
A Appendix

A.1 Implementation Details

Vision-Language Classification. For the VL classification tasks, we follow METER [5] to set the
hyper-parameters. Specifically, we fine-tune our models with the peak learning rates of 2e-5 for the
backbones, 1e-4 for the cross-modal parameters, and 1e-3 for the head layer for 10 epochs. The batch
size is set to 512. The image resolutions are set to 576 for VQAv2 and 384 for NLVR2. We evaluate
models with the VQA scores for VQAv2 and accuracy for NLVR2. RandAugment [4] is used during
the downstream fine-tuning stage.

Image-Text Retrieval. For image-text retrieval, we remove the cross-attention layers in the back-
bones and use the dual encoder architecture. We set the peak learning rates to 2e-5 for the backbones
and 1e-4 for the head layer. The batch size is set to 1024. The image resolutions are set to 576
for both COCO and Flickr30k. We evaluate on the Recall@1,5,10 metrics for both text and image
retrieval.

Image Captioning. For image captioning, we only keep the image-to-text attentions and feed the
image representations in the last layer of the image encoder to the cross-attention modules. In this
way, the model is turned into a standard seq2seq model, and we use the causal mask in the decoding
side and predict outputs auto-regressively. We first train our models with the cross-entropy loss
for 5 epochs with the peak learning rates of 5e-5 for the backbones, and 2.5e-4 for the rest of the
parameters. Then, we fine-tune it with GOLD [9] for 5 epochs as it is efficient and has proven to
be effective when the model input can correspond to different outputs. We set the peak learning
rate to 1e-5 for the backbones during GOLD training. For CIDEr optimization, the learning rate is
further reduced to 1e-6 and we train the models for 3 epochs. The batch size is set to 512. We use a
beam size of 5 during inference and do not use constrained beam search. We use the same model
when testing on COCO and NoCaps, and we evaluate on BLEU [10], METEOR [2], CIDEr [12], and
SPICE [1] metrics.

Phrase Grounding. For phrase grounding on Flickr30k, we do not further fine-tune the model after
fine-grained pre-training, and just directly evaluate on the Recall@ 1,5,10 metrics.

Referring Expression Comprehension (REC). For the REC datasets, we use batch size 16 and
fine-tune on the respective dataset for 20 epochs. We use a warmup of 2000 steps, with a peak
learning rate of 1e-5 for both the OD head as well as the rest of the model’s paramaters, with two
learning rate drops at 67% and 89% of the total number of steps. We switch off the horizontal flip
augmentation during REC training, as we find that it adversely affects the performance, especially on
the RefCOCO dataset, which includes many examples having degenerate language such as just “left”
or “right” rather than using descriptive words for the referring expressions.

Object Detection. For both COCO and LVIS detection, we train for 24 epochs, with batch size 32,
with a learning rate of 1e-5 for the whole model, with two learning rate drops at 67% and 89% of the
total number of steps. For the ODinW datasets, we fine-tune for 12 epochs, with early stopping based
on the validation accuracy.

The object detection data is constructed as follows - The object category names are directly used in
their text form separated by full stops as input to the text encoder. We follow the same protocol as in
GLIP [3] to be comparable to their experiments. More specifically, the input text will look like this:
"person. bicycle. car. .... toothbrush", and the model will learn how to ground image regions into
these object names. An example of input and output predicted by the model can be seen in Fig. 4.

A.2 Ablation Study

Ablation Study on the Fusion Strategies. We perform ablation studies on our fusion module. We
investigate three different fusion strategies as shown in Figure 1. Merged attention concatenates
representations from the two input modalities and feeds them into the self-attention layer for fusion.
Note that here the key and value matrices for the two modalities are different. On the other hand,
co-attention inserts a cross-attention layer into each of the encoding layer. The insertion of the
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Figure 1: Different strategies for fusion in the backbone. (x, y) are the (image, text) or (text, image) representa-
tions, and α is a learnable scalar.

