
exemplar distribution c.
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(a) Block Seriation. (b) BCOT. (c) BCOTλ.

Figure 1: Biclusters formed using three different methods on the Pubmed dataset. Classical block
seriation results in a biclustering that is hard. BCOT results in a biclustering that is almost hard with
few nonzero entries outside the main block diagonal. BCOTλ results in a soft biclustering with many
nonzero elements outside the block diagonal.

Inducing a biclustering via BCOT. We will now show how to obtain a partition of the rows and
the columns given a solution pair (Z,W). In what follows our aim is to identify an almost-hard
clustering couple for rows and columns from the couplings Z and W.

Definition 2 (h-almost hard clustering) We define an h-almost hard clustering as a clustering
whose assignment matrix is C ∈ Rn×k s.t. ∥C∥0 = n + h and for each row c of C we have that
∥c∥0 > 0. When h = 0, we obtain a standard hard clustering with one non-zero element per row.

Proposition 1 1 For w, v, r and c containing no zeros, there exists an optimal pair of coupling
matrices Z and W that are h-almost hard clusterings with h ∈ {0, . . . , k − 1}. Furthermore, when
n = k (resp. d = k) and w = r (resp. v = c), this Z (resp. W) becomes a hard clustering, i.e.,
Z ∈ Γ(n, n) (resp. W ∈ Γ(d, d)).

This means that the solutions are already almost a hard partition of the data, since k << n, d. To
obtain a final hard clustering in the strict sense, we assign each row (resp. column) to the one
corresponding to the row of Z (resp. W) with the largest value. This should not significantly change
the structure of the solution. Figure 1b provides an illustration: here we see the block diagonal
structure generated by the product of the two coupling matrices C = ZW⊤, with its similarity in
appearance to the biclustering produced by the hard block seriation 1a, apart from a few nonzero
entries off the block diagonal that are hard to see immediately.

Intuition for BCOT. To explain the intuition behind the proposed approach we need to look at how
the problem is solved. The optimization procedure as described in algorithm 1 consists in alternating
between the computation of an optimal transport plan Z given W and vice versa. As regards solving
for Z given W, the problem can be rewritten as

BCOT(w,v, r, c) ≡ min
Z∈Π(w,r)

⟨L(B)W,Z⟩ . (7)

This is an optimal transport problem with L(B)W as the cost matrix. The resulting transport plan Z
can be seen as a kind of row cluster assignment matrix: if zih > 0, then row i is assigned to cluster h.
The same holds for W, which can be seen as a column cluster assignment matrix. This also means
that since L(B) is the dissimilarity between the rows and the columns, then the cost matrix L(B)W
represents the dissimilarity between rows and row exemplars (or representatives or centroids). In
particular, L(B)iwh is the dissimilarity or cost of probability mass transportation between row i and
row cluster exemplar h. The reasoning is the same for the columns and the optimal coupling W.

Low-rank optimal transport. Biclustering is the main purpose of the approach we proposed, but
there is another interesting use case.

Proposition 2 For equal target row and column representative distributions, i.e., r = c, and contain-
ing no zero entries, then given a solution pair Z and W to BCOT, the matrix Q = Z diag(1/r)W⊤

is an approximation of the optimal transport plan that is a solution to problem (2) and whose rank is
at most min(rank(Z), rank(W)).

1Proofs for the propositions are given in the appendix.
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Some recent works [16, 31] have suggested that this kind of low-rank regularization is preferable
to entropic regularization as regards certain aspects. For example, the rank parameter is easier to
select, since it has simple bounds (an integer between 1 and n). This may be contrasted with the
regularization strength λ in the Sinkhorn algorithm, which is continuous.

2.3 Fuzzy Biclustering via Regularized Optimal Transport

As previously mentioned, using entropic regularization may be interesting because of its various
useful features including statistical and computational efficiency. However, another feature of entropic
regularization is that the optimal couplings Z and W are dense matrices as a consequence of the
structure of the optimal solution of entropically regularized OT problems. We formulate the problem
as follows

BCOTλ(w,v, r, c) ≜ min
Z∈Π(w,r)
W∈Π(v,c)

〈
L(B),ZW⊤〉− λZH (Z)− λWH (W) (8)

where λZ and λW are the regularization parameters.

