
A Additional Results of the Experiments

Figures 2–4 provide error bars (with mean values as horizontal curves and ± standard deviations as
vertical bars) for the numerical results reported in Tables 2–4.
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Figure 2: Comparison of our algorithms (‘fast’) vs. MOSEK on KL-divergence constrained ambiguity
sets, as shown in Table 2. Left: projection problem. Right: Bellman update.

100 125 150 175 200 225 250 275 300
S

102

103

Tim
e 

(m
s)

KL-divergence: Bellman Update
fast
f-o (3 its)
f-o (5 its)

Figure 3: Comparison of our algorithms (‘fast’) vs. the first-order method of [14] (after ℓ = 3, 5 its.)
for the Bellman update on KL-divergence constrained ambiguity sets, as shown in Table 3.

1000 1250 1500 1750 2000 2250 2500 2750 3000
S

10 1

100

101

102

Tim
e 

(m
s)

2-distance: Projection Problem
fast
MOSEK

100 125 150 175 200 225 250 275 300
S

101

102

103

Tim
e 

(m
s)

2-distance: Bellman Update
fast
MOSEK

Figure 4: Comparison of our algorithms (‘fast’) vs. MOSEK on χ2-distance constrained ambiguity
sets, as shown in Table 4. Left: projection problem. Right: Bellman update.
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B Proofs

The proof of Theorem 1 requires us to analyze the quantitative stability of the robust Bellman operator
J(v). To this end, we study the dual of problem (3’) on page 17, which the proof of Theorem 1 will
show to be equivalent to the robust value iteration (3):

maximize −κω + e⊤γ − ω
∑
a∈A

d⋆a

(
1

ω
[θa + γae− αa(rsa + λv)] ,psa

)
subject to α ∈ ∆A, ω ∈ R+, γ ∈ RA, θ ∈ RAS

+

(10)

Here, d⋆a(x,psa) := sup {psa
⊤x−da(psa,psa) : psa ∈ RS} denotes the conjugate of the deviation

function da(·,psa) in the definition (2) of the ambiguity set Ps, and the perspective function in (10)
extends to ω = 0 in the usual way [41, Corollary 8.5.2]. Note also that strong duality holds
between (3’) and (10) since problem (3’) affords a Slater point by assumption (K).

The proof of Theorem 1 relies on two auxiliary results, which we state and prove first.
Lemma 1. For any primal-dual pair p⋆

s ∈ RAS and (α⋆, ω⋆,γ⋆,θ⋆) ∈ RA × R × RA × RAS

satisfying the Karush-Kuhn-Tucker conditions for the problems (3’) and (10), we have that

ω⋆ ≤
max
a∈A

∥rsa + λv∥∞∑
a∈A

da(p
⋆
sa,psa)

,

where the right-hand side is interpreted as +∞ whenever the denominator is zero.

Proof of Lemma 1. Using the notational shorthand bsa = rsa + λv, the KKT conditions for (3’)
and (10) are:

αabsa − γae− θa + ω∇psa
da(psa,psa) = 0 ∀a ∈ A (Stationarity)

e⊤α = 1 (Stationarity)∑
a∈A

da(psa,psa) ≤ κ, psa
⊤bsa ≤ B ∀a ∈ A, ps ∈ (∆S)

A, B ∈ R (Primal Feasibility)

α ∈ RA
+, ω ∈ R+, γ ∈ RA, θ ∈ RAS

+ (Dual Feasibility)
αa(psa

⊤bsa −B) = 0 ∀a ∈ A (Complementary Slackness)

ω

(∑
a∈A

da(psa,psa)− κ

)
= 0 (Complementary Slackness)

θas′psas′ = 0 ∀a ∈ A, s′ ∈ S (Complementary Slackness)

Here, B ∈ R denotes the epigraphical variable used to linearize the objective function in (3’). The
proof is split into two parts. We first show that for every a ∈ A there is s′ ∈ S such that

da(psa,psa) ≤ psa
⊤∇psa

da(psa,psa)− [∇psa
da(psa,psa)]s′ . (11)

We next prove that for all s′ ∈ S and a ∈ A, we have

ω
(
psa

⊤∇psa
da(psa,psa)− [∇psa

da(psa,psa)]s′
)
≤ αabsas′ . (12)

Since ω ∈ R+ by the dual feasibility condition, (11) and (12) imply that for every a ∈ A there is
s′ ∈ S such that ωda(psa,psa) ≤ αabsas′ . From this we obtain that

ω
∑
a∈A

da(psa,psa) ≤
∑
a∈A

αa max
s′∈S
{bsas′} ≤ max

a∈A,s′∈S
{bsas′} ,

where the last inequality holds since e⊤α = 1 by the second stationarity condition. This proves the
statement of the lemma.