Model #Fusion Layers #Fusion Params. VQAv2

No Fusion 0 0M 65.65

Merged Attention 3 7.9M 71.24
6 12.6M 70.67

Co-attention w/o α
3 16.1M 70.84
6 26.0M 68.13

Co-attention w/ α

3 16.1M 71.20
6 26.0M 71.97
9 35.8M 72.10
12 45.6M 72.08

Table 1: Ablation study on the fusion strategies. Results are obtained by directly fine-tuning models initialized
with uni-modally pre-trained parameters and without VLP. Results on VQAv2 are on test-dev set.

Pre-training Objectives VQAv2 Flickr30k
MLM ITM ITM-hard ITC test-dev IR@1 TR@1

✓ ✓ ✕ ✕ 72.47 65.50 79.30
✓ ✕ ✕ ✓ 74.16 73.74 87.70
✕ ✕ ✓ ✓ 67.45 75.20 87.00
✓ ✓ ✕ ✓ 74.49 73.58 87.80
✓ ✕ ✓ ✓ 75.98 75.26 87.50

Table 2: Ablation study on the pre-training objectives and whether the hard negative mining strategy is necessary
in the coarse-grained pre-training stage.

cross-attention layer offers the flexibility of controlling to what extent we want the two modalities to
fuse together as we can easily introduce an α term into the module as in Figure ??.

As shown in Table 1, we compare the three fusion strategies by directly fine-tuning our models
without performing VLP for efficiency. We use Swin Transformer and RoBERTa as our vision and
text backbones and load their pre-trained parameters for initialization. We set the image resolution
to 224×224. We can see that merged attention and co-attention achieve comparable performance
without α. For both strategies, increasing the number of fusion layers can lead to performance drop.
However, after introducing α, we can see significant improvements of co-attention, indicating the
importance of having an explicit controlling/gating mechanism for fusion in the backbone.

After the α term is introduced, we can increase the number of fusion layers and achieve robust
performance. Based on the ablation results, we choose to fuse the top 6 layers of the backbones as it
can achieve a good accuracy-efficiency trade-off.

Ablation Study on Pre-training Objectives. Following previous work [7, 5, 14], we pre-train our
models with image conditioned masked language modeling, image-text matching with hard negative
mining, and image-text contrastive losses during the coarse-grained pre-training stage. In this part,
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Model OD on COCO OD on LVIS ODinW RefCOCO+

Zero-shot/Fine-tune Zero-shot/Fine-tune Zero-shot Val/TestA/TestB

OFA-L - - - 84.49/90.10/ 77.77
GLIP-B 48.1/57.0 29.1/51.0 44.8 -

FIBER-B w/o C.G. VLP 48.9/57.8 31.6/55.8 45.1 85.04/88.82/78.59
FIBER-B 49.3/58.4 35.8/56.9 47.0 85.74/90.13/79.38

Table 3: Ablation study on our proposed two-stage pre-training strategy.

Vision Encoder Text Encoder VQAv2

Swin RoBERTa 71.97
Swin BERT 71.86

CLIP-ViT RoBERTa 71.37

Table 4: Results of different vision and text backbones for FIBER without VLP.

we ablate each of the pre-training objectives and evaluate our models on both VQAv2 and Flickr30k
retrieval tasks. Specifically, we use Swin Transformer and RoBERTa as our vision and text backbones
and load their pre-trained parameters for initialization. The image resolution is set to 224×224 and
we pre-train models for 100k steps with 1,024 batch size. We use AdamW with the peak learning
rates of 1e-4 for the backbones and 5e-4 for the cross-modal parameters. We use linear warmup over
the first 1k steps and linear decay.

As shown in Table 2, we can see that removing any of the pre-training objectives can lead to
performance drop, and hard negative mining can bring improvements on both VQA and retrieval
tasks. Masked language modeling is most effective for VQA, while removing it will not hurt the
retrieval performance. This set of experiments demonstrates that all of the objectives are necessary
for our models to obtain good performance.

