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Abstract

Generating multivariate time series is a promising approach for sharing sensitive
data in many medical, financial, and IoT applications. A common type of multivari-
ate time series originates from a single source such as the biometric measurements
from a medical patient. This leads to complex dynamical patterns between individ-
ual time series that are hard to learn by typical generation models such as GANs.
There is valuable information in those patterns that machine learning models can
use to better classify, predict or perform other downstream tasks. We propose a
novel framework that takes time series’ common origin into account and favors
channel/feature relationships preservation. The two key points of our method are:
1) the individual time series are generated from a common point in latent space and
2) a central discriminator favors the preservation of inter-channel/feature dynamics.
We demonstrate empirically that our method helps preserve channel/feature corre-
lations and that our synthetic data performs very well in downstream tasks with
medical and financial data.

1 Introduction

Multivariate Time Series (MTS) are composed of individual time series (TS) sharing the same time
reference. In some cases, the individual time series further share a common source such as the
biometric values from a medical patient, the stock prices from economic events or geographically
separated seismic measurements from a single earthquake. This leads to specific correlation patterns
and time dynamics across the time series. Such complex patterns can be crucial when a model is
trained on MTS and might need a huge amount of training samples to be captured by a machine
learning algorithm. For many applications, however, there may not be enough high-quality training
data. For example, for many biomedical and health care applications, data scarcity is common and
data sharing to build a larger training set is challenging due to regulatory requirements or ethical
concerns ([1], [2]). Such concerns are justified; it is well known that sharing data associated with a
single individual, even anonymized, can lead to unexpected privacy breaches ([3], [4], [5], and [6]).
Synthetic MTS could be an attractive alternative to share the patterns and statistical information of an
MTS dataset. If done properly, synthetic MTS should not have a one-to-one mapping to the original
data, although it can come with its own privacy and quality challenges (see [7] for example).
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Beyond data sharing, synthetic MTS can be used for augmenting a dataset to improve the performance
of a trained model [8] or increase the contribution of underrepresented sub-populations [9]. For
example, in the health domain, a patient can generate multiple TS from biometric measurements,
wearable and IoT sensors, but the collection of such data may not have a representative coverage of a
full population. Synthetic MTS can help to augment datasets for improving downstream analysis,
such as for forecasting and classification tasks. In this work, we are interested in generating synthetic
MTS that both preserve utility and statistical properties of the original data. By utility we mean the
ability to support a specific downstream task such as the performance of a classifier when trained on
synthetic data. Preserving statistical properties such as channel or feature1 correlations increase the
potential benefits to an unforeseen downstream task, exploratory data analysis or educational purposes
when sharing data is not possible. We observe that current methods often struggle at correlation
preservation needed for downstream task and our method addresses these limitations.

In this paper, we propose a novel method for generating MTS that comes from a common source
by defining an architecture that explicitly takes inter-channel correlations into account. While MTS
can be created with a typical generative deep learning architecture (such as VAE or GAN) with
multiple channels output, we will demonstrate that our method not only preserves the quality of each
individual TS by generating each individual TS separately from a common noise but also preserves
the relationships between TS by having a central discriminator receiving all the generated individual
TS as a single input. We consider noise to be a point of random sampling in the latent space that
represents a patient’s "whole biological environment." By common noise, we refer to a common point
in the latent space, i.e., that latent space is the patient space, and we sample a patient by sampling a
noise for the generator input.

We perform extensive empirical evaluation on MTS datasets where individual TS originate from a
single source. We evaluate the resulting synthetic MTS by comparing their statistical features with
the real MTS and their utility on downstream classification task. We pick classification to measure
the utility of the synthetic data because classification is one of the most popular analytic tasks in
machine learning. We also compare the real and synthetic MTS visually in embedding spaces, and
evaluate our method against state-of-the-art baseline methods. Our contributions can be summarized
as follows:

• To our knowledge, this is the first study to analyse how to generate multivariate time series
with individual channel generation originating from a common noise while inter-channel
correlations preservation is forced with a central discriminator.

• Demonstrating that COSCI-GAN compares favourably with state-of-the-art algorithms in
downstream tasks on an Electroencephalography (EEG) eye state time series dataset.

• Demonstrating that COSCI-GAN results compares favourably with state-of-the-art algo-
rithms in preservation statistical properties of on the EEG dataset.