To show (11), we note that

da(psa,psa) +∇psa
da(psa,psa)

⊤(psa − psa) ≤ da(psa,psa) = 0

since da is convex by assumption (C) and da(psa,psa) = 0 by assumption (D). We thus have

da(psa,psa) ≤ psa
⊤∇psa

da(psa,psa)− psa
⊤∇psa

da(psa,psa),
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and the fact that psa ∈ ∆S implies that

da(psa,psa) ≤ psa
⊤∇psa

da(psa,psa)− min
s′∈S

[∇psa
da(psa,psa)]s′ ,

which is equivalent to (11).

We now prove (12). Aggregating the equations in the first stationarity condition according to the
weights psa ∈ ∆S shows that for all a ∈ A, we have

αapsa
⊤bsa − γae

⊤psa − psa
⊤θa + ωpsa

⊤∇psada(psa,psa) = 0

⇐⇒ γa = αapsa
⊤bsa + ωpsa

⊤∇psada(psa,psa) (13)

since the primal feasibility condition guarantees that e⊤psa = 1 and the last complementary slackness
condition ensures that psa

⊤θa = 0. However, the first stationarity condition also implies

αabsas′ − γa − θas′ + ω [∇psa
da(psa,psa)]s′ = 0 ∀a ∈ A, s′ ∈ S

⇐⇒ γa ≤ αabsas′ + ω [∇psa
da(psa,psa)]s′ ∀a ∈ A, s′ ∈ S (14)

since θas′ ≥ 0 due to the dual feasibility condition. Combining (13) and (14), finally, yields

αapsa
⊤bsa + ωpsa

⊤∇psada(psa,psa) ≤ αabsas′ + ω [∇psada(psa,psa)]s′ ∀a ∈ A, s′ ∈ S
⇐⇒ ω

(
psa

⊤∇psada(psa,psa)− [∇psada(psa,psa)]s′
)
≤ αabsas′ − αapsa

⊤bsa ∀a ∈ A, s′ ∈ S,

which implies (12) since αapsa
⊤bsa ≥ 0 as αa ≥ 0 by the dual feasibility condition, psa ≥ 0 by

the primal feasibility condition and bsa ≥ 0 by assumption.
Lemma 2. Let J(v;κ) be the robust Bellman iterate (3) with the budget κ > 0 in the ambiguity set P .
For any κ′ ≥ κ and any primal-dual pair p⋆

s ∈ RAS and (α⋆, ω⋆,γ⋆,θ⋆) ∈ RA × R× RA × RAS

satisfying the Karush-Kuhn-Tucker conditions for (3’) and (10) with budget κ, we have

∥J(v;κ)− J(v;κ′)∥∞ ≤
(κ′ − κ)max

a∈A
∥rsa + λv∥∞∑

a∈A
da(p

⋆
sa,psa)

,

where the right-hand side is interpreted as +∞ whenever the denominator is zero.

Proof of Lemma 2. Since κ′ ≥ κ, we have for fixed s ∈ S that

|[J(v;κ)]s − [J(v;κ′)]s| = [J(v;κ)]s − [J(v;κ′)]s ≤ ω⋆(κ′ − κ),

where ω⋆ belongs to any primal-dual pair p⋆
s ∈ RAS and (α⋆, ω⋆,γ,θ⋆) ∈ RA × R× RA × RAS

satisfying the KKT conditions of problems (3’) and (10). Indeed, since only the first term in the
objective function in (10) depends on κ, the solution (α⋆, ω⋆,γ,θ⋆) for the dual problem with budget
κ remains feasible (but is typically not optimal) for the dual problem with budget κ′, and its objective
value decreases by precisely ω⋆(κ′ − κ). The result now follows from Lemma 1.

