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Abstract

We propose VRL3, a powerful data-driven framework with a simple design for
solving challenging visual deep reinforcement learning (DRL) tasks. We analyze a
number of major obstacles in taking a data-driven approach, and present a suite
of design principles, novel findings, and critical insights about data-driven visual
DRL. Our framework has three stages: in stage 1, we leverage non-RL datasets
(e.g. ImageNet) to learn task-agnostic visual representations; in stage 2, we use
offline RL data (e.g. a limited number of expert demonstrations) to convert the
task-agnostic representations into more powerful task-specific representations; in
stage 3, we fine-tune the agent with online RL. On a set of challenging hand
manipulation tasks with sparse reward and realistic visual inputs, compared to
the previous SOTA, VRL3 achieves an average of 780% better sample efficiency.
And on the hardest task, VRL3 is 1220% more sample efficient (2440% when
using a wider encoder) and solves the task with only 10% of the computation.
These significant results clearly demonstrate the great potential of data-driven deep
reinforcement learning.

1 Introduction

Over the past few years, the sample efficiency of Deep Reinforcement Learning (DRL) has signifi-
cantly improved in popular benchmarks such as Gym [4, 82] and DeepMind Control Suite (DMC)
[80]. However, the environments in these benchmarks often look different from the real world (see
discussion in section 5.8, page 8 in [73]). It remains unclear whether the sample-efficient methodolo-
gies developed for these benchmarks can be successfully extended to more practical tasks that rely on
realistic visual inputs from cameras and sensors, such as in robotic control and autonomous driving.

A promising direction is to take a data-driven approach, that is, try to use all the data available that
might contribute to the learning process. Indeed, in the past few decades, the most important advances
in deep learning have been facilitated by the use of large amounts of data and computation [78, 47].
Such a data-driven approach is natural and mature for supervised learning, but not as much so for RL,
where learning is most commonly performed in an online fashion.

Although recent advances in representation learning for RL and offline RL reveal the potential of
such an approach, most existing offline RL methods focus on tasks with proprioceptive (“raw-state”)
input and not the challenging visual control tasks. There is yet to be a method that can fully utilize
data from multiple different sources to boost learning efficiency. In this work, the goal is to develop
a data-driven framework that fills this role. And this framework is designed to be as simple as
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Figure 1: The design of VRL3. In stage 1, we pretrain an encoder using large image datasets to
obtain task-agnostic visual representation. In stage 2, we initialize an actor-critic RL agent with the
pretrained encoder, and then use offline RL techniques to train on offline RL data. Here we finetune
the encoder and also learn the actor and critic. In stage 3, we initialize a buffer with the offline
data from stage 2, and further train the entire agent with online RL. The idea is simple: to address
challenging visual control tasks, the goal is to fully exploit all the available data.

possible while being sample efficient. As discussed in a number of critique papers [27, 28, 17],
simplicity in algorithm design is preferred because the performance of RL algorithms can be heavily
affected by hidden details in the code, and a simpler design often leads to cleaner analysis and better
reproducibility. Note that VRL3 is clearly not simpler when compared to a purely online method that
only trains in 1 stage and does not take advantage of data from other sources. However, VRL3 is
simpler than other alternative ways to utilize data from 3 separate stages. In the later sections, we
provide extensive discussions and ablations to show that VRL3 indeed has a simple and intuitive
design that can fully exploit all data sources to reach superior performance.

We also make an effort to maximize robustness and reproducibility, by comparing to stronger
baselines that we re-implemented and improved, presenting extensive ablations and a hyperparameter
robustness study, listing full technical details, providing open source code, and more. (Source code is
being reviewed and cleaned and will be put on Github soon).

Figure 1 shows the proposed framework, Visual Deep Reinforcement Learning in 3 Stages (VRL3).
VRL3 is designed with a data-driven mindset, and each stage utilizes a particular type of data source.

In stage 1, we learn from large, existing non-RL datasets such as the ImageNet dataset. These datasets
might not be directly relevant to the RL task, but they provide task-agnostic visual representations
that might be helpful, especially if the RL task also has realistic visuals. A major challenge here is
that the non-RL data can come from a different domain with different input shapes. Special care is
required to make sure the representations obtained here can be smoothly transferred to the RL task.

In stage 2, we learn from offline RL data, such as a small number of expert demonstrations, or
data collected by a previous learning agent. This offline data is related to the RL task and contains
important information about solving the task. We initialize an actor-critic RL agent with the pretrained
encoder and then employ offline RL techniques which not only train the actor-critic RL agent but
also fine-tune the encoder, thereby creating a task-specific representation.

In stage 3, we learn from online RL data. Our main goal is sample efficiency (achieve high perfor-
mance with as little online data as possible). We, therefore, use off-policy training, which uses and
re-uses all available data during training. Note that naively transitioning into standard online RL
can lead to training instability and destroy what we learned from the previous stages. We avoid this
instability by constraining the maximum Q target value during off-policy updates.

Although each stage brings a number of unique challenges, we show that VRL3 can address all of
them and take full advantage of the different data sources. Our contributions are as follows:
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1. Novel framework: we present a data-driven framework that can fully exploit non-RL, offline
RL, and online RL data to solve challenging tasks with sparse reward and realistic visual
input. Most existing visual methods do not utilize offline data, and most offline RL methods
do not work with difficult visual tasks, making our framework a novel contribution. We
provide source code 2 and a full set of technical details to maximize reproducibility.

2. Novel technical contributions: we propose convolutional channel expansion (CCE) to enable
an ImageNet-pretrained encoder to work with RL tasks that take in multiple input images.
We also propose the Safe Q target technique for minimal-effort offline to online transition.

3. Novel insights: we show that offline RL data (expert demonstrations) can provide a benefit
that cannot be replaced by other stages, and that conservative RL might be a superior
option when exploiting offline data, compared to contrastive learning. We also show that
a reduced encoder learning rate helps learning in a multi-stage setting. And interestingly,
representation pretrained with non-RL data, despite the large domain gap, can give better
performance compared to representation learned from limited RL data, but is outperformed
when RL data is ample. We also find stage 1 pretraining helps more in more difficult tasks.

4. Novel results: We present extensive ablations that reveal the effect of each component
of VRL3, and conduct a large hyperparameter study on tasks with different difficulties,
providing useful guidelines on how to deploy and tune our framework to new tasks.

5. Significant improvement over the previous SOTA: VRL3 achieves a new level of SOTA
sample efficiency (780% better on average), parameter efficiency (3 times better), and
computation efficiency (10 times faster to solve hardest task) on the challenging Adroit
benchmark while also being competitive on DMC. When using a wider encoder, we can
even reach 2440% better sample efficiency on the hardest Relocate task compared to the
previous SOTA.

2 Related Work

VRL3 has a straightforward design and effectively combines representation learning, offline RL, and
online RL. We now discuss related work and how our contribution is novel and different from prior
works, with a focus on model-free methods. Additional related work is discussed in Appendix D.

2.1 Learning visual tasks with online RL

With the help of data augmentation, many visual RL tasks can be learned in an online fashion.
Typically, agents trained with such methods use convolutional encoders to extract lower-dimensional
features from the visual input, and train in an end-to-end fashion [35, 93, 43, 94]. Another class
of methods uses contrastive representation learning to solve visual tasks [44, 77, 99]. Contrastive
learning can be used to learn useful representations without gradients from the RL objectives. These
methods work well in environments with simple visuals, such as in the DMC environments, but can
fail entirely if naively applied to challenging control tasks with sparse rewards and more realistic
visuals such as Adroit, due to the difficulty in both exploration [66] and learning representations for
realistic visual inputs [73]. Different from these works, VRL3 can fully exploit offline RL data and
even non-RL data and can achieve SOTA performance in both Adroit and DMC.

2.2 RL with ImageNet pretraining

A number of previous works have used a pretrained encoder, such as a ResNet trained on ImageNet
to help convert visual input into low-dimensional features, the encoder can be further finetuned or
kept frozen during training [73, 16, 31, 22, 48, 64, 72]. However, such pretraining alone might not be
sufficient to achieve the best performance or computation efficiency. Naively initializing the agent
with an ImageNet-pretrained encoder might not provide a significant advantage over training from
scratch [31]. Most of these works do not incorporate offline RL data. RRL [73] uses offline RL data
but does not exploit them to the full extent. Different from these works, we show how ImageNet
pretraining can be best combined with offline and online RL and provide a series of novel analyses,
interesting results, and important insights. Other pretraining settings are also explored, [90] show
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masked image pretraining can lead to strong performance on a new suite of robotic tasks. [62] and
[59] show that pretraining on different datasets and with more sophisticated methods can be combined
with imitation learning. Compared to them, we study RL, which is a different subject, and we also
achieve better success rate on Adroit (95%, while they have 85% and <70%, respectively).

2.3 Offline RL and data-driven RL

In the past few decades, some of the most important advances in AI research have been based on data-
driven methods, so it is natural to ask whether we can also utilize a similar mindset for DRL [47, 78].
Although off-policy algorithms do not naively work in offline settings [18, 49], many specialized
algorithms are proposed to allow effective offline training [18, 37, 8, 63, 88, 36, 17, 87, 34, 92, 2, 20,
89]. Recent works also study the transition from offline to online [58, 46, 102, 46, 34, 49]. However,
most of these works are tested on tasks with proprioceptive (positions & velocities) input, and they
do not consider pretraining from non-RL data. Our work is different and is focused on challenging
control tasks with visual input, sparse reward, and limited demonstrations.