• Open sourcing the implementation of our methods and experiments2.

The rest of the paper is arranged as follows: Section 2 discusses related work. Section 3 formalizes
he problem description. Section 4 presents our COSCI-GAN model architecture and gives implemen-
tation details. Section 5 presents an extensive empirical evaluation. Section 6 discusses the benefits,
limitations and potential negative societal impacts.

2 Related Work

Synthetic data is often proposed to provide or to increase privacy protection [10]. The only privacy
protection framework with predictable effect on privacy is to incorporate differential privacy (DP)
into the learning algorithm ([11]) by adding calibrated noise to the parameter updates. For every
non-DP generation method, the privacy must be assessed empirically with privacy attacks ([12]).

1Note that we use channel and feature interchangeably here since the term channel is commonly used for
EEG and other medical time series that partly motivate this work. From a typical machine learning context,
a channel is basically a feature. Generally in this paper, feature and channel corresponds to a collection of
recorded data point from a given sensor.

2https://github.com/aliseyfi75/COSCI-GAN
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Generative Adversarial Networks [13] are a popular method to generate synthetic data. Since their
inception, they have expanded to include time-series data production, see [14] for a comprehensive
overview. Mogren introduced the C-RNN-GAN approach, which employs RNNs as both the generator
and discriminator in order to synthesise time series from a random vector [15]. Esteban et al. later
proposed RCGAN to create medical data using a similar architecture [16]. These frameworks have
been applied to a wide range of application domains, including biosignals [17], finance [18], sensor
[19], text [20], and smart grid data [21]. However, the typical framework and loss function of GANs
are insufficient for the production of multivariate time series, especially if we want to preserve the
correlation among the channels as we will demonstrate below. Xu et al. developed COT-GAN based
on ideas of optimal transport theory [22] and more recently, Li et al. developed TTS-GAN which is
capable of generating realistic synthetic time series of any length [23] both work focusing solely on
statistical evaluation of the data such as correlations.

Yoon et al. developped TimeGANs based on recurrent conditional GAN for capturing the temporal
dynamics of data throughout time [24]. It entails training supervised and unsupervised targets
concurrently using a learnt embedding space. It creates time series data by learning an embedding
space and optimising it via binary adversarial feedback and stepwise supervised loss. Most recently,
Fourier Flows [25] was proposed as a method based on a Fourier transform layer followed by a chain
of spectral filters leading to an exact likelihood optimization.

3 Problem Formulation

Let X be an MTS dataset of N instances, each composed of C channels Xi, where i ∈ 1, . . . , C.
An instance of X can be described as xn = {(xn

1 , . . . , x
n
C)}. We want to find a distribution

q(X1, . . . , XC) that is as close to p(X1, . . . , XC), the real distribution of our dataset, as possible.
In the typical GAN framework, it may be difficult to find the best optimization solution for such
a complex goal, which depends on the number of channels, duration, and distribution of the data.
This is why we use separate generators Gi to learn the marginal distribution of each channel, p(Xi),
separately, and then use a central discriminator to force preserving the real correlation between
the channels by focusing on the conditional distributions p(Xi|Xi ̸=j), where Xi ̸=j refers to all the
channels excluding channel i. Figure 1 depicts this architecture, with more details discussed in the
next section. Essentially, we have two objectives: a local and a central one.

Local objective: In the local objective, the goal is to estimate the marginal distribution of each
channel, p(Xi); which means for each channel i, we should optimize:

min
q

D(p(Xi)||q(Xi)) (1)

where D is any suitable measure of the distance between two distributions.

Central objective: In the central objective, the goal is to estimate the conditional distribution of a
channel given all the other ones, p(Xi|Xi ̸=j). In order to illustrate this objective, we demonstrate it
in a special case where the channels are independent of one another, which means we will have:

min
q

D(

C∏
i=1

p(Xi|Xi ̸=j)||
C∏
i=1

q(Xi|Xi̸=j)) (2)

Our approach is that each generator Gi share the same initial (noise) source z, such that Equation 2
becomes

min
q

D(

C∏
i=1

p(Xi|z)||
C∏
i=1

q(Xi|z)) (3)

We define the global loss to be a linear combination of the loss of local objective and loss of central
objective.
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Figure 1: Overall structure of COSCI-GAN. Each Channel GAN is dedicated to one channel/feature
with input either a real one or a fake one with their discriminator being a binary classifier. The central
discriminator, a binary classifier, receives full instances (i.e. all channel) either all real or all fake.