Proof of Theorem 1. We compute an ϵ-optimal solution v′ to the robust Bellman iteration J(v)
component-wise. To this end, consider any component v′s, s ∈ S. We apply the classical min-max
theorem to equivalently reformulate the right-hand side of (3) as the optimal value of the optimization
problem

minimize max
a∈A

{
psa

⊤(rsa + λv)
}

subject to
∑
a∈A

da(psa,psa) ≤ κ

ps ∈ (∆S)
A.

(3’)

In this reformulation, we have replaced the inner maximization over πs ∈ ∆A with the maximization
over the extreme points of ∆A, which is allowed since the objective function is linear in πs.

We compute v′s through a bisection on the optimal value of problem (3’). To this end, we set
δ = ϵκ/[2AR+Aϵ]. We start the bisection with the lower and upper bounds v0s = Rs(v) and v0s = R,
respectively. Here, the lower bound satisfies Rs(v) = maxa∈A mins′∈S {rsas′ + λvs′}, and it
indeed constitutes a lower bound since the projection subproblem (5) is infeasible if θ = β < min{b}
which is set to be min{rsa + λv} for each a ∈ A. Likewise, the upper bound is valid as long as our
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robust Bellman iteration operates on (approximate) lower bounds of the value function, which can be
guaranteed, for example, by starting the robust Bellman iteration with the initial estimate v0 = 0. In
each iteration i = 0, 1, . . ., we consider the midpoint θ = (vis + vis)/2 and compute the generalized
da-projections P(psa; rsa + λv, θ), a ∈ A, to δ-accuracy, resulting in the action-wise lower and
upper bounds (da, da), respectively. When then update the interval bounds as follows:

(vi+1
s , vi+1

s )← (vis, θ) if
∑
a∈A

da ≤ κ,

(vi+1
s , vi+1

s )← (θ, vis) if
∑
a∈A

da > κ

We terminate the bisection once (i) vis − vis ≤ ϵ or (ii) κ ∈
[∑

a∈A da,
∑

a∈A da
)
, whichever

condition holds first. Note that both interval updates ensure that vi+1
s and vi+1

s remain valid bounds
since ∑

a∈A
da ≤ κ =⇒

∑
a∈A

P(psa; rsa + λv, θ) ≤ κ =⇒ [J(v)]s ≤ θ

as well as ∑
a∈A

da > κ =⇒
∑
a∈A

P(psa; rsa + λv, θ) > κ =⇒ [J(v)]s > θ,

where the respective second implications hold since∑
a∈A

P(psa; rsa + λv, θ) ≤ κ

⇐⇒
∑
a∈A

min
{
da(psa,psa) : psa ∈ ∆S , psa

⊤(rsa + λv) ≤ θ
}
≤ κ

⇐⇒ ∃ps ∈ (∆S)
A :

∑
a∈A

da(psa,psa) ≤ κ and psa
⊤(rsa + λv) ≤ θ ∀a ∈ A,

and the latter is the case if and only if the optimal value of problem (3’) does not exceed θ, that is, if
and only if [J(v)]s ≤ θ for some θ ∈ R.

At termination, in case (i) we have vis − vis ≤ ϵ, which implies that θ = (vis + vis)/2 is an ϵ-optimal
solution to [J(v)]s. If case (ii) is satisfied at termination, on the other hand, then∑
a∈A

da ≤ κ <
∑
a∈A

da =⇒
∑
a∈A

P(psa; rsa+λv, θ)−Aδ ≤ κ <
∑
a∈A

P(psa; rsa+λv, θ)+Aδ,

in which case θ = (vis+vis)/2 is an exact optimal solution to the variant [J(v;κ′)]s of the robust value
iteration (3) where the budget κ in the ambiguity set is replaced with some κ′ ∈ [κ−Aδ, κ+Aδ].
In this case, we have that∣∣θ − [J(v)]s

∣∣ ≤ [J(v;κ−Aδ)]s − [J(v;κ+Aδ)]s ≤ ϵ,

where the first inequality follows from the monotonicity of J(v; ·) in its second argument, and the
second inequality holds because of the following argument. If the constraint

∑
a∈A da(psa,psa) ≤

κ−Aδ in problem (3’) is not binding at optimality, then [J(v;κ−Aδ)]s− [J(v;κ+Aδ)]s = 0 < ϵ.
On the other hand, if the constraint

∑
a∈A da(psa,psa) ≤ κ − Aδ in problem (3’) is binding at

optimality, then by applying Lemma 2 in the appendix and using our definition of δ and the fact that
∥rsa + λv∥∞ ≤ R, we have

[J(v;κ−Aδ)]s − [J(v;κ+Aδ)]s ≤
2Aδmax

a∈A
∥rsa + λv∥∞

κ−Aδ
≤ ϵ.