Note that Adroit has often been studied with proprioceptive and not the more challenging visual input.
RRL [73] and FERM [98] are the most relevant to our work. RRL uses an ImageNet-pretrained
encoder, performs behavioral cloning (BC) on offline RL data, and then performs on-policy learning.
Prior to our work, RRL is the SOTA on visual Adroit and is the only method that achieves non-trivial
performance on the hardest Relocate task. FERM performs contrastive learning on offline RL data
and then performs off-policy online RL with data augmentation. FERM can learn simple robotic
tasks quickly but has brittle performance in Adroit [73].

In most prior works, the different training stages have been studied separately. What is missing is a
framework that can combine all 3 stages effectively and efficiently. A major novel contribution of
this work is such a framework and a comprehensive study on how its components interact and build
up towards superior performance.

3 VRL3: Visual DRL in 3 stages

We now present the design of our framework VRL3. We focus on the high-level ideas and provide
additional technical details in Appendix A and pseudocode in appendix C. Our agent has a convolu-
tional encoder, two Q networks, two target Q networks and a policy network. Note the encoder can
be trained separately from the policy and Q networks.

Stage 1 We follow the standard supervised learning routine and train a convolutional encoder fξ on
a 1000-class ImageNet classification task. We follow the standard training procedure of a typical
ResNet model. During training, we shrink the images to the size of 84x84 so that they match the
input dimension of our downstream RL task. In our main results, we also use a lightweight encoder
with 5 convolutional layers, with batch norm after each layer. In appendix A.7 we show additional
results with deeper ResNet models.

Transition to multi-frame RL input After stage 1, we expand the first convolutional layer of the
encoder so the input channel size matches the RL task which can take in multiple frames, and the
weight values in this layer are divided accordingly to maintain features to later layers, we refer to this
as convolutional channel expansion (CCE) (Further discussed in Section 5).

Stage 2 We first initialize an RL agent with the pretrained encoder and put the offline RL data in an
empty replay buffer D. Note that for Adroit, we have a standard 25 expert demonstrations per task
(collected by human users with VR) [66]. We build our implementation on top of DrQv2 because it is
a simple off-policy actor-critic algorithm with SOTA performance and a clean and efficient codebase
[93]. Here we also try to follow the notations in DrQv2 for better consistency.

Input and image augmentation Let aug denote random shift image augmentation, and cat for
concatenation. Let x be the visual input from the camera (or cameras). In the Adroit environment, in
addition to the visual observation, we are also given sensor values from the robotic hand, which is
a vector of real numbers, denoted by z. The augmented visual input (image frames) is put into the
encoder, giving a lower-dimensional representation h = fξ(aug(x)). We then concatenate it with the
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sensor values (this is skipped in DMC). For simplicity, let s = cat(h, z) denote the concatenation; s
is the input to the Q and policy networks, which are multi-layer perceptrons.

Offline RL update For each update, we sample a mini-batch of transitions
(xt, zt,at, rt:t+n−1,xt+n, zt+n) from the replay buffer D. Note we have t + n here to
compute n-step returns [93]. Let st = cat(ht, zt). Let ãt ∼ πφ(st) be actions sampled from the
current policy. The Q target value y is: y =

∑n−1
i=0 γ

irt+i + γn mink=1,2Qθ̄k(st, ãt+n).

The standard Q loss LQ is (for k = 1, 2): LQ(D) = Eτ∼D
[
(Qθk(ht,at)− y)2

]
.

Following [37], and build on top of our framework, we use an additional conservative Q loss LQC
term: LQC(D) = Eτ∼D

[
log
∑

ãt
exp(Q(st, ãt))−Q(st,at)

]
. On a high-level, this loss essentially

reduces the Q value for actions proposed by the current policy, and increase the Q values for actions
in the replay buffer [37].

The standard policy (actor) loss Lπ is: Lπ(D) = −Eτ∼D
[

mink=1,2Qθk(st,at)
]
.

Let α be the learning rate for the policy network and the Q networks. Let βenc be the encoder
learning rate scale, so that the encoder learning rate is αenc = βencα. For each offline RL update
in stage 2, we perform gradient descent on LQ(D) + LQC(D) to update the encoder fξ and the Q
networks Qθ1 , Qθ2 , and gradient descent on Lπ to update the policy πφ. Note that we do not use the
gradient from the policy to update the encoder, following previous work [94, 93]. We also use Polyak
averaging hyperparameter τ to update target networks, as is typically done.

Safe Q target technique When computing the Q target in stages 2 and 3, we propose a simple yet
effective solution to prevent potential Q divergence due to training instability and distribution shift.
For all tasks, we set a maximum Q target value. To decide this threshold value, we reshape the
maximum per-step reward rmax to be 1 and estimate what the maximum Q value should be for an
optimal policy (Details in Appendix A.2). To be concrete, we can compute the sum of this infinite
geometric series, Qmax =

∑∞
t=0 γ

trmax = 100 when γ = 0.99 (γ is discount factor). Empirical
results show that this computed threshold is robust and does not require tuning (as shown in Figure
1e in the appendix A, slightly lower or higher threshold values such as 50 and 200 also give similar
performance). Now if during any Q update, a Q target value y exceeds this threshold value, then
we reduce it to be closer to the threshold value: if y > Qmax + 1, then y ← Qmax + (y −Qmax)η,
where 0 ≤ η ≤ 1 is the safe Q factor. Notice the Qmax + 1 here is a technical detail to address edge
cases.

Reduced encoder learning rate Due to the domain gap between ImageNet and the RL task, we apply
a reduced encoder learning rate to avoid the disturbance of pretrained features in stages 2 and 3.

Stage 3 We continue to use the replay buffer D, which already contains the offline RL data. We
now perform standard online RL, and newly collected data are added to D. The update is the same as
in stage 2, except we remove the conservative Q loss LQC(D).

4 Results

Figure 2a shows success rate comparison averaged over all 4 Adroit tasks, Figure 2b shows results on
the most challenging Relocate task, and Figure 2c shows average performance comparison on all
24 DMC tasks. We use the following methods as our baselines. DrQv2 is an off-policy online RL
method that has the SOTA performance on DMC. RRL is an on-policy method that uses pretrained
ImageNet features and utilizes demonstrations with behavioral cloning and has SOTA performance
on Adroit. FERM is a 2-stage method that first trains an encoder with contrastive learning on offline
RL data and then perform online RL. Note that currently there are not many successful multi-stage
visual RL frameworks like VRL3, and as discussed in section 2, most existing offline-online methods
are not designed to work with the more challenging visual inputs, so they are not included.

Getting stronger baselines Naively, DrQv2 does not use offline data and does not work well in
Adroit due to the difficulty in exploration. And FERM has brittle performance on Adroit [73]. To
create stronger baselines, we introduce variants of DrQv2 and FERM, which are both built on top
of our framework. Specifically, DrQv2fD(VRL3) does not have stage 2 training but starts stage 3
training with demonstrations in the buffer. FERM(VRL3) is our re-implementation based on VRL3
and has much stronger performance compared to the results in [73] (more robust, is about 2 times

5



(a) 4 Adroit tasks (b) Relocate (c) 24 DMC tasks (d) Adroit Suite [66]

Figure 2: (a) Average success rate over 4 visual Adroit tasks. The performance for VRL3 is averaged
over 10 seeds (seeds 0-9). To ensure consistency with prior work, results for RRL (Adroit SOTA) are
provided by the authors. VRL3 achieves the strongest performance with a simple design. (b) Success
rate for the hardest Relocate task. (c) Average performance over all 24 DMC tasks. VRL3 is still the
best, though the performance gap is smaller. Results for DrQv2 are provided by the authors.

faster, and reaches a 1.25x average success rate). For Adroit, we also compare with FERM+S1, which
is FERM(VRL3) plus S1 pretraining, and VRL3+FERM, which is VRL3 with additional contrastive
encoder learning in stage 2. For these improved baselines, we use the hyperparameters we searched
for VRL3 for maximum performance. Doing so helps to ensure our comparison actually reflects the
differences in algorithmic design and not hidden implementation details [17, 27].

Figure 2a shows that interestingly, for Adroit, both FERM(VRL3) and DrQv2fD(VRL3) outperform
RRL in the early stage, showing that with the right implementation, these off-policy agents can learn
quickly even without stage 1 representations. Figure 2b shows that on the most challenging Relocate
task, DrQv2fD and FERM variants fail to learn entirely because they do not exploit stage 2 data
sufficiently. VRL3 greatly outperforms all other methods.

Significantly stronger SOTA sample efficiency on Adroit: Compared to RRL, VRL3 achieves an
average of 780% better sample efficiency over all tasks and is 1220% faster (2440% when finetuned)
to solve the most difficult Relocate task (in terms of the data required to reach 90% success rate).
VRL3+FERM has the same performance as VRL3, showing that additional contrastive learning is not
necessary. FERM+S1 is stronger than FERM, showing that stage 1 pretraining also works well with
contrastive stage 2 learning. For parameter and computation efficiency, we also use a much smaller
encoder compared to RRL. We are 50 times more parameter efficient in the encoder and 3 times
more parameter efficient for all networks in the agent. VRL3 is also more computationally efficient,
solving the hardest task with just 10% of the computation (Detailed comparison in Appendix B).