4 COSCI-GAN

As shown in Figure 1, COSCI-GAN is made up of two main parts: 1) Channel GANs, which contain
pairs of generator-discriminator dedicated to a single channel (univariate TS), and 2) the Central
Discriminator, dedicated to all channels at once. Each of these parts is responsible for a specific task.
In channel GANs, the generators are responsible for producing realistic TS and the discriminators are
responsible for distinguishing between real and synthetic TS. The central discriminator is responsible
for enforcing that all the generated TS of a given instance have the same correlation as those from
real MTS. Producing all channels simultaneously necessitates that the generative model learn the
joint distribution of all TSs, a difficult task that requires a substantial amount of data and time.
In contrast, learning the marginal distribution of a single channel is a significantly simpler task.
Consequently, the primary purpose of employing channel GANs as opposed to a single multichannel
generator-discriminator pair is to assist each individual TS generator in synthesizing more accurate
TSs from its own channel’s data distribution. By including the central discriminator, we aim to
enforce realistic correlations between the channels as much as possible.

4.1 Algorithm
Let our multivariate time series have dimensions of N ∗ L ∗ C, where N is the number of instances
in the dataset, L is the length of each time series, and C is the number of channels. As shown in
Figure 1, there are C pairs of Generator-Discriminator, or channel GANs. All generators are fed a
shared noise vector to begin the generation process. Each generator in a channel GAN will synthesize
a TS, and both the generated TS and the corresponding channel of real TS will be passed to their
paired discriminator, which determines whether the generated TS is from the same distribution as the
real ones. A pseudo-code of the COSCI-GAN algorithm is provided in Algorithm 1.

Algorithm 1 COSCI-GAN

for epoch in epochs do
for batch in training set do

Create a noise vector, Z.
for i = 1 to nchannels do

Extract signali from the batch.
Generate Fake signals generatedi from Generatori
Train Discriminatori by feeding signali and generatedi.

end for
Train Central Discriminator by feeding

((generated1, ..., generatednchannels
), (signal1, ..., signalnchannels

)).
for i = 1 to nchannels do

Train Generatori with LossDi and LossCD.
end for

end for
end for
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As mentioned earlier, the central discriminator’s role is to preserve the inter-channel correlations.
The TS synthesized by all channel generators will be concatenated as an MTS and fed to the central
discriminator, which aims to determine whether the MTS is real or fake. We hypothesize that this will
penalize unrealistic (un)correlation patterns between channels, and we have provided some evidences
in the Supplementary Materials that other State-Of-the-Art (SOTA) methods often exaggerate or even
create unrealistic correlations when compared to real data correlation.

4.2 Training

During training, the discriminators in the channel GANs (which we will refer to as channel Dis-
criminators from now on), their paired generators, and the Central Discriminator will engage in a
three-player game. The three-player objective of a given channel GAN combined with the central
discriminator is:

min
θi

max
ϕi

max
α

V (Gi,θi , Di,ϕi , CDα) =Ex∼Pdata
[log(Di,ϕi(xi)]) + γ · log(CDα(x))]

+ Ez∼Pz [log(1−Di,ϕi(Gi,θi(z))

+ γ · log(1− CDα(Gi,θi(z), Gj ̸=i(z))]

(4)

where Gi,θi is the i-th generator with parameters θi, Di,ϕi
is the i-th channel discriminator with

parameters ϕi, CDα is the central discriminator with the parameters α, Pdata is the distribution of
the real time series, xi is the i-th channel of time series x, Gj ̸=i are all the other generators with
fix parameters for the optimization step of Gi,θi , γ is a hyper-parameter that control the trade-off
between well-preserving the correlation among the channels versus generating better quality signal
within each channel, and z is the shared noise vector sampled from Pz distribution. The objective for
all channels is a 2C + 1 player game adding the terms with subscript i in Equation 4.