Fuzzy block seriation. We propose a fuzzy variant of the block seriation problem that allows us
by extension to define a fuzzy variant for BCOT using entropic regularization. Let the fuzzy block
seriation problem be defined as

max
Z∈Γs(n,k)
W∈Γs(d,k)

∑
i,j,h

bijzihwjh +Ω(Z,W)
(9)

where Ω(Z,W) is some regularization term introduced to make the partition matrices Z and W dense
(for example, entropic regularization or low-rank constraints), and Γs(n, k) = {Z ∈ Rn×k

+ |Z1 = 1}
is the set of fuzzy partitions. Intuitively, for a solution pair (Z,W), up to a constant factor, each
entry in the block seriation matrix C = ZW⊤ can be seen as the probability of its corresponding
row and column belonging to the same bicluster i.e. cij = ziwj =

∑r
h=1 zihwjh = p(bi,b

′
j) =∑r

h=1 p(bi,b
′
j ∈ h).

It is easy to see how problem (9) is related to problem (8) and that the couplings corresponding to
solutions of the problem give the probability that the different rows and columns belong to the same
biclusters. Figure 1c shows biclusters produced by the solutions of BCOTλ. Similarly to BCOT,
a block diagonal structure is formed. However, there are also several off-block diagonal nonzero
entries that represent the probabilities of the row-column pairs belonging to the same biclusters.

3 Links to Existing Work

3.1 Modularity Maximization in Bipartite Graphs [3].

This model is able to co-cluster binary and contingency matrices by directly maximizing an adapted
version of the modularity measure traditionally used for networks. The criterion that it optimizes is

max
Z∈Γ(n,k)
W∈Γ(d,k)

∑
i,j,h

zihwjh

(
bij −

b.jbi.
b..

)
. (10)

By setting L(B) = −(B− 1
b..
B11⊤B), this problem becomes equivalent to ours; the difference is

in the constraints on Z and W.

3.2 Modularity-Based Sparse Soft Graph Clustering [23].

Here the authors proposed a fuzzy variant of the above problem (although in the context of traditional
clustering rather than biclustering). Solving the problem gives, for each element of the dataset, a
probability of that element belonging to a given cluster. Our proposed entropic regularization variant
represents a kind of extension of this problem to bipartite graphs.
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3.3 Directional Co-clustering with a Conscience [30, 1].

This model makes use of the block von Mises-Fisher mixture model for co-clustering directional data
on the unit-sphere. It optimizes the following criterion:

max
Z∈Γ(n,k)
W∈Γ(d,k)

∑
i,j,h

1
√
z.hw.h

zihwjhbij . (11)

In our formulation, if we define L(B) = −B and apply cluster size normalization on the optimal
transport plans Z̃ = Zdiag(Z⊤1)−1/2 and W̃ = Wdiag(W⊤1)−1/2 after computing Z and W
respectively in algorithm 1, we obtain a more general version of the algorithm proposed by the
authors for solving problem (11).

3.4 Bipartite Correlation Clustering [2].

In the case where the cost function results in a complete bipartite graph with ’+’ and ’-’ edges with a
function

L(B)ij =

{
−1 if bij > 0

+1 otherwise
(12)

we get what is known as Bipartite Correlation Clustering. The solution to this problem maximizes the
number of agreements, i.e. the number of all ’+’ edges within clusters plus all ’-’ edges distributed
across clusters.

4 Optimization and Complexity

0 20 40 60 80 100
Iteration

0.0022

0.0020

0.0018

0.0016

0.0014
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ss
BCOT
BCOT

Figure 2: Loss for BCOT and
BCOTλ on Pubmed.