One readily verifies that at most O(log[R/ϵ]) iterations of complexity O(A · h(δ)) are executed in
each of the S bisections, which concludes the proof.

Proof of Proposition 1. For the deviation measure from the statement of this proposition, problem (5)
becomes

minimize
∑
s′∈S

psas′ · ϕ
(
psas′

psas′

)
subject to b⊤psa ≤ β

psa ∈ ∆S .

(15)
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The Lagrange dual function associated with this problem is

g(α, ζ) = inf

{∑
s′∈S

psas′ · ϕ
(
psas′

psas′

)
+ α(b⊤psa − β) + ζ(1− e⊤psa) : psa ∈ RS

+

}
,

where α ∈ R+ and ζ ∈ R. Rearranging terms, we observe that

g(α, ζ) = −βα+ ζ −
∑
s′∈S

psas′ · sup
{
psas′

psas′
· (−αbs′ + ζ)− ϕ

(
psas′

psas′

)
: psas′ ∈ R+

}
,

and the suprema inside this expression coincide with the convex conjugates ϕ⋆(−αbs′ + ζ), s′ ∈ S.
The resulting optimization problem (6) is convex since the conjugates are convex. Moreover, since
min{b} ≤ β by assumption, problem (15) affords a feasible solution, and the linearity of the
constraints implies that this solution constitutes a Slater point. We thus conclude that strong duality
holds between (6) and (15), that is, their optimal objective values indeed coincide.

Proof of Proposition 2. Plugging the convex conjugate ϕ⋆(y) = ey − 1 of the KL divergence into
the bivariate optimization problem (6), we obtain

maximize −βα+ ζ −
∑
s′∈S

psas′
(
e−αbs′+ζ − 1

)
subject to α ∈ R+, ζ ∈ R.

By rearranging terms, the objective function can be expressed as

1− βα+ ζ − eζ

(∑
s′∈S

psas′ · e−αbs′

)
, (16)

and the first-order optimality condition shows that for fixed α ∈ R+, the function is maximized by

1− eζ
⋆

(∑
s′∈S

psas′ · e−αbs′

)
= 0 ⇐⇒ ζ⋆ = − log

(∑
s′∈S

psas′ · e−αbs′

)
.

Substituting ζ⋆ in (16), we obtain problem (7) as postulated.

Proof of Theorem 2. We prove the statement in three steps. Step 1 shows that the optimal solution
α⋆ to (7) is lower and upper bounded by α0 = 0 and α0 = log

(
1

min{p}

)
· 1
β−min{b} , respectively.

Note that α0 is finite due to the assumed strict positivity of min{p} and β −min{b}. Step 2 derives
a global upper bound on the derivative of f(α), which we henceforth use to denote of the objective
function of problem (7). In conjunction with the concavity of f , this will allow us to bound the
maximum objective function value over any interval [α, α] ⊆ R+. Step 3, finally, employs a bisection
search to solve (7) to δ-accuracy in the stated complexity.

As for the first step, the validity of the lower bound α0 follows directly from the non-negativity
constraint in (7). In view of the upper bound α0, we note that

α0 = log

(
1

min{p}

)
· 1

β −min{b}
⇐⇒ min{p} · eα

0(β−min{b}) = 1

=⇒
∑
s′∈S

psas′ · eα
0(β−bs′ ) ≥ 1

⇐⇒
∑
s′∈S

psas′ · e−α0bs′ ≥ e−βα0

⇐⇒ log

(∑
s′∈S

psas′ · e−α0bs′

)
≥ −βα0

⇐⇒ f(α0) ≤ 0.

Since f(0) = 0 and f(α0) ≤ 0 while at the same time α0 > 0, we conclude from the concavity of f
that α0 is indeed a valid upper bound on the maximizer of problem (7).
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In view of the second step, we observe that

f ′(α) ≤ f ′(0) =

∑
s′∈S psas′ · bs′∑

s′∈S psas′
− β ≤ p⊤

sab ≤ max{b} ∀α ∈ R+,

where the first inequality follows from the concavity of f and the other two inequalities hold since
psa ∈ ∆S . The concavity of f(α) then implies that for any α ∈ [α