In each epoch, we divide the MTS training dataset into a number of batches. If the batch size is
assumed to be m, then each batch contains x(1), . . . , x(m) ∼ D. For each batch, we sampled as many
noise vector z ∼ Pz as the batch size. All channels’ generators synthesize signals, and a gradient
ascent step on the discriminators’ parameters ϕis are taken. Then we concatenate the synthetic signals
of all channels and use them in addition to the real data to take a gradient ascent step on the central
discriminator parameters α. In the end, we take a gradient descent step on the generators parameters
θis.
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(a) Structure of Central Discriminator.

Linear

Leaky
Relu Dropout

LLD Module

(b) Inside the LLD module.

Figure 2: Structure of an MLP-based Central Discriminator.
4.3 Key Implementation Details

There are many possible choices of network types for channel GANs. We show in the Supplementary
Materials that networks based on Long short-term memory (LSTM) generate signals of higher quality
than the networks based on Multi-layer perceptron (MLP).

We have investigated LSTM and MLP based networks for the central discriminator. Although LSTM-
based networks perform better than MLP-based networks in Channel GANs, MLP-based networks
perform better in the Central Discriminator. We hypothesize that if the central discriminator is too
powerful, the results will be of lower quality, as the generators will strive to make the signals more
correlated at the expense of realistic individual TS.

Figure 2a depicts the structure of an MLP-based central discriminator. It consists of three Linear-
LeakyReLU-Dropout (LLD) modules, a linear module, and a sigmoid function. Figure 2b demon-
strates the structure of an LLD module.
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5 Empirical Evaluation

5.1 Toy Sine Datasets: Diversity vs Correlation Preservation

To be able to investigate the empirical behavior of COSCI-GAN and, in particular, the effect of the
central discriminator, we need to have complete control over the nature of the datasets, particularly
the ground truth of our desired tasks. Thus, we simulated three "toy medical" datasets with two
channels and used them as "real" datasets to generate synthetic data. For all these datasets, we
assumed that each instance correspond to a different patient, and each patient produce measurements
for two channels (c1 and c2). To make the datasets a bit more realistic, we also assumed that there are
two types of patients (pt1 and pt2), as in "healthy" vs "condition". The three datasets are:

• Simple Sine is derived from the formula: x = A sin(2πft) + ϵ. The difference between the
signals is that the amplitude (A) for patient type 1 comes from N (0.4, 0.05) , whereas the
amplitude for patient type 2 comes from N (0.6, 0.05) . The other difference is that Channel
1 has a frequency (f ) of 0.01, while channel 2 has a frequency of 0.005. In addition, the
noise ϵ comes from N (0, 0.05) .

• Sine with frequency changes contains the same signals as Simple Sine, except that the
frequency of all sine functions doubles exactly in the middle of the time series. This allows
us to examine the situation with varying frequencies.

• Anomalies is created by replacing the middle of the time series with Gaussian noise, thus
allowing us to examine the impact of anomalies.

The visualization of all three toy datasets are available in the Supplementary Materials.

We assessed the behaviour of COSCI-GAN, particularly the central discriminator, by two criteria:

(1) Diversity: requiring that the generators should synthesize from both patients’ distributions and
there should be no mode collapse, a common failure of GANs, which occurs when the generator fails
to produce results as diverse as the real data. We measured the diversity by comparing the distribution
of amplitude of patients’ signals in the real dataset, which is a bimodal Gaussian distribution, with
the distributions of amplitude of the generated samples using Wasserstein Distance (WD). We took
the WDs average (AWD) to aggregate across the channels. A lower AWD indicates a closer similarity
to the real distributions. The first column of Table 1 shows the AWD for the various cases.

(2) Correlation Preservation: requiring that the amplitudes of channels for each patient types should
be equal to each other as much as possible. We measured the amplitudes of channel 1 and 2 in
all signals and verified their similarity. We defined our correlation metric as the average euclidean
distance (AED) between the amplitude mapped on a 2D plane (Channel 1 vs Channel 2) and a line
with slope 1. The resulting plot is provided in the Supplementary Materials, and the numeric values
are summarized in Table 1. A lower AED indicates stronger preservation of correlation.