Optimization. Since the block seriation problem is NP-hard,
computing an exact solution is prohibitive. An efficient and
widely used heuristic for solving these kinds of problems involves
the use of block coordinate descent, where row assignments are
computed for fixed column assignments, and then vice versa, in
alternation. We express the proposed algorithm in pseudo-code as
algorithm 1. At each iteration we solve two intermediate optimal
transport problems with cost matrices of dimensions n× k and
d× k, since B is generally sparse, and L can be defined such that
L(B) retains a similarly sparse structure. The computation of the
intermediate cost matrices L(B)W and L(B)⊤Z is reasonably
efficient. We also observed that the algorithm does not need many
iterations to converge, as shown in figure 2, be it for BCOT or
BCOTλ.

Algorithm 1: BCOT
Input :B bi-adjacency matrix, w and v row and column weights, r and c row and column

exemplar distributions
Output :πr, πc row and column partitions
W←Winit;
while not converged do

Z← arg OT (L(B)W,w, r);
W← arg OT

(
L(B)⊤Z,v, c

)
;

end
Generate πr, πc from Z and W;

Proposition 3 The computational complexity of the BCOT algorithm 1 when using an exact OT
solver is O (tk∥B∥0 + tnk(n+ k) log(n+ k) + tdk(d+ k) log(d+ k))), and when using entropic
regularization the complexity is O(tk∥B∥0 + tkn+ tkd), where t is the number of iterations.

In table 1, we report the computational and spatial complexities of the different biclustering ap-
proaches. Our model has the same spatial complexity as the COOT variants and a better complexity
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Table 1: Computational and spatial complexity of the different OT biclustering approaches. For
COOT variants, we report complexities for an euclidean cost matrix. For a generic cost, the time
complexity is greater. For simplicity, we suppose that d ∈ O(n) and that we want a biclustering with
the same number of row and column clusters for COOT and CCOT. t denotes the number of iterations
and for CCOT, s denotes the number of necessary samplings.

Method Spatial complexity Time complexity

CCOT O(n2) O(sn3)
CCOT-GW O(n2) O(n3)
COOT∗ O(nk) O((n+ k)nk + k2n+ t(n+ k)nk log(n+ k))
COOT∗

λ O(nk) O((n+ k)nk + k2n+ tnk)

BCOT O(nk) O(k∥B∥0 + t(n+ k)nk log(n+ k))
BCOTλ O(nk) O(k∥B∥0 + tnk)

than CCOT variants. As regards the computational complexity, our model should in most cases be
faster with sparse data, and our experiments support this conjecture. For reproducibility, we publicly
release our code 2.

5 Experiments

We ran experiments using term-document matrices. The benefit of using biclustering on this kind
of data is that the resulting biclusters contain both documents and the words that characterize them,
which is helpful in interpreting the clustering of the documents. Additional experiments over synthetic
and gene expression data are available in the appendix.

5.1 Datasets

We evaluate BCOT in relation to six benchmark document-term datasets: ACM, DBLP, PubMed,
Wiki, Ohscal, and 20 Newsgroups. Their characteristics are shown in Table 2. ACM, DBLP, Pubmed
and Wiki are attributed networks from which we use only the node-level features that correspond to
term-document matrices. We also selected the Ohscal collection and 20 Newsgroups as large-scale
document-term matrices to serve as computational efficiency benchmarks.

Table 2: Characteristics of the datasets.
Dataset #Documents #Terms #Document clusters Sparsity (%)

ACM [13] 3025 1870 3 95.52
DBLP [13] 4057 334 4 96.4

PubMed [32] 19717 500 3 89.98
Wiki [37] 2405 4973 17 86.99

Ohscal [22] 11162 11465 10 99.47
20 Newsgroups [26] 18846 14390 20 99.41

5.2 Experimental Setup

In our experiments we define the loss function as L(B) = −cB, where c is selected from {1, k, d, n}.
For BCOTλ, the regularization parameter lambda is selected from {10−4, 10−3, 10−2, 10−1, 1, 10}.
The best hyper-parameters are those that minimize the number of empty clusters. In the case of ties,
we select according to the value of the Davies-Bouldin index of the partition [7]. Random restarts are
not used for any of the algorithms, including k-means. We use the implementation provided by the
authors for CCOT, CCOTλ and CCOT-GW. The code for CCOT was not available, and so we had to
implement it based on the code for CCOT-GW. All the reported figures are the averages of 10 runs.