Ablation Study on the Two-Stage Pre-training. In this paper, we propose a coarse-to-fine pre-
training strategy for handling VL tasks of different kinds. In this paragraph, we remove the coarse-
grained pre-training stage and only pre-train the models with image-text-box data and see how it
performs. As shown in Table 3, we see gains across both tasks when utilizing the coarse-grained
pre-training. Similar to the case of Flickr30k, on RefCOCO+ the coarse-grained pre-training helps
FIBER to get better performance than large-sized model trained with more data. In addition, note
that without the coarse-grained pre-training, the only difference between FIBER and GLIP is the
architectural difference, and the fact that FIBER can still outperform GLIP in this setting demonstrates
the effectiveness of our proposed architecture.

Ablation Study on Different Backbones. While previous work [5] has compared different vision
and text backbones for VLP models, we investigate if their conclusions stil apply in our settings.
Specifically, we try BERT and RoBERTa for our text encoder and CLIP-ViT and Swin Transformer
for our image encoder. As shown in Table 4, we can see that RoBERTa and Swin Transformer perform
slightly better than BERT and CLIP-ViT before VLP, which is consistent with previous findings in
METER [5]. Note that while CLIP-ViT has the potential to perform better than Swin Transformer
after VLP, it is hard to be adapted for region-level tasks such as object detection. Therefore, pairing
Swin Transformer with RoBERTa is the optimal configuration in our settings.

A.3 Additional Results

Additional Results on Image Captioning. For image captioning, we evaluate the models with
BLEU-4, METEOR, ROUGE-L, CIDEr, and SPICE metrics on COCO and NoCaps. On NoCaps,
we have fine-grained evaluation results on different domains, including in-domain, near-domain,
out-domain, and entire domain settings. In this part, we provide the complete evaluation results
in Table 5, 6 and 7. We can see that both GOLD and CIDEr optimization can improve the model
performance across metrics. We also see a noticeable performance drop when evaluating our models
on out-of-domain data, but complementary methods such as constrained beam search can be used to
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Figure 2: When adapting FIBER to image captioning, we can either use the seq2seq structure or the ladder
architecture as in pre-training.

Model COCO
BLEU@4 METEOR ROUGE-L CIDEr SPICE

Models trained without CIDEr optimization

FIBER-Ladder-B 38.6 30.1 58.8 127.5 22.8
FIBER-B 39.1 30.4 59.3 128.4 23.1

FIBER-GOLD-B 40.3 30.7 60.0 133.6 23.6

Models trained with CIDEr optimization

FIBER-B 42.8 31.0 61.5 142.8 24.3
FIBER-GOLD-B 43.4 31.3 61.8 144.4 24.6

Table 5: The complete set of results on COCO image captioning, with another model variant FIBER-Ladder.
See Figure 2 for details.

alleviate the issue. Also, training our models with more captioning data should also be helpful in
these settings.

Also, in the main paper, we adapt FIBER for image captioning by turning it into a standard seq2seq
model as in Figure 2a, where the output of the final encoding layer will be fed into the image-to-text
cross-attention modules. Another possible design is to keep the ladder structure as we used in
pre-training (Figure 2b), so there can be less mismatching between pre-training and fine-tuning. As
shown in Table 5, the two architectures can achieve comparable performance. Considering that the
seq2seq architecture is more widely adopted in the current literature, we decide to use the seq2seq
architecture for image captioning.

Model Open-ended VQA
In-D Out-D overall

VL-T5 [3] 71.4 13.1 67.9
VL-BART [3] 72.1 13.2 68.6

SimVLM-B [15] 78.3 25.8 75.2

FIBER-B 75.9 14.7 71.6

Table 8: Results on open-ended VQA. We follow [3] to
split the data into in domain (In-D) and out of domain
(out-D).

Open-ended VQA. In most existing literature,
VQA is treated as a classification task, where a
vocabulary of some most frequent answers are
constructed and VL models predict which an-
swer corresponds to the given question based
the constructed vocabulary. However, question
answering is inherently open-ended. Since we
can turn our models into a generative model by
fine-tuning on image captioning, we also inves-
tigate if our models can perform open-ended
VQA in this part.