Table 1: Results of Diversity (AWD) V.S. Correlation Analysis (AED)
Dataset Method AWD AED

Simple Sine Without CD 0.0472 0.1326
With CD 0.0800 0.0177

Freq changes Without CD 0.0397 0.0769
With CD 0.0679 0.0242

Anomalies Without CD 0.0540 0.0766
With CD 0.0726 0.0161

As clearly shown in Table 1, there is a trade-off between diversity and correlation preservation. That is
when we used the CD, the correlation was better preserved, but at the expense of diversity (similarity
between the generated time series’ marginal distribution of amplitudes and the toy Simple Sine time
series’ marginal distribution of amplitudes). Conversely, not using the CD would allow the generated
sample distributions to be closer to the real data, but the generated channels were less correlated.
The strength of the CD is controlled by the parameter γ as shown in Equation (4). As we conducted
experiments to tune the hyper-parameter γ, we observed that there is a stable range for γ. We ended
up setting γ to 5, which provides stable results for all the experiments presented in this paper, whether
the datasets are the toy medical ones or the real ones to be discussed later.
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5.2 Toy Sine Datasets - Feature-based Correlation Analysis
The catch22 feature set has been introduced to capture 22 CAnonical Time series CHaracteristics
commonly seen in diverse time series data mining tasks [26]. Using this feature set, we assessed
how correlation between any pair of catch 22 features was preserved in synthetic time series data
generation. In other words, if a pair is strongly correlated in the real dataset between the two channels,
we would like to see that preserved in the synthetic dataset. Similarly, if two features are not correlated
in the real dataset, they should remain uncorrelated in the synthetic dataset.

Figure 3 shows three heatmaps for those pairwise correlations between the two channels of simple
sine dataset (The same figure for other toy datasets are provided in the Supplementary Materials).
To simplify the heatmaps, we removed 7 features that were constant among the real datasets, and
kept the remaining 15 features that varied. The left heatmap shows the pairwise correlations of the
15 features for the real dataset. The centre heatmap is the one for the synthetic dataset generated
by COSCI-GAN without a CD, whereas the right heatmap is the one generated by COSCI-GAN
having the CD. Clearly, the right heatmap resembles the left heatmap much more closely. The centre
heatmap shows that without the CD, almost all the correlation relationships of the 15 features were
destroyed.

While the heatmaps are useful for visualization, we also compared quantitatively the correlation
matrices between the two channels using various metrics: (1) Mean Absolute Error (MAE), (2)
Frobenius norm, (3) Spearman’s ρ, and (4) Kendall’s τ . For MAE and the Frobenius norm, a smaller
value indicates greater similarity between the correlation matrices of the real and synthetic datasets.
For Spearman’s coefficient and Kendall’s coefficient, the closer the value is to 1, the higher is the
similarity. Results shown in Table 2 provide convincing evidence of the effectiveness of the CD in
synthetic MTS generation.
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Figure 3: Heatmaps for Catch22 Pairwise Correlations.

Table 2: Similarity between Correlation Matrices
Dataset Method MAE Frobenius norm Spearman’s ρ Kendall’s τ

Simple Sine Without CD 0.671 11.295 -0.761 -0.569
With CD 0.298 5.666 0.848 0.700

Freq changes Without CD 0.268 7.889 0.259 0.174
With CD 0.131 3.413 0.834 0.661

Anomalies Without CD 0.289 8.113 0.428 0.297
With CD 0.199 5.362 0.786 0.612

5.3 EEG Eye State Dataset and Downstream Classification

We selected a 14-channel EEG eye state dataset to measure the effectiveness of COSCI-GAN on real
signals [27]3. This dataset contains a label indicating whether the patient’s eyes were open or closed
(1 indicates closed, and 0 indicates open). Each time series is 117 seconds long, resulting in 14980
samples at a sampling rate of 128 per second. To remove outliers from the dataset, we experimented
with various z-score values and determined that a value of 3 is optimal for our dataset, so we removed
points with z-scores greater than 3, the same value as other EEG studies (e.g. [28]). The label of the
dataset allows us to create a downstream eye blink classification task as follows.

3https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State with license details therein
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We extracted a window of 800 samples in length containing an eye blink, with a margin of 200
samples at the beginning and end of each eye blink, and labelled those frames with 1. We also
extracted 800 samples that did not contain an eye blink, with a margin of 200 samples between the
beginning and end of an eye blink, and labelled them with 0. We now have 1024 frames of each label
for classification. Then we performed a forward feature selection, and chose top 5 channels regarding
the accuracy of our classification task.