2https://github.com/chakib401/BCOT
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All the experiments were performed on the same machine with an Intel(R) Xeon(R) CPU and 12GB
RAM. For OT solvers we made use of the POT package [15].

5.3 Document Clustering

Metrics. Here, the evaluation is straightforward, we adopt three popular clustering metrics: clus-
tering accuracy (CA), normalized mutual information (NMI) [4], adjusted rand index (ARI) [24].

Table 3: Document clustering performance on the four datasets. OOM denotes out of memory.
Method ACM DBLP PubMed Wiki

CA NMI ARI CA NMI ARI CA NMI ARI CA NMI ARI
k-Means 51.1±11.3 13.7±11.2 14.0±10.6 36.9±2.4 10.4±2.0 4.3±2.0 52.3±4.7 18.2±10.5 15.3±10.1 26.0±6.1 18.6±9.3 3.3±2.9

CCOT 12.4±2.0 1.0±0.2 0.4±0.2 28.6±0.5 0.6±0.0 0.4±0.0 32.7±0.2 3.0±0.0 3.1±0.1 10.6±0.5 4.9±0.1 0.6±0.15
CCOT-GW 8.1±0.0 1.5±0.0 0.3±0.0 9.4±0.0 1.7±0.0 0.3±0.0 OOM 10.9±0.0 4.3±0.0 0.48±0.0
COOT* 39.0±0.0 1.9±0.0 2.0±0.0 30.5±1.4 1.4±0.3 1.2±0.3 43.2±1.5 1.7±0.6 1.3±1.5 25.9±1.8 28.7±2.2 12.3±1.7
COOTλ 41.5±0.2 1.9±0.1 2.2±0.0 30.6±0.0 0.7±0.0 0.6±0.0 42.4±1.5 1.7±0.5 1.0±1.3 17.2±0.0 1.7±0.0 0.31±0.0

BCOT 76.6±1.5 38.3±2.2 43.3±2.6 61.5±6.2 27.4±4.3 28.3±5.5 53.6±4.5 15.9±1.9 12.9±2.4 49.8±1.5 47.9±1.0 30.6±1.0
BCOTλ 76.2±0.6 37.6±0.8 42.4±1.0 59.4±9.9 26.6±7.6 27.2±9.5 56.5±3.1 18.4±1.3 15.4±1.8 50.8±1.5 49.4±0.9 31.9±0.8

Performance. Document clustering results on ACM, DBLP, PubMed and Wiki are given in table 3
for the three metrics. In all cases the best result is obtained either by BCOT or by BCOTλ. Moreover,
on Wiki, BCOTλ gives competitive results when compared with state-of-the-art attributed graph
clustering methods presented in [14], despite not having access to the graph structure information in
the Wiki citation network.

Efficiency. Figure 3 plots the document clustering performance (accuracy against training time)
of the different methods on the two large-scale document-term matrices 20 Newsgroup and Ohscal.
BCOT offers the best accuracy while BCOTλ is fastest method on both datasets. We see that for both
BCOT and COOT, the entropic-regularized versions outspeed their exact counterparts and that CCOT
suffers from very high computation times, due mainly to the fact that this method requires pairwise
distance matrices to be computed on the rows and columns.
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Figure 3: Accuracy against training time on NG20 and Ohscal. BCOTλ is the fastest and has a
competitive level of accuracy. BCOT gives the best accuracy while remaining relatively efficient. The
multiplication factors shown for the training times take BCOTλ as the reference (and so, for example,
×4.5 shown for BCOT means that it is approximately 4.5 times slower than BCOTλ). We were not
able to benchmark CCOT-GW since it failed to scale to these datasets.

5.4 Term Clustering

Metrics. Unlike document clustering, there is no ground truth partition for terms, so we need
to find another way of evaluating term clustering results. One generally acceptable technique is
to analyse the semantic coherence of the clusters obtained. To this end we introduce a metric
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based on point mutual information (PMI). PMI is a frequently used information-theoretic metric for
quantifying the relationship between pairs of discrete random variable outcomes. The PMI measure
was chosen because prior research [29] has shown that it is closely associated with human judgements
in determining word relatedness. The PMI between the terms wi and wj is calculated as

PMI(wi, wj) = log
p(wi, wj)

p(wi)p(wj)
(13)

In the context of term clustering, given the word co-occurrence matrix K = B⊤B, the PMI is
estimated as in

PMI(wi, wj) = log
k..kij
ki.k.j

(14)

To evaluate a partition of terms P , we propose a metric based on intra and inter PMI metrics as
follows:

PMIintra(P ) =
∑

i∈P

∑
j∈P kij (15) PMIinter(P ) =

∑
i∈P

∑
j ̸∈P kij (16)

In this way, a good clustering should reveal a high intra-cluster semantic relatedness, corresponding
to higher PMI values. Using the intra and inter PMIs, we propose the following coherence index

coherence(P) = 1∑
P∈P
|P |

∑
P∈P
|P | (PMIintra(P )− PMIinter(P )) . (17)

Our reasoning is this: the greater the semantic proximity between terms in the same clusters, and the
greater the sematic distance between terms in different clusters, the higher the value of coherence.

Results. Since there is no ground truth number of term clusters, we use the cluster number estima-
tions produced by CCOT-GW for all the other models so that it is easy to compare coherence values
between them. Comparisons based on different numbers of clusters would favor the model using
the larger number of clusters. Table 4 shows the coherences obtained across the different datasets
using our approach, along with those of the baselines. It is clear that BCOT succeeds in capturing
more semantics than the other approaches since, whatever the dataset, one or other of the two BCOT
variants gives the highest coherence.

Table 4: Term clustering performance on the four datasets. OOM denotes out of memory.
Method ACM DBLP PubMed Wiki Ng20 Ohscal
k-Means 0.19±0.01 0.05±0.03 0.31±0.18 0.28±0.02 0.28±0.04 0.01±0.02

CCOT 0.03±0.00 -0.07±0.06 0.02±0.01 0.02±0.00 0.05±0.00 0.06±0.00
CCOT-GW 0.08±0.00 0.03±0.00 OOM 0.01±0.00 OOM OOM
COOT 0.12±0.01 0.07±0.00 0.14±0.01 0.40±0.00 0.43±0.02 0.23±0.01
COOTλ 0.21±0.00 0.04±0.00 -0.00±0.00 -0.08±0.00 -0.02±0.00 -0.13±0.00

BCOT 0.27±0.01 0.22±0.04 0.54±0.03 0.64±0.01 0.79±0.01 0.44±0.00
BCOTλ 0.24±0.00 0.16±0.02 0.57±0.01 0.62±0.01 0.27±0.01 0.35±0.00

5.5 Statistical Significance

We performed a Nemenyi post-hoc test [28, 8] with a confidence level of 90% on the document
and term clustering results that we obtained, to determine whether our model outperforms other
OT biclustering approaches in a statistically significant way. To conduct this test we generated 20
performance rankings of the OT biclustering models based on their performance for each dataset and
quality metric pair for both document and term clustering. Figure 4 shows the results of the test. We
see that two differently performing groups were identified, one comprising BCOT and BCOTλ and
giving better results than the other group comprising the remaining COOT and CCOT variants. This
indicates that with this specific number of datasets and metrics the test was unable to tell COOT and
CCOT apart in a statistically significant way.

9



1 2 3 4 5 6

BCOT
BCOT
COOT COOT

CCOT
CCOT-GW

CD

Figure 4: Result of the Nemenyi post hoc test.

6 Conclusion

Clustering and biclustering through optimal transport is still at a nascent stage, with many challenges
remaining unsolved. This paper introduces a novel problem for biclustering using optimal transport
that takes into account the sparse nature of certain types of dyadic data such document-term matrices,
to enable more computationally efficient resolution. The problem is posed as a bilinear program that
we solve using an efficient block coordinate descent algorithm to find a vertex solution. Experiments
on a number of document-term datasets suggest that the proposed approach does a good job in finding
clusters that correspond to ground truth document classes, while generating semantically coherent
partitions for the terms. In this setting, our model outperforms recent OT biclustering methods by a
significant margin, while being more computationally efficient.
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