Following [3], we break down VQA questions
into in-domain and out-of-domain questions,
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Model in-domain near-domain out-domain entire
B@4 M R C S B@4 M R C S B@4 M R C S B@4 M R C S

Models trained without CIDEr optimization

FIBER-B 29.7 30.0 58.2 98.5 13.9 24.4 27.5 55.6 88.2 13.0 18.0 25.4 53.5 82.8 12.2 23.9 27.5 55.6 88.6 13.0
FIBER-GOLD-B 29.7 30.1 58.2 100.6 14.0 26.8 28.2 57.0 92.9 13.5 18.3 25.8 54.3 86.6 12.8 25.5 28.0 56.6 92.8 13.4

Models trained with CIDEr optimization

FIBER-B 34.2 30.9 60.0 108.9 14.0 28.8 28.4 58.2 96.0 13.5 19.8 26.0 55.6 90.1 12.7 27.7 28.3 57.9 96.7 13.4
FIBER-GOLD-B 35.4 31.2 60.6 110.3 14.3 30.5 29.0 58.9 99.5 13.8 20.4 26.0 55.6 90.2 12.8 29.1 28.7 58.5 99.2 13.7

Table 6: The complete set of results on the NoCaps validation set. B@4: BLEU@4, M: METEOR, R: ROUGE-
L, C: CIDEr, S: SPICE.

Model in-domain near-domain out-domain entire
B@4 M R C S B@4 M R C S B@4 M R C S B@4 M R C S

Models trained without CIDEr optimization

FIBER-B 28.6 29.5 57.7 92.8 13.6 25.6 28.0 56.1 87.3 13.0 16.2 24.4 52.1 76.4 11.6 24.3 27.6 55.6 86.0 12.9
FIBER-GOLD-B 29.9 30.1 58.4 95.9 14.1 28.0 28.7 57.4 92.0 13.5 18.4 25.3 53.4 81.0 12.3 26.5 28.3 56.8 90.6 13.4

Models trained with CIDEr optimization

FIBER-B 33.3 30.4 59.9 102.7 14.1 29.8 28.9 58.6 95.3 13.6 20.7 25.5 55.1 83.4 12.3 28.6 28.5 58.2 94.1 13.4
FIBER-GOLD-B 34.6 30.9 60.6 104.7 14.4 31.3 29.4 59.4 98.7 13.9 21.2 25.9 55.4 85.7 12.7 29.9 29.0 58.8 97.1 13.8

Table 7: The complete set of results on the NoCaps test set. B@4: BLEU@4, M: METEOR, R: ROUGE-L, C:
CIDEr, S: SPICE.

Text Encoder QQP MNLI QNLI SST2 CoLA MRPC STSB RTE

RoBERTa-B [8] 91.31 87.53 92.61 94.38 58.72 91.03 90.15 71.24
METER-RoBERTa-B [5] 91.34 87.38 92.67 93.92 57.88 90.57 89.93 70.28

SimVLM-B [15] 90.4 83.4 88.6 90.9 46.7 84.4 - 63.9

FIBER-RoBERTa-B 91.60 86.23 91.34 92.66 59.56 90.72 89.77 62.09

Table 9: Performance of text encoders on the GLUE dev sets.

where the answers to the out-of-domain questions do not appear in the top-k (k = 3, 129) can-
didates. We use the Karpathy split [6] in this setting.

As shown in Table 8, our generative model can perform better than VL-T5 and VL-BART, while
lagging behind SimVLM especially in out-of-domain settings, possibly because SimVLM is trained
with over a billion image-caption pairs and is more robust in this setting. The results indicate that our
model can be turned into a general open-ended VQA model as well.

Uni-modal Performance. It can be interesting to see whether our backbones can still perform
uni-modal tasks after VLP. Therefore, in this part, we also evaluate our language backbones on
uni-modal tasks.

Image Encoder ImageNet ADE20k

Swin-B 86.3 51.6

FIBER-Swin-B 86.0 52.0

Table 10: Performance of image encoders on image classification and semantic segmentation.

Specifically, we test our language backbone after the first coarse-grained pre-training stage on the
GLUE [13] benchmark. As shown in Table 9, the uni-modal performance of our text encoder can
drop marginally on some tasks, possibly because the model only encounters simple text captions
during VLP. However, it is still better than SimVLM which is trained with 800GB of web-crawled
documents from scratch.

On the other hand, as shown in Table 10, our image encoder can achieve comparable and sometimes
even better performance on vision-only tasks including image classification and semantic segmenta-
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Model Shot PascalVOC AerialDrone Aquarium Rabbits EgoHands Mushrooms Packages Raccoon Shellfish Vehicles Pistols Pothole Thermal Avg

GLIP-B 1 51.7 25.0 34.0 69.2 67.4 63.4. 54.4 56.5 14.1 57.9 51.7 15.6 70.2 48.5
GLIP-B 3 57.4 25.2 44.9 65.1 69.3 88.3 67.3 52.8 28.9 60.7 62.1 31.3 67.9 55.5
GLIP-B 5 57.9 28.1 44.1 64.6 68.1 85.1 74.2 60.8 24.0 61.9 59.1 33.7 75.2 56.7
GLIP-B 10 60.6 27.8 49.7 67.8 65.2 87.4 67.5 54.5 42.3 65.1 63.9 39.2 78.7 59.2
GLIP-B All 62.2 36.0 55.3 74.0 79.8 88.1 74.3 64.1 47.0 64.4 72.4 56.5 81.1 65.8

FIBER-B 1 55.7 25.0 37.9 69.8 67.2 83.0 73.2 54.7 29.7 58.0 44.8 27.8 67.0 53.4
FIBER-B 3 59.8 28.2 42.9 71.5 68.4 88.1 65.6 64.6 38.6 61.8 47.8 37.5 68.5 57.2
FIBER-B 5 61.6 30.9 49.5 72.3 69.2 87.5 73.2 57.4 38.2 62.7 55.3 40.3 61.8 58.4
FIBER-B 10 60.7 31.2 52.0 68.8 70.4 88.1 69.3 53.8 41.7 66.6 62.2 46.8 74.8 60.5
FIBER-B All 68.7 35.4 58.3 75.9 79.4 88.1 72.2 52.9 45.2 66.1 72.2 60.9 80.6 65.9

Table 11: Few-shot and full fine-tuned results on the various ODinW datasets.

tion after coarse-grained pre-training. The results suggest that the image encoder can remain powerful
even if the fusion modules are removed.

Using the Model Checkpoint After Fine-grained Pre-training for VQA. We also test what
if we fine-tune the fine-grained pre-trained checkpoint on VQA in this part. We find that after
the second-stage fine-grained pre-training, the model performance on the VQAv2 test-dev set can
drop from 78.55 to 74.3, indicating that the two-stage pre-training paradigm is indeed necessary
for different VL tasks, as tasks of different characteristics can require checkpoints from different
pre-training stages.

Detailed Results on ODinW. Detailed results on the 13 ODinW datasets are provided in Table 11.

A.4 Visualization after coarse-grained pre-training

We also provide a qualitative analysis of our model. As shown in Figure 3, we use Grad-CAM [11]
to visualize the cross-attention maps of our coarse-grained pre-trained checkpoint. We find that the
model can correctly align concepts and image regions for some examples, suggesting that the model
can learn visual grounding implicitly.

Figure 3: Visualizations of the cross-attention maps obtained by Grad-CAM [11]. Given each of the tokens in a
caption, the model can attend to its corresponding regions. The figures are from the NoCaps validation set (ID:
253, 3766).

A.5 Visualization after fine-grained pre-training

We also provide visualization after fine-grained pre-training in Figure 4, 5, 6, and 7.

A.6 Text and Vision Backbones of Different Models

In this section, we list the backbones of different models in Table 12.
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Figure 4: The same images probed after fine-grained pre-training.

Figure 5: Some examples of phrase grounding from the validation set for Flickr30k entities.
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Figure 6: Some examples of referring expression comprehension from the validation set of RefCOCO+.

Figure 7: Some images with prompts for various items in the scene.
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