To measure the effectiveness of COSCI-GAN for classification, we used the approach of train-on-real
and test-on-fake, and the opposite approach of train-on-fake and test-on-real. We measured the
accuracy of an LSTM-based classifier, which is described in details in the Supplementary Materials,
on a dataset that contains two channels. Table 3 shows the results of this comparison. We compared
the accuracy of the classifier when the synthetic data were generated with and without the CD. Once
again, the CD brings significant value to downstream classification tasks.

Table 3: Accuracy in Classification Task
Experiment COSCI-GAN with CD COSCI-GAN without CD

Train-on-real, Test-on-fake 0.790 0.644
Train-on-fake, Test-on-real 0.634 0.561

Next we compared COSCI-GAN against a baseline method for generating MTS data. The baseline
method is an LSTM-based GAN that simultaneously generated all channels. The same LSTM
network was utilized in the baseline method and the COSCI-GAN modules. The only difference is
that the output layer of networks in the baseline method must generate all channels rather than just
one. Below we show the results of two experiments: (1) the All-synthetic experiment, and (2) the
Augmentation experiment.

(1) All-synthetic experiment In this experiment, we assessed how well COSCI-GAN performed in
classification task when compared with the baseline method and the actual dataset. We performed
cross-validation by using 80% of our real dataset for training the GANs. Then only the synthetic data
were used to train the classifiers, which were then tested on the hold-out 20% of the real dataset. We
investigate the utility of the synthetic data for different number of channels in Figure 4a. We repeated
each experiment 30 times with different random seeds for each setting, and statistical significance
tests were done on the boxplots. A further comparison including COSCI-GAN without the CD is
provided in the Supplementary Materials.

Figure 4a demonstrates that as the number of channels is increased, the accuracy of a classifier trained
on data generated by COSCI-GAN and evaluated on real datasets increases. In contrast, the baseline
method went the opposite way and demonstrated that the performance of MTS generation with all
channels together degrades as the number of channels increases. As the number of channels grew,
synthetic data generated by COSCI-GAN gave a similar average performance as the real dataset.

(2) Augmentation experiment This experiment was set up exactly like the previous one, but
instead of using only synthetic time series to train the classifiers, we augmented the real dataset with
an equal number of synthetic training samples. In Figure 4b, the boxplots for the real datasets across
the different number of channels are exactly the same as those in Figure 4a for the real datasets.

Between Figure 4a and Figure 4b, COSCI-GAN shows significant improvements in accuracy. The
difference was that the synthetic data generated were added to the real data. COSCI-GAN still
outperformed the baseline method both in terms of the median and the variations in accuracy.

Figure 4b was based on an augmentation ratio of 1:1. Figure 4c shows a scatter plot of comparing
the accuracy of COSCI-GAN (y-axis) against the baseline method (x-axis) across six different
augmentation ratios: 1 : 1, 1 : 2, 1 : 4, 1 : 6, 1 : 8, 1 : 10, i.e. augmenting with up to 10 times more
synthetic data than real training data. We repeated the experiment five times with different random
seeds for each of these settings; the accuracy of each run is plotted in Figure 4c. Thus, any point above
the diagonal red line indicates that COSCI-GAN outperformed the baseline method. The points in the
figure are colour-coded based on the number of channels. It is obvious that COSCI-GAN dominated
the baseline method when there is more than two channels. To further quantify the differences in
accuracy, we add dotted diagonal lines in 4c, representing a difference in accuracy with increments
of 0.1. For instance, the lowest dotted diagonal line represents the cases when the accuracy of
COSCI-GAN is 0.1 below that of the baseline method. Conversely, the other three dotted diagonal
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(a) Accuracy of All-Synthetic Experiment.
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(b) Accuracy of Augmentation Experiment.
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(c) Accuracy of Augmentation Experiment: each point
of the same color corresponds to various augmentation
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Figure 4: Experiment three results. In figure (a) and (b), T-tests were applied to the results in order to
show whether there is a statistically significant difference between the distribution of the results. ns
means no significant difference, ** means 0.001 < p-value < 0.01, and *** means p-value < 0.001.

lines represent the situations when the accuracy of COSCI-GAN is 0.1, 0.2 or 0.3 better than that of
the baseline. Figure 4c shows that COSCI-GAN almost always performed better than the baseline
method, up to 0.3 higher accuracy, and most exceptions are from the 2 channel dataset where the
accuracy is at most 0.1 lower.