For DMC, we collect 25K data with fully trained DrQv2 agents to enable stage 2 training. As shown
in Figure 2c, VRL3 has the best performance in the early stage, FERM(VRL3) and DrQv2fD are
slightly weaker, but achieve the same performance at 1M data. All three of them outperform DrQv2
(results from authors). Note that DMC is typically treated as an online RL benchmark, and DrQv2
is an online method, so we do not claim a new SOTA. These results are only to show that VRL3
can work in this popular benchmark and can utilize offline data to learn faster. Compared to DMC,
Adroit is more challenging due to its sparse reward setting and more complex, more realistic visuals
with more depth, lighting, and texture information. This might explain the larger performance gap in
Adroit. This shows the advantage of VRL3 is more evident in more challenging visual tasks.

5 Challenges, Design Decisions, and Insights

In addition to the strong performance on Adroit, another advantage of VRL3 is its simplicity. The
simple design of VRL3 not only makes it much faster and more lightweight than the previous SOTA
but also allows us to easily ablate and study its core components. In this section, we discuss some
technical challenges and provide a comprehensive analysis of how the different components of VRL3
work together towards superior performance. We focus on Adroit and all experiment results are
averaged over 4 Adroit tasks (per-task plots in Appendix A).
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5.1 Stage 1: Pretraining with non-RL data

The first challenge we face in stage 1 is input shape mismatch. In stage 1, the input to the encoder is
a single image with RGB channels. For the downstream RL task, however, it can be beneficial for the
agent to take in multiple consecutive frames of images as input, or frames from multiple different
cameras (sometimes even a combination of both), so that the agent can learn to use temporal and
spatial information in these frames for better performance.

A naive solution is to put each frame separately into the pretrained encoder, as is done in [73]. This
naive approach has two downsides: 1) it requires more computation, and 2) even if we finetune the
encoder, it cannot learn important temporal and spatial features from the interaction of frames.

Advantage of convolutional channel expansion (CCE): We propose the CCE technique to address
the above issue. Let m be the number of input frames for the RL task, With CCE, we expand the first
convolutional layer of the stage 1 encoder so that it can now take in inputs of 3m channels instead of
3. We repeat the weight matrix m times and then scale all the weight values to 1/m of their original
values. This allows us to modify the input shape without disrupting the learned representations. Such
a simple method (can be done in one line of code, with no additional computation overhead, ablation
study against 4 other variants in Appendix A.9) can effectively solve the mismatch problem when
transitioning a visual encoder from the non-RL pretraining stage to the RL stages.

To enable faster experimentation and avoid difficulties in training deep networks in DRL [3, 61], we
use a lightweight encoder with 5 convolutional layers, which is 50 times smaller than the ResNet34
used in RRL. Quite surprisingly, VRL3 can achieve superior performance with such a tiny encoder.

5.2 Stage 2 and Stage 3

In stage 2, why use conservative RL updates instead of BC or contrastive representation learn-
ing? We use conservative RL for the following reasons: a) we can finetune the encoder to get
task-specific representations with RL signal b) comparing with contrastive learning methods which
only train the encoder, we can train the encoder as well as the policy and Q networks, giving a
jump-start in stage 3. c) With the safe Q technique, this also brings us a minimal-effort design that
allows us to transition effectively from stage 2 to stage 3. We can simply remove the conservative
term without any elaborate modifications. d) this fits well with an off-policy backbone, allowing
maximum data reuse. (BC such as in [66] only works with on-policy methods). Next, we discuss
extensive empirical evidence that supports our design.

Figure 3a shows that for VRL3, only using BC on expert demonstrations in stage 2 does not give
a good performance. In fact, using BC in stage 2 gives a similar performance to when stage 2 is
entirely disabled. Figure 3a shows that for VRL3, only using BC on expert demonstrations in stage 2
leads to the same performance compared to when stage 2 is entirely disabled. Additional ablation can
be found in Appendix A.8. This problem is caused by a distribution mismatch of actor and critic at
the beginning of stage 3 since BC only trains the actor and not the critic. For contrastive learning,
we observe from Figure 2 that FERM has slightly worse performance in DMC and much worse
performance in Adroit. This is because Adroit has a more challenging sparse reward setting and
FERM fails to fully exploit offline RL data by only updating the encoder. These results show that
when tackling challenging tasks, learning only the representation in stage 2 can be useful, but is
not enough to fully exploit offline RL data. This is a novel and important finding that has never
been carefully studied or emphasized in the literature.

Effect of safe Q target for stage 2-3 transition: Special care is required to effectively perform
off-policy learning in stage 2. In VRL3, we perform conservative updates in stage 2 and remove the
conservative term in stage 3. When we transition from stage 2 to stage 3, the new online data will
cause a distribution shift that can lead to instability in Q values [58], The safe Q target technique is a
simple and efficient solution to this issue. Figure 3b and 3c show the effect of these design decisions:
updating with naive RL in stage 2 (S2 Naive) or removing the safe Q technique (No safe Q) lead
to severe overestimation in stage 3 and cause performance drop. Updating with conservative RL in
stage 3 (S3 Cons) leads to severe underestimation and even worse performance. Naive RL in stage 2
with safe Q in stages 2 and 3 (S2 Naive Safe) can mitigate overestimation but is still weaker than
VRL3, which takes conservative updates in stage 2 and use safe Q in stages 2 and 3.
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(a) Stage 2 BC or disable (b) S2-S3 (c) S2-S3 Q value (d) Encoder lr

Figure 3: a) Effect of BC and offline RL updates in stage 2. Only applying BC or disabling stage
2 training entirely leads to poor performance. b) and c) Taking naive RL updates in stage 2 (S2
Naive) leads to severe overestimation, which can be mitigated by safe Q (S2 Naive Safe). Taking
conservative updates in stage 3 (S3 Cons) leads to underestimation. VRL3 gives the best performance
with conservative update only in stage 2 and safe Q. Note in our setting, the maximum reasonable
Q value should be around 100. d) Effect of different encoder learning rates (e.g., 0.01 means the
encoder’s learning rate is 100 times slower than that for the policy and Q networks.)

Reduced encoder learning rate for better finetuning: When we fine-tune the encoder in stages 2
and 3, a reduced encoder learning rate can prevent pretrained representations from getting destroyed
by noisy RL signals, especially in the early stage of RL training. This problem has also been observed
in other environments [69]. Figure 3d shows the effect of encoder learning rates. These results
show that even though there is a large domain gap between ImageNet and RL tasks, a frozen stage 1
encoder can still provide useful features, and finetuning the encoder can further improve performance.
Although it is not new that transfer + finetuning can give the best result [95], it has not been adequately
studied in the RL setting with large domain gap and noisy signals.

5.3 Contribution of each stage

VRL3 achieves strong performance by fully exploiting data from 3 different stages. We now try
to understand how much each stage contributes to the final performance. We perform 2 sets of
comparisons, for each VRL3 variant in Figure 4a, we disable one or more stages of training entirely
(e.g. S13 means stage 2 training is removed), and for Figure 4b, we disable the encoder training in
one or more stages, but always maintain the updates to actor and critic networks (e.g. S12 means
encoder is frozen in stage 3).

(a) Stage ablation (b) Encoder ablation

Figure 4: (a) Effect of each training stage. The numbers after “S” indicates the stages that are enabled.
(b) Effect of enabling encoder training in each stage.

Here we summarize a number of insights we can obtain from these results. In Figure 4a: Stage 1
pretraining improves sample efficiency (S123 > S23); stage 2 is critical and its contribution cannot
be replaced by the other stages (S123> S13, S23 > S13). Note that since Adroit is challenging with
limited offline data, S3 is always enabled to obtain non-trivial performance.

In Figure 4b: when the encoder is only trained in one stage, stage 3 encoder training gives a much
stronger performance than the other two, showing the importance of task-specific representations (S3
> S1 and S2). Note that interestingly, task-specific features are more useful, however, when RL
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data is scarce, non-RL pretraining provides better results despite the large domain gap (S3>
S1 > S2). Training the encoder in more stages always leads to improved performance (S123 > S12 >
S1).

An important finding is that our results indicate offline RL is more beneficial than just contrastive
representation learning in stage 2, note that S3 in Figure 4b (perform offline RL update but freeze
encoder in stage 2, encoder trained in stage 3) has much stronger performance than S3 in Figure 4a
(no stage 2 training at all). This is consistent with results in Figure 2, the performance gap between
VRL3 and FERM+S1 is caused by VRL3 doing offline RL updates in stage 2, and thus learning a full
agent, instead of just the encoder features.

With the above insights, Table 1 summarizes fundamental differences between VRL3 and some other
popular visual RL methods.

Table 1: Comparison of core design decisions. VRL3 fully utilizes non-RL, offline RL and online RL
datasets. DA refers to data augmentation, Con for contrastive learning, Offline for offline RL. Note
that offline RL data can be used to learn representation (encoder), or the task (actor, critic), or both.

Characteristics DrQ/RAD CURL/ATC FERM RRL VRL3
Stage 1 None None None Pretrain Pretrain
Stage 2 None None Con BC Offline
Stage 3 DA Con DA No DA DA
Leverage large visual datasets 7 7 7 3 3
Task-specific representations 3 3 3 7 3
Offline RL data for representations 7 7 3 7 3
Offline RL data for task learning 7 7 7 3 3
High data reuse rate (off-policy) 3 3 3 7 3
Prevent Q network divergence 7 7 7 7 3

5.4 Additional Studies and Analysis

We also perform an extensive study on hyperparameter robustness and sensitivity on each of the 4
Adroit tasks (with varying difficulty). Due to limited space, we only show a small portion of our
study in Figure 5 and put the rest of the results in Appendix A. This provides additional insights and
helps us understand what hyperparameters should be tuned with high priority when applied to a new
task, for example, results show that S1 pretraining is useful for harder tasks but not for the simplest
Door task; data augmentation is always critical; the encoder learning rate is important and should be
tuned in difficult tasks; even a small number of S2 offline updates can greatly help learning. In total,
we studied 16 different components and hyperparameters, and identified 9 of them as important to
performance, out of these 9, we further show that 6 of them are robust, and 3 of them are sensitive
(learning rate, action noise std, encoder learning rate scale). Note that the encoder learning rate scale
is the only important and sensitive hyperparameter introduced by VRL3, while the other 2 are
from the backbone algorithm. These important studies show that our framework is quite robust, we
believe these results and insights will provide a better understanding on data-driven DRL methods,
and we hope they will make it easier for other researchers to deploy this framework to other tasks.

(a) S1 pretrain (R) (b) S2,3 augmentation (R) (c) S2,3 encoder lr scale (S) (d) S2 num of update (R)

Figure 5: Part of the hyperparameter sensitivity study. For each figure, X-axis shows different
hyperparameter values, Y-axis shows the average success rate in the first 1M training frames, over
three seeds. Each dot is the average success rate of one seed, the error bar shows one standard
deviation. (S) means critical and relatively sensitive. (R) means critical but is robust or easy to tune.

9



6 Discussion, Limitations and Future Work

In this paper, we propose a 3-stage data-driven framework for solving challenging visual control
tasks. We perform extensive experimentation to ablate and analyze our framework to identify the
most important technical components. We arrive at a method that is simple, intuitive, and much more
sample efficient and computationally efficient than the previous SOTA on Adroit. Although this
is a significant result, we do have some limitations: for example, Adroit has more realistic visuals
compared to DMC, but it is still a simulated benchmark. Experiments on robotics hardware are
required to understand how VRL3 should be deployed in the real world. Other limitations include:
it remains unclear whether stage 1 training is still beneficial if the domain gap between non-RL
data and RL data is too great (RL task visuals different from the real world). We also did not
experiment extensively on model-based method. These can be exciting future research topics. Despite
these limitations, VRL3 brings a number of novel and interesting insights, in addition to the strong
empirical results. We believe VRL3 is an important step toward practical data-driven DRL for real
world visual control tasks.
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A Additional Results and Analysis

A.1 Hyperparameter Robustness, Sensitivity and Understanding

In this section we discuss implementation details and present an extensive ablation study on hyperpa-
rameters.

Figure 6 shows how each hyperparameter affect training performance. For each figure, the results show
how learning is affected when we modify one hyperparameter from our set of default hyperparameters
while keeping all the rest fixed as the default values. Following our 3-stage framework, we discuss
hyperparameters that affect one or more stages of our training process, and we also give our default
value for each hyperparameter. The default hyperparameters are found in our early experiments with
random search.

The goal here is to achieve a thorough understanding of what components are the most important for
VRL3 to work, and when VRL3 is applied to a new task, which ones of the hyperparameters are the
most critical and should be finetuned first. We believe these insights can greatly help researchers and
practitioners in applying our framework to new visual tasks, or build research on top of our work.
Note that in our study, we actually find some of the hyperparameters to be not important since they
do not affect the training performance. However, they are still discussed here for completeness.

A.1.1 Stage 1

Stage 1: whether we use stage 1 pretraining (default: True). If we perform stage 1 pretrainig,
then we start with an encoder that is pretrained on the ImageNet dataset, otherwise we start with
a random encoder. This will only affect the initialization of encoder for stage 2 and 3. Figure 6a
shows that the door task actually does not rely on stage 1 features, but the more challenging relocate
task benefit hugely from stage 1 pretraining. This observation is consistent with previous results
that show more difficult tasks benefit more from pretrained features, and easier tasks can be learned
without them [73]. This result shows that stage 1 pretraining is critical especially if we want to tackle
challenging real-world control tasks.

A.1.2 Hyperparameters that affect both stage 2 and 3

During our training in stage 2 and stage 3, we can also add an additional BC loss, which can help the
agent learn more human-like behavior [66]. We do not include it in VRL3 since it does not have a
significant impact on performance, but will discuss it in this ablation study.

Stage 2 and 3: whether we use data augmentation (default: True). Figure 6b shows that data
augmentation is critical for both tasks. This result is consistent with previous literature that found data
augmentation such as random shift can greatly improve performance in visual-based tasks [93, 94].
Although previous works mainly apply data augmentation to tasks with visuals that are different from
the real-world such as DMControl[80], we show that it can also improves performance in tasks with
more realistic visuals.

Stage 2 and 3: demonstration replay batch size (default: 64). In stage 2, before the offline RL
updates, we perform a number of BC updates where we sample from a demonstration replay buffer.
In stage 3, we also do BC with a decaying loss. Figure 6g shows that the batch size for computing
BC loss is not important and it is also not needed to achieve the performance VRL3. By default, we
use a small batch size of 64 to reduce computation time.

Stage 2 and 3: encoder learning rate scale (default: 0.01 for relocate, and 1 for the other tasks).
Figure 6c shows that when encoder is fixed (learning rate scale is 0), then the performance becomes
worse, especially for relocate. Note that when encoder learning rate is too high, learning can also
become difficult. For relocate, we reduce its encoder learning rate to be 100 times slower than
the learning rate for other parts of the agent, similar to what is done in [69]. This result, together
with Figure 6a shows that when task-agnostic representation is finetuned towards task-specific
representation learned directly from RL objective with data augmentation gives the best performance.
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(a) S1 pretrain (R) (b) S2,3 augmentation (R) (c) S2,3 encoder lr scale (S) (d) S2,3 learning rate (S)

(e) S2,3 safe Q threshold
(R) (f) S2,3 safe Q factor (R) (g) S2,3 demo batch size (h) S2 BC number of up-

date

(i) S2 num random actions (j) S2 action std (k) S2 num of update (R) (l) S2 conservative weight
(R)

(m) S2 encoder finetune (n) S3 BC weight decay (o) S3 BC initial weight (p) S3 action std (S)

Figure 6: Hyperparameter sensitivity study for all three stages, blue shows the door task, orange
shows the more difficult relocate task. For each figure, caption shows the type of hyperparameter,
X-axis shows different hyperparameter values, Y-axis shows the average success rate in the first 1M
frames of training, averaged over three seeds. Each dot is the average success rate of one seed, error
bar shows one standard deviation. We use (S) to denote critical hyperparameter that is relatively
sensitive and should be tuned with high priority when applied to a new task. (R) denotes critical
hyperparameter that is robust or easy to tune. Hyperparameters that are mentioned in the main paper
are discussed in the appendix.

Stage 2 and 3: learning rate (default: 1e − 4). Figure 6d shows that (unsurprisingly), when
learning rate becomes too small or too large, performance will drop.

Stage 2 and 3, safe Q target value threshold (default: 200): Figure 6e shows that having a
reasonable Q value threshold greatly helps improve performance on relocate. As described in the
main text, This threshold decides how large the Q value can become. Having this safe Q target value
technique allows easy control excessive Q bias accumulation with minimal negative effect.

Stage 2 and 3, safe Q factor (default: 0.5): Figure 6f shows that having a safe Q factor that is < 1
(when it is 1, then we are not limiting how large the Q values can be) can help stabilize training and
prevent performance issues caused by Q divergence.
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A.1.3 Stage 2 hyperparameters

In stage 2, most of the hyperparameters here are about the offline updates. As mentioned in the
previous section, we can have optional BC updates before the offline RL updates. For the offline RL
updates, since we mainly use the idea of CQL, there are a number of CQL relevant hyperparameters.

Stage 2, number of BC update (default: 5000): Figure 6h shows that BC updates in stage 2 before
taking offline RL updates in fact does not affect performance too much. In terms of performance, it is
not necessary when offline RL is applied at stage 2. However, it can still help the agent learn more
human-like behaviors, as discussed in [66].

Stage 2, CQL number of random actions (default: 10): in the author’s implementation of CQL,
a number of random actions are generated from a uniform disribution and these actions are used
in the log-sum-exp computation along with actions proposed by the current policy. Though this is
not really discussed in the CQL paper [37], the number of random actions might have an effect on
offline training. Figure 6i shows that in our case, the number of random actions for CQL updates in
stage 2 does not have a significant effect. However, we recommend future researchers to test this
hyperparameter when applying VRL3 to new tasks, since the effect of this small detail is not fully
addressed by the CQL authors.

Stage 2, CQL action std (default: 0.1): since our off-policy backbone is DrQv2, we no longer
have the entropy term in SAC, but use a fixed action std during updates and during exploration. We
also test the effect of this std in stage 2 offline RL updates. Figure 6j shows that in our case, the
standard deviation for the action distribution during CQL updates do not have a significant effect on
training. Note that however, as we will discuss in the next subsection, this action std has a significant
effect in stage 3 online learning.

Stage 2, number of conservative updates (default: 30000): Figure 6k shows that when we do
not use offline RL updates (0 updates), then BC updates in stage 2 alone cannot guarantee good
performance in stage 3. Some of this difficulty has been studied in [58].

Stage 2, conservative term weight (default: 1): this weight decides how hard the Q values are
being affected by the conservative loss term [37]. Figure 6l shows that when CQL weight is greater
than 0, the performance is in general robust with different values.

Stage 2, allow encoder finetune in stage 2 (default: True): by default, in stage 2 we finetune
encoder with Q loss. Does this stage 2 finetuning have a significant effect on performance? Figure 6m
shows that this does not affect performance too much in our case, indicating that for the encoder, stage
1 pretraining plus stage 3 finetuning is enough to obtain good performance. This shows in stage 2 we
can do more than just using stage 2 data to learn representations. We can get the best performance by
fully exploiting stage 2 data to learn an offline RL agent as well as improved representations,

A.1.4 Stage 3 hyperparameters

Stage 3, BC weight decay (default: 0.5): this value decides how fast the BC loss is decayed,
following [66]. Figure 6n shows that under our current design of VRL3, the decaying speed of BC
loss does not affect performance too much.

Stage 3, BC initial weight (default: 0.001): The inital weight of the BC loss. Figure 6o shows that
initial BC weight in stage 3 does not have a significant effect on performance. Again, we keep the
BC loss here since it can also help the robotic hand learn human-like behaviors.

Stage 3, action distribution standard deviation for exploration (default: 0.01): Figure 6p shows
that we need a small std value to obtain good performance. This is likely because the Adroit tasks
have sparse reward, thus it is easier to have less action noise so that the agent focus on exploring
state space that is close to the expert demonstrations. This is another important hyperparameter that
will require tuning on a new task. Note that in some other benchmarks such as DMControl, the
exploration action noise is typically much larger.
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A.2 Hyperparameter Table

Since our backbone algorithm is DrQv2, we keep most of the original hyperparameters (see hy-
perparameter table of DrQv2 in appendix B of [93]). Table 2 shows a summary of the important
hyperparameters used in VRL3. As discussed before, BC related hyperparameters show no effect
on performance, and are removed from the table. To reshape rewards so that the maximum per-step
reward is 1, the reward is divded by 100 for Hammer, 20 for Door, 50 for Pen, 30 for Relocate. So if
we get a one-step reward of 100 in Hammer, it will be rescaled to 1.

For stage 1 our training is the same as in a typical ResNet training setting, we use an encoder with 5
convolutional layers (batch norm after each conv layer), with 32 channels in the first conv layer. For
all 3 stages, we always use input size of 84x84. For stage 2, we use 25K offline RL data for both
Adroit (expert demonstrations provided by the authors of the benchmark) and DMC (data collected by
trained DrQv2 agents). When we move to stage 3, we are different from the default hyperparameters
of DrQv2 in: a) we use a reduced encoder learning rate scale for relocate (DrQv2 does not discuss
this option so it uses a value of 1). b) We do not collect random data at the beginning of stage 3, as
we already have some offline data in stage 2. c) we use a fixed action std of 0.01 for exploration,
while DrQv2 uses an exploration noise schedule.

For DMC tasks, we are largely the same as discussed in the DrQv2 paper [93], however, we use a
fixed std of 0.1. We also found that a pretanh penalty can sometimes help avoid exploration issue, so
we have a pretanh penalty weight (discussed in Section A.5) of 0.001 and a penalty threshold of 5.

Table 2: VRL3 default hyperparameters for Adroit

Parameter Value
Encoder

image input size 84 x 84
n of channel in first conv layer 32
number of convolutional layers 5
batch norm after each conv layer

Stage 2
offline RL data 25,000
number of conservative updates 30,000
CQL number of random actions 10
CQL action std 0.1
CQL weight 1

Stage 2, 3
optimizer Adam [33]
discount (γ) 0.99
encoder lr scale 0.01 for relocate, 1 for others
learning rate 1e-4
safe Q target threshold 200
safe Q factor 0.5
target smoothing coefficient (ρ) 0.01
replay buffer size 106

mini-batch size 256
nonlinearity ReLU
action repeat 2
n-step returns 3
agent update frequency 2
encoder feature dimension 50
Q and policy hidden layers 2
Q and policy hidden dimension 1024

Stage 3
random starting data 0
action std for exploration 0.01
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A.3 Additional Figures

Here we present per-task figures for results in the main paper, for each set of figures, additional
discussions are provided in the caption.

(a) Door (b) Hammer (c) Pen (d) Relocate

Figure 7: Per-task success rate comparison of VRL3 and other methods. Note that VRL3 is most
effective on the hardest Relocate tasks (Prior to VRL3, RRL is the only method that achieves non-
trivial performance on Relocate, but takes more than 12M frames to reach 90% success rate, while
VRL3 solves it in 1M frames), but also significantly outperform other variants on Door and Hammer.
VRL3 outperforms RRL on Pen, but is similar to the other competitors in sample efficiency.
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(a) Cartpole Balance (b) Cartpole Balance (c) Cartpole Swingup (d) Cup Catch

(e) Finger Spin (f) Hopper Stand (g) Pendulum Swingup (h) Walker Stand

(i) Walker Walk

Figure 8: Per-task performance comparison of VRL3 and other methods on all 9 Easy DMC tasks.
The methods that utilize stage 2 data (VRL3, FERM, DrQv2fD) tend to learn faster. Overall, VRL3
has a small advantage over DrQv2 and FERM, but the performance gap is smaller compared to the
results on Medium/Hard DMC tasks and the more challenging Adroit tasks. For VRL3, FERM and
DrQv2fD, We use the same hyperparameter setting for all tasks. The DrQv2 results are from the
authors.
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(a) Acrobot Swingup (b) Cartpole Swingup (c) Cheetah Run (d) Finger Turn

(e) Finger Turn (f) Hopper Hop (g) Quadruped Run (h) Quadruped Walk

(i) Reach Duplo (j) Reacher Easy (k) Reacher Hard (l) Walker Run

(m) Humanoid Stand (n) Humanoid Walk (o) Humanoid Run

Figure 9: Per-task performance comparison of VRL3 and other methods on all 15 Medium and Hard
DMC tasks. The methods that utilize stage 2 data (VRL3, FERM, DrQv2fD) tend to learn faster.
Overall, VRL3 has an advantage over DrQv2 and FERM in some environments, but overall, their
performances are similar. This again shows that the advantage of multi-stage training procedures
such as VRL3 is most prominent in the most challenging tasks with sparse reward and realistic visual
input. For VRL3, FERM and DrQv2fD, We use the same hyperparameter setting for all tasks (they
are the same for all 24 tasks). The DrQv2 results are from the authors.
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(a) Door (b) Hammer (c) Pen (d) Relocate

Figure 10: Per-task success rate comparison for VRL3, VRL3 with BC in stage 2 instead of
conservative updates (Stage 2 BC), and VRL3 with stage 2 entirely disabled (Stage 2 disabled).
Results show that using conservative RL updates in stage 2 is important, especially in Relocate. In
the other three tasks, we also observe a significant performance gap in the early stage of training:
VRL3 is able to quickly achieve a high performance with small amounts of online data, while the
other 2 variants take much longer to reach the same level of performance.

(a) Door (b) Hammer (c) Pen (d) Relocate

(e) Door (f) Hammer (g) Pen (h) Relocate

Figure 11: Per-task success rate (first row) and Q value (second row) comparison for VRL3 with
different stage 2 to stage 3 transition methods. VRL3 by default uses conservative updates in stage 2,
standard Q updates (without the conservative term) in stage 3, and uses safe Q in both stages 2 and 3.
VRL3 has the best performance and the most stable Q values throughout stage 3 training. Each of
the variants shown here is different from VRL3 in just one aspect. We can see that using naive RL
updates in stage 2, and disable Safe Q lead to significantly reduced performance in all 4 tasks, and
from the second row we see a significant overestimation issue. Note that using naive RL in stage
2 but enabling Safe Q leads to better performance in Hammer, and a now stable Q value in all four
tasks. This shows that Safe Q is effective in stabilizing Q value estimates, but it cannot replace the
role of proper stage 2 training. S3 Cons uses conservative learning in stage 3 instead of standard Q
learning, giving the worst performance, and a significant underestimation of Q values in all tasks.
And if we use conservative updates in stage 2, but disable Safe Q (No safe Q), then we can learn well
in the easier 3 tasks: Door, Hammer and Pen. But in Relocate we run into severe overestimation and
the agent fails entirely. This shows that although Safe Q might not be needed in easier tasks, it is
critical in more challenging tasks. Note that Safe Q is not the only technique that can achieve this
result, and we use it because we are aiming for a minimalist design, and Safe Q is easy to understand,
to implement, and has negligible computation overhead.
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(a) Door (b) Hammer (c) Pen (d) Relocate

Figure 12: Per-task success rate comparison for VRL3 with different encoder learning rate scales.
Notice that in the easiest Door task, using an encoder learning rate scale of 0 (which means the
encoder is pretrained in stage 1, and frozen afterwards) can still work. But in the more challenging
tasks, tuning the encoder learning rate scale leads to much better results. In the most challenging
Reloate task, note that the best encoder learning rate is 0.1 and 0.01: the encoder is being learned 10
or 100 times slower than rest of the agent (the policy and the Q networks).

(a) Door (b) Hammer (c) Pen (d) Relocate

Figure 13: Per-task success rate comparison for VRL3 with different training stages enabled. Stage
1 pretraining is important for the Hammer and Relocate tasks (S123 > S23), while having minimal
effect on the easiest Door task. Stage 2 is consistently important in all tasks (S123 > S13). Note that
interestingly, stage 1 plus stage 3 is not always stronger than stage 3 alone (S13 < S3 on Pen). This
shows that stage 1 pretraining should be treated carefully when there is a domain gap. Note that when
all three stages are combined, we consistently get the best performance on all environments.

(a) Door (b) Hammer (c) Pen (d) Relocate

Figure 14: Per-task success rate comparison for VRL3 with encoder training enabled in different
stages. Note that since in stage 2, we only perform a small number of offline updates (30K updates)
on a limited amount of RL data, stage 2 (S2) alone is not enough to obtain good representations for
efficient learning (Although the Door task is easy and can be learned in all settings). Stage 1 (S1)
alone is also not sufficient and gives bad performance, but combining stage 1 and 2 (S12) gives much
stronger performance. Stage 3 alone also gives sub-optimal performance, especially on Hammer
and Relocate. Compared to Figure 13, the setting in this figure isolates the effect of encoder feature
learning from RL training.
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A.4 Finetuning batch norm layers

When we finetune the convolutional encoder, one issue that is rarely studied in the RL setting is how
the batch norm layers should be treated. In our case, by default, we set the batch norm layers to be in
evaluation mode and disable further gradient updates for more stability. However, we also provide a
set of ablations to show that in Adroit, these options are not really affecting performance too much.
Figure 15 shows the results. We can see that all four variants give similar performance.

(a) Door (b) Hammer (c) Pen (d) Relocate

Figure 15: Per-task success rate comparison for VRL3 with different batch norm training settings.
Train and Eval indicate whether during finetuning in the stages 2 and 3, the batch norm layers are
in train or evaluation mode (in evaluation mode, batch norm will use running statistics and not the
standard per-batch statistics). No Grad means the batch norm layers will not be further updated with
gradients from the RL objective.
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A.5 Pretanh Penalty

Another issue that we considered (but is not discussed in the main paper) is whether the tanh activation
function in the policy network might saturate during training. Note that since Adroit and DMC are
tasks with continuous and bounded action spaces, a tanh function is typically used to bound the
output action value from the policy network. So the “pretanh value” refers to the action value before
going through the tanh activation. Note that if the absolute value of the pretanh value is too large
then no gradient can be propagated back. We found that applying a penalty on the average absolute
pretanh value can effectively prevent tanh saturation in the policy network. Though in terms of
performance, it does not have a significant effect in Adroit and thus is not necessary. In DMC we
found it occasionally can prevent exploration issues, so we apply a penalty weight of 0.001 in all
DMC tasks. To implement the penalty we essentially add an L2 regularization term on the pretanh
value to the policy loss. To avoid affecting the agent learning when unnecessary, we set a threshold
value of 5 so that the penalty only applies when absolute pretanh values are larger than this threshold.
Details are provided in our source code.

(a) Door (b) Hammer (c) Pen (d) Relocate

(e) Door (f) Hammer (g) Pen (h) Relocate

Figure 16: Per-task success rate comparison for VRL3 with different pretanh penalty weights, first
row shows success rate, second row shows average absolute pretanh value. We can see that when
we do not apply a pretanh penalty, the average absolute value of the pretanh values become fairly
large, indicating tanh saturation. Although in the case of Adroit tasks, they seem to not affecting
performance too much (This might be due to the particular implementation design in our backbone
algorithm: the action noise is injected after the tanh activation. Although this design cannot prevent
tanh saturation, it can in fact allow better exploration when tanh is saturated). Related issues have
been studied in the past [26, 86], however, it might be worth it to revisit this important problem in
future research.
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A.6 Comparing to RRL Long-term Performance

Figure 17 shows that in terms of the long-term performance, VRL3 and RRL (trained until 12M,
data provided by RRL authors) achieves similar results, VRL3 is slightly stronger in Relocate, and
in Pen, VRL3 reaches 90% success rate at 3.25M data and then continues to increase, RRL fails
to reach 90% success rate even at 12M data. Based on these numbers, it is fair to say that VRL3
outperforms RRL in both early stage and late stage. But note the long-term performance difference is
smaller. That is why in our main text, we focused on discussing the improvement in sample efficiency
(measured as the number of data needed to reach 90% or more success rate), compared to RRL, we
are on average 780% better. In appendix B.1 we provide details on how we compute these numbers
and also provide comparison on how fast we are to reach 50% and 75% success rate. In all cases,
VRL3 has a significant advantage.

(a) Averaged over all tasks

(b) Door (c) Hammer (d) Pen (e) Relocate

Figure 17: Success rate comparison for VRL3 at 4M and RRL at 12M. Results show that the long-
term performance of RRL and VRL3 are similar. The advantage of VRL3 is mainly on sample
efficiency.
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A.7 Using Deeper and Wider ResNet Encoders

For the majority of our results, we use a shallow encoder with 5 convolutional layers. This is
consistent with many prior works in pixel-input DRL research [35, 93, 43, 55, 56, 84] and also
makes computation faster. However, it is also beneficial to know whether our method can work with
deeper and wider ResNet encoders. In Figure 18 we show that, on the hardest Relocate task, we can
achieve similar performance with deeper and wider encoders. Here we study 6 different encoders:
ResNet6 with 32 channels (default for VRL3), ResNet6 with 64 channels, ResNet10 with 31 channels,
ResNet10 with 64 channels, ResNet18 with 64 channels, ResNet18 with 64 channels. For ResNet10
and ResNet18, we have skip connections as in typical ResNets. Results show that VRL3 can still
learn effectively with these encoders of different capacity. However, note that ResNet18 achieves
weaker performance, likely due to the fact that we are using the default hyperparameters. Since these
encoders have much higher capacity, it might be possible to achieve better performance by finetuning
the learning rate. Also note that when using ResNet6 with 64 channels, we observe an even better
performance: it is able to reach 90% success rate on the hardest Relocate task with only 0.45M data,
making it 24 times more sample efficient compared to the previous SOTA.

(a) Relocate

Figure 18: Success rate comparison for VRL3 with different ResNet encoders on the hardest Relocate
task, all using the same default hyperparameters. When increasing the capacity of a ResNet6 encoder,
we can obtain even stronger performance.

In Figure 19, further experiments show that finetuning the encoder learning scale can allow effective
learning with the deeper ResNet10 and ResNet18 encoders (both with 32 channels) in both the easier
Door task and the harder Relocate task. Note that when using a deeper encoder, the agent seems
to become more sensitive to the encoder learning rate scale. In our main results, we did not use
deeper networks since the shallow 5-layer network already provides strong performance, and is more
consistent with the network size used in prior pixel-input DRL works.

(a) Door, ResNet10 (b) Door, ResNet18 (c) Relocate, ResNet10 (d) Relocate, ResNet18

Figure 19: Success rate comparison of VRL3 with ResNet10 and ResNet18 encoders and with
different encoder learning rate scale.
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A.8 Alternative BC Baselines

In Figure 20 and Figure 21 we present results for two other BC baselines: a) In stage 2, we perform
BC updates, and we also train the value network to predict discounted cumulative reward of the
offline trajectories (we call this “BC MC”). b) we train the value network with a slightly different
method, we perform the standard Q-learning updates, but when computing the Q target, we replace
the “next action from current policy” with the actual next actions in the offline trajectories, so as to
circumvent the extrapolation error issue (we call this “BC Offline Act”). We then compare these 2
new variants with VRL3 (uses offline RL in stage 2) and BC naive (the original BC baseline that only
learns the policy network and not the Q networks). Additionally, we also compare the performance
of these 4 variants when stage 1 pretraining is enabled (Figure 20), or disabled (Figure 21).

The result is quite interesting: First note that VRL3 has the strongest overall performance, especially
on the most difficult Relocate task. And stage 1 pretraining has a quite significant effect on perfor-
mance, note that in Door and Hammer, the 3 BC baselines perform similar to VRL3, even though
their stage 2 training is quite naive. And when stage 1 pretraining is disabled in Figure 21, even
though the performance of VRL3 also drops, the performance gap is now much larger. This seems to
show that the problems in offline-online RL transition can be mitigated by stage 1 pretraining.

For the 3 BC variants, note that none of the variants can consistently outperform others. For example,
BC Offline Act is better than BC MC in Door and Hammer, but a bit weaker in Pen. Also note that
surprisingly, when there is no stage 1 pretraining, sometimes BC Naive can work much better than
other BC baselines. We did not expect this result because intuitively a somewhat decent policy-value
match should outperform a policy with untrained value function.

A potential explanation is that if we train the value network in a naive way (BC Offline Act and BC
MC) in stage 2, this might inject harmful inductive bias into the value network, making it hard for
learning in the later stage. There have been a few recent papers that discuss this issue: for example,
[60] show that early stage training, especially on a small dataset can impose a permanent effect on
RL networks and reduce their long-term performance. It is possible that in some cases, an untrained
Q network learns better in stage 3 compared to a naively trained Q network, because it is free from
the inductive bias generated by the naive value learning process. In a related work, [53] show that
networks gradually lose capacity during DRL training, and propose to maintain this capacity with a
simple regularization. Further investigation in this direction might lead to interesting future work.

(a) Door (b) Hammer (c) Pen (d) Relocate

Figure 20: Success rate comparison of VRL3 and three BC baselines. Stage 1 pretraining enabled.

(a) Door (b) Hammer (c) Pen (d) Relocate

Figure 21: Success rate comparison of VRL3 and three BC baselines. Stage 1 pretraining disabled.
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A.9 CCE Ablations

In Figure 22 we present ablation on CCE and compare to four variants: 1) We initialize the first
encoder layer randomly (Rand First). 2) We treat each input image separately, and then sum their
encoding (Encoding Sum) 3) Similar to 2), but we concatenate their encoding (Encoding Concat)
[59, 62, 90], 4) similar to 2), but we also concatenate the difference of image encodings, according
to [74]. Our newest results show that the overall difference in performance among these variants is
actually quite small, and we do not have a particular variant that can consistently outperform others.
However, note that for the 3 variants where we sum or concatenate image encodings, there will
be a significant computation overhead. On a V100 GPU, for the Relocate task, 1000 updates for
CCE/Rand First take about 47 seconds, while for Encoding Sum, Encoding Concat and Encoding
Diff Concat, they take about 200 seconds, about 4 times slower than using CCE (other parts of VRL3
are kept the same during this comparison). Note that the Rand First also obtains surprisingly good
performance. Intuitively, this should not give a good performance since the first layer of the pretrained
encoder is entirely reset. It might be that useful features in the encoder are being recovered during
stage 2 training, or perhaps the Adroit benchmark does not require very fine-grained features in the
encoder, further investigation might be required here.

Given these results, it seems CCE is still the best fit for our framework, because it is intuitive, easy to
use (can be done in one line of code), and has no computation overhead.

(a) Door (b) Hammer (c) Pen (d) Relocate

Figure 22: Success rate comparison of CCE and 4 other variants.
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A.10 Additional Stage 1 Pretraining Schemes

In Figure 23, we show that alternative ways to perform stage 1 pretraining can also lead to better
performance compared to when no stage 1 pretraining is used. For all 3 contrastive pretraining
variants, we employ a training scheme similar to BYOL [21], and we use a momentum encoder
to generate positive pairs. For Contrast, we use random crop and resize, random gray scale, color
jittering as augmentations; For Contrast-all, we additionally add horizontal flips; For Contrast-shift,
we only use random crop and resize, this is a bit similar to the random shift augmentation used in
DrQ/DrQv2. Each variant receives 60 epochs of contrastive pretraining on ImageNet. It is interesting
that Contrast-shift seems to have the best performance, out of the 3 contrastive stage 1 variants. All 3
contrastive variants perform a bit weaker than the default scheme.

These results are not extensive and are only meant to show that other alternative methods also work.
It does not indicate that classification pretraining is the best for DRL. In our case, it is possible that
using larger datasets for contrastive pretraining, finetuning hyperparameters, or training for more
epoch might lead to better results. And in fact, a few recent papers have shown that unsupervised
pretraining can provide very useful features for control [59, 62].

(a) Relocate

Figure 23: Success rate comparison for VRL3 (default ImageNet classification stage 1 pretraining)
and VRL3 variants with alternative contrastive stage 1 pretraining.
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B Efficiency Comparison

B.1 Sample Efficiency Comparison

Table 3 shows a comparison of VRL3 and RRL in terms of sample efficiency. Sample efficiency is
important because online data can be hard and expensive to obtain in DRL control tasks. Being able
to reach a high sample efficiency means we can solve the task faster and with much less cost. Results
show that VRL3 has much better sample efficiency in all tasks, giving an average of 780% better
sample efficiency in reaching 90% success rate in all Adroit tasks, with an impressive 1220% better
sample efficiency on the most challenging relocate task. If we consider the additional result with
doubling the number of channels for Relocate (Appendix A.7), then VRL3 can learn Relocate in
0.45M, making it 2440% times more sample efficient than RRL.

Table 3: Sample efficiency comparison of VRL3 and RRL. The numbers show the number of data
(frames) collected when the specified success rate is achieved. (to be precise, the frame number
indicates the agent has an average success rate that is equal or greater than the specified success rate
for the past 20K frames of training.) The last column show how many times VRL3 is more sample
efficient than RRL in reaching that success rate. VRL3 is efficient in learning especially when aiming
for a high success rate. Averaged over all Adroit tasks, we are 780% more sample efficient than RRL,
the previous SOTA method, to reach 90% success rate. To ensure our performance is not the result of
“lucky random seeds”[27, 28, 15], the performance for VRL3 reported in this table is averaged over
10 seeds. To ensure consistency with prior work, results for RRL are directly from the training log
files provided by the authors. Note in the pen task, RRL’s success rate at 12M is slightly less than
90%, but close.

Score RRL VRL3 VRL3 faster
Door at 50% 1360K 200K 6.8
Door at 75% 1880K 300K 6.3
Door at 90% 2560K 400K 6.4
Hammer at 50% 2080K 250K 8.3
Hammer at 75% 3120K 350K 8.9
Hammer at 90% 4440K 500K 8.9
Pen at 50% 1120K 400K 2.8
Pen at 75% 6200K 1600K 3.9
Pen at 90% 12000K 3250K 3.7
Relocate at 50% 4360K 500K 8.7
Relocate at 75% 6800K 650K 10.5
Relocate at 90% 11000K 900K (450K) 12.2 (24.4)
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B.2 Parameter Efficiency Comparison

Table 4 gives a comparison of number of parameters for VRL3 and RRL. Note that in addition to the
encoder, other networks in the agent can also have a lot of parameters, so we have to approach this
comparison carefully. Note that VRL3 has a much smaller encoder and relatively larger MLP critic
and actor networks. If we count all the parameters in the agent, then VRL3 has about 37% of the
pararmeters as used in RRL with a ResNet34. A benefit of having less parameters is that the agent
will use less memory, making it easier to deploy on portable devices.

Note that being parameter-efficient is also not exactly the same as being computationally efficient. In
the next section, we discuss computation efficiency.

Table 4: Parameter efficiency comparison of RRL and VRL3. We compare the number of parameters
in the encoder part, as well as parameters for all networks in the agent. Note that VRL3 has a much
smaller encoder, but relatively larger critic and policy (actor) networks, VRL3 also has a pair of critic
networks instead of just one. For encoder, VRL3 is more than 50 times more parameter efficient.
Overall, VRL3 is about 3 times more parameter efficient.

Number of parameters (M) RRL VRL3 VRL3/RRL ratio
Encoder 21.28 0.40 0.0187
Policy network 2.0 3.0 1.5
Critic networks 2.0 6.0 3
All 25.28 9.4 0.37
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B.3 Computation Efficiency Comparison

We now compare the computation efficiency of RRL and VRL3 . We do not take into account the
time used for agent evaluation (in which case RRL is much slower due to the large ResNet34 encoder)
for RRL we use the authors’ codebase. On a single NVIDIA V100 GPU, for door, RRL runs at 83
FPS while VRL3 runs at 68 FPS; for relocate, RRL runs at 53 FPS while VRL3 runs at 47 FPS.

Note that RRL is faster in per-frame computation mainly because its encoder is frozen, so images
only need to be processed by the encoder once when they are collected. For VRL3, although the
encoder is 50 times smaller, the encoder will be updated in all stages, and the off-policy method we
are based on also use a larger batch size and larger actor and critic networks.

Note that altough VRL3 will take a bit longer time to train for the same number of frames, it is
significantly faster when we consider the fact that it can learn a task with a small amount of online
data. In terms of the computation time used to reach 90% success rate, VRL3 is much faster on all
tasks, and more than 10 times faster on the most challenging relocate task. Note that here we are not
considering acceleration from parallel or multi-core computing.

Table 5: Computation efficiency comparison of RRL and VRL3.

Computation Time (Hours) RRL VRL3 VRL3/RRL ratio
Door, Pen, Hammer (4M) 13.39 16.34 1.22
Relocate (4M) 20.96 23.64 1.13
Door (90% success) 8.57 1.63 0.19
Hammer (90% success) 14.86 2.04 0.14
Pen (90% success) 40.16 13.28 0.33
Relocate (90% success) 57.65 5.32 0.09

B.4 Computing Infrastructure

Our experiments are conducted on NVIDIA Tesla P40, P100 and V100 GPUs. When calculating the
computation efficiency table, we use a single V100 GPU.
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C Other Technical Details

C.1 DMC, Adroit and MuJoCo Usage

To use the MuJoCo[82] physics simulator, please refer to https://mujoco.org/, as of the writ-
ing of this work, MuJoCo is now free and a license is not required. For DMC[80] please refer
to https://www.deepmind.com/publications/deepmind-control-suite. For Adroit [66]
please refer to https://github.com/facebookresearch/RRL and https://sites.google.
com/view/deeprl-dexterous-manipulation.

C.2 DrQv2 Codebase

Our backbone algorithm is DrQv2[93], the code can be found at https://github.com/
facebookresearch/drqv2. The code is under MIT License.

C.3 Stage 1 Pretraining

Our code for stage 1 pretraining largely follows the example code given here: https://github.
com/pytorch/examples/blob/main/imagenet/README.md.

C.4 ImageNet Dataset

The training ImageNet data can be found here: https://www.kaggle.com/competitions/
imagenet-object-localization-challenge, to organize the validation data, we use the script
here: https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/
valprep.sh

C.5 Algorithm Psuedocode

For better clarity, in the main paper we provide a high-level description of our framework. Here we
also provide the psuedocode.

Algorithm 1 Visual DRL in 3 stages

1: Initialize parameterized encoder fξ , policy πφ, Q functionsQθ1 , Qθ2 , Q target functionsQθ̄1 , Qθ̄2 ,
empty buffer D. Set target parameters θ̄i ← θi, for i = 1, 2. NS2 is the number of offline RL
updates in stage 2; NS3 number of online RL updates for stage 3.

2: Stage 1:
3: Load pretrained encoder parameters into ξ and setup encoder for RL training.
4: Stage 2:
5: Load offline RL data into D
6: for NS2 updates do
7: Sample a mini-batch B from D
8: Update fξ and Qθ1 , Qθ2 with LQ + LQC , update πφ with Lπ. Update Qθ̄1 , Qθ̄2 with polyak

averaging.
9: Stage 3:

10: for NS3 updates do
11: Sample an action from policy, take action and store the new data in D
12: Sample a mini-batch B from D
13: Update fξ andQθ1 ,Qθ2 with LQ, update πφ with Lπ . UpdateQθ̄1 ,Qθ̄2 with polyak averaging.
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D Further Discussions

D.1 Additional Related Work on Bias Reduction

Overestimation and underestimation bias issues have been studied in a large number of previous
works, and has long been identified as one of the major obstacles in off-policy learning [81]. A number
of important works have achieved significant performance gain over previous methods mainly with
better bias control, For example, DDQN [84] achieves much stronger performance over DQN[55, 56]
with double Q learning, TD3[19] greatly improve robustness of DDPG[51] with Clipped Double
Q (CDQ). CDQ is also used in other popular methods such as SAC[23] and DrQ[35, 93]. Other
methods such as weighted Bellman updates can reduce bias propagation[45], multi-step methods can
also help[54]. Recently, it has been shown that the underestimation issues can also occur in DRL
training and be problematic [41], finer-grained bias control can further improve performance [39],
and ensemble-based bias reduction can exploit an increased number of network updates and greatly
improve sample efficiency [7]. Note that the bias problem is a well-established issue that has been
studied in many papers and this is not an exhaustive list.

Fundamentally, the Safe Q technique is another bias reduction technique that helps training by posing
a soft constraint on the Q value estimates. The stage 2-3 transition scenario is a bit similar to the
increased network updates setting as studied in [7], where the bias issue is exacerbated, and thus
additional bias control is required. Note that VRL3 uses Safe Q on top of CDQ. Figure 11 essentially
shows that CDQ alone (all variants in the figure use CDQ) is not enough to tackle the bias problem
during stage transition. Note there are likely other methods that can achieve the same result as the
Safe Q technique, and we use the Safe Q technique here because of its unique advantages: a) it is
effective, and it is easy to see that it becomes difficult for Q values to diverge under Safe Q, while
methods like CDQ do not provide such robostness (they do not care if the Q values are becoming
too large). b) Safe Q is a minimalist solution for stage 2-3 transition, is easy to implement and has
negligible overhead.
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D.2 Additional Discussion on Future Work

The success of VRL3 opens up a number of exciting future research directions in data-driven DRL.

One direction is to use on-policy methods in the VRL3 framework. Although on-policy methods tend
to have worse sample efficiency due to the difficulty of using off-policy data, recent studies show
that on-policy methods can use data many more times to learn useful features with value distillation
[11]. In this way it might possible to combine the unique advantages of on-policy methods with the
effectiveness of a data-driven approach.

When a much deeper encoder is used, VRL3 can have a larger computation cost compared to RRL
and other methods that freeze their pretrained encoder. One possible idea is to use a double encoder
structure, similar to [25], and to have a deeper frozen encoder and a shallow finetuning encoder. This
can make the framework more complex but can potentially greatly reduce computation when using
very deep encoders. Another possibility is to freeze part of the encoder and only finetune the last few
layers. Currently it is unclear which will be a better solution.

Model-based methods (to list a few, [29, 5, 42, 100, 40, 10, 67, 13, 38]) can be used together with
VRL3. Model-based methods tend to be more complex than model-free ones, however, these models
are typically learned in a supervised manner, making them good candidates for building advanced
data-driven methods. Recently, there are also model-based methods that can tackle offline RL setting
[96, 32, 1]. Transformer-based methods are also an promising direction to pursue and they might
provide unique advantages since they follow a supervised learning pipeline [30, 6], recently, an
interesting work has shown that pretraining with data from different domains can help transformer-
based RL learning [68].

Contrastive pretraining techniques can also be useful in such a data-driven approach. Although our
experiments show that contrastive representation learning in stage 2 alone do not work well, they
can be combined with data-augmented offline and online RL. Recently, a number of methods have
shown that model-based and contrastive methods can help accelerate online learning [69, 91]. In our
current design, for stage 2 and 3, we use data coming from the exact RL task we want to solve. It is
also possible to utilize data from RL tasks that are related, but are not exactly the task we are solving.
Here contrastive pretraining has a lot of potential.

Another important direction is to understand how the domain difference between data sources affect
the learning process and how we can best utilize stage 1 data when the RL task environment has
different visuals.
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D.3 Additional Discussion on Data Augmentation Technique

In our work, we use random shift data augmentation, same as our backbone algorithm DrQv2.
This data augmentation technique has been shown to achieve superior performance in DRL setting,
compared to other alternatives, and has been extensively studied in the DrQ paper [35]. Later on, a
slightly modified version of this method is proposed to make computation more efficient [93].

In [35], section E "Image Augmentations Ablation" in the appendix, the authors provide ablation
against the following alternatives: Cutout, Horizontal/Vertical Flip, Rotate, Intensity on 6 DMC tasks.
Random shift achieves the best performance, and outperform the second best, Rotate, by a large
margin.
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D.4 Additional Discussion on Other Recent Papers

Here we discuss how our work is related to and different from a number of recent papers (most are
submitted to arxiv in 2022).

[50] show that combining self-supervised learning and RL does not necessarily leads to consistent
performance improvement, this is an interesting observation and in our results we also show that
self-supervised contrastive learning can be safely removed in stage 2 when offline RL is applied and
updates the encoder. This work studies a different topic and is not tested on Adroit. They do not [76]
show that features from pretrained networks can be used to generate semantic scene segmentation
and help robotic navigation. They do not test on standard benchmarks and do no consider offline
RL data. [101] show that policy pretraining on YouTube videos can help driving, they do not study
offline RL and is focused on a different task. [12] study how pretrained model can be used for
zero-shot goal specification, this is a difference topic and they do not test on Adroit. [57] study
how transformer representations can be used for control, they do not test on the Adroit benchmark.
[97] is a short paper that showed up in openreview in July, they are very similar to RRL, except
they do not use demonstrations and train in an actor-critic way, they are not tested on Adroit. [71]
use video prediction for pretraining, they do not consider and offline RL setting and do not test on
Adroit. [79] use pretrained representations to facilitate exploration, they do not consider how to
combine 3 different data sources and do not test on Adroit. [14] show that representations learned
via Neural Radiance Fields can improve RL performance compared to other representations, they
do not consider offline RL data and do not test on Adroit. [70] show that decoupling representation
learning and dynamics learning can be helpful in model-based RL, which is different from our setting
which is model-free RL. They do not have non-RL pretraining and is not test on Adroit. [9] study a
more sohpisticated method on learning spatial features for visual control tasks. They do not consider
the offline RL setting and do not test on Adroit. [83] study the setting where an existing policy
can be used to help training. They do not study representation pretraining, and they tested on the
raw-state Adroit environment, not the pixel-input one. [52] tackle robotic manipulation tasks with a
sophisticated algorithm, it seems they benchmarked on raw-state Adroit setting, not the pixel-based
setting. [85] study how data from multiple tasks can be used to improve performance on new tasks,
the multi-task setting is different from ours, and they do not test on Adroit. [24] propose a new
imitation learning method, they study a different subject, and they do not have non-RL pretraining,
and do not test on Adroit. [75] show that human videos can help agents learn robotic manipulation,
their subject is not exactly reinforcement learning, and they also do not benchmark on the Adroit
tasks.

Note all above works are different from our work in one or more aspects, we also located a few
works that have tested on the pixel-input Adroit benchmark: [65] is a thesis submitted in May, they
show that performance of RRL can be slightly improved with a better pretrained representation, on
Hammer, they reach 90% success rate at 3.2M data, while we are at 0.5M, so their performance is
weaker than ours (we are more than 6 times more sample efficient than this result). [90] show masked
image pretraining can lead to strong performance on a new suite of robotic tasks. However, they
do not consider offline RL training, and do not test on Adroit. [62] and [59] show that pretraining
on different datasets and with more sophisticated methods can be combined with imitation learning.
Compared to them, we study RL, which is a different subject, and we also achieve better success rate
on Adroit (95%, while they have 85% and <70%, respectively).
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D.5 Discussion on Potential Negative Societal Impacts

This particular work focuses on testing in simulated benchmarks, but the long-term goal is to build
towards general RL methods that can achieve strong performance in challenging real-world visual
control tasks.

Since our method is data-driven and utilizes large non-RL image datasets for pretraining, a potential
issue is our model can be affected by the bias in these datasets. In supervised learning, there is a large
body of research on how bias in the data can be harmful in many different aspects, and many of these
problems can also apply to the reinforcement learning setting.

For instance, an autonomous vehicle that drives on a highway can be unsafe if its training data is
unevenly distributed and certain obstacle or specific types of objects are not well represented in the
data. In such cases, the agent might not be able to properly recognize these novel objects and this leads
to significant safety issues. Even if the data is evenly distributed, there might be potential adversarial
attacks that are designed to break data-driven intelligent systems, and special training procedures
are necessary to tackle these possibilities. In a multi-stage training setting, special care should be
taken on each and every training stage to ensure safety. The most popular and sample efficient DRL
methods nowadays, such as SAC [23] and DrQv2 [93] do not yet have built-in procedures that aim to
tackle these issues and much further research is needed to develop agents that are both efficient and
reliable.
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