5.4 Comparing with State-of-the-art methods on EEG Classification
In the final experiment, we compared COSCI-GAN with two state-of-the-art (SOTA) methods:
TimeGAN4 [24] and the most recent Fourier Flows 5 [25] discussed previously. In these papers, the
downstream task was predicting the next time point of the time series; i.e., forecasting. Because
our focus is on classification, we used TimeGAN and Fourier Flows’ code to generate the five EEG
channels that we chose in the previous experiment and performed the augmentation experiment that
we described in 5.3. As shown in Figure 5 COSCI-GAN leads to the best classification accuracy
and there is a statistically significant difference between the results of COSCI-GAN and two other
methods.

To compare the statistical properties of COSCI-GAN with SOTA methods, we repeated the correlation
analysis from 5.2. Figures similar to Figure 3 for TimeGAN and Fourier Flows are provided in
the Supplementary Materials. We computed the MAE between the real correlation matrix and
each method’s correlation matrix for each pair of channels in the EEG dataset. Table 4 shows that
COSCI-GAN, in addition to giving better classification accuracy, provides the closest similarity in
inter-channel correlations to the real dataset.

4https://github.com/jsyoon0823/TimeGAN with license details therein
5https://github.com/ahmedmalaa/Fourier-flows with license details therein
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Figure 5: Accuracy for the Augmentation Experiment
Comparison with SOTA methods

Table 4: Similarity between
Correlation Matrices in EEG dataset

mean ± standard deviation

Method MAE

COSCI-GAN 0.111 ± 0.005
TimeGAN 0.257 ± 0.008

Fourier Flows 0.146 ± 0.006

In TimeGAN and Fourier Flows papers, a daily historical Google stocks dataset from 2004 to 2019
was used, and PCA[29] and t-SNE[30] plots were shown to compare their diversity in compare with
the real data. We repeated this experiment using data from TimeGAN repository 6, and showed that
COSCI-GAN samples were more diverse and distributed in a way that was more similar to the real
dataset distribution. The figures of this experiment are provided in the Supplementary Materials.

6 Discussion

In this paper, we introduced COSCI-GAN, a novel framework for multivariate time-series generation
that delivers more correlated channels. By preserving the correlation between channels, COSCI-
GAN is able to generate time-series that are more similar to the real time-series and achieve better
performance in downstream classification tasks than other state of the art methods.

We have shown that our framework is relevant for generating MTS from a common source and we
argue that it is particularly suited for human-based biometric measurements. In our experiments,
we have never had performance limitations, we foresee however, that COSCI-GAN will not scale
to a very large number of channels as a dedicated GAN for each channel is needed. However, this
issue is not exclusive to the COSCI-GAN method. It is a "computing resources" limitation for the
COSCI-GAN method, whereas it is a fundamentally intractable problem for the baseline and many
other methods. In addition, COSCI-GAN has the benefit of being parallelizable, which makes it
faster. On the other extreme, we have shown that COSCI-GAN is not competitive for two channels
where it often performed worse than a simple baseline.

It is worth re-iterating that synthetic data generation does not guarantee privacy and similarly, there
is no way to know in advance the performance on a downstream task so both characteristics should
be empirically evaluated post-generation. Outliers and minorities are often affected most by privacy
leaks as they do not get protected by a large number of similar data samples. We also acknowledge
that synthetic data generation can cause harm propagating and even magnifying bias from the data it
is based on.

As future work, our method could be extended to more practical use cases where the various channels
corresponds to different types of time series, e.g. heartbeats, temperature, respiration and wearable
measurements and so on. As another extension, we could consider having an initial noise embedding
(corresponding to several initial noises) that are all originated from a single source, in order to have
more control on each channel’s distribution. On the technical side, our framework can be implemented
with a wide variety of GANs chosen based on the data type including modern architectures such as
transformers. Additionally, as stated previously, Channel GANs could train in parallel, which would
accelerate the training process. The code we have provided is modular and its parallelized version
can be implemented in future.

6https://github.com/jsyoon0823/TimeGAN/blob/master/data/stock_data.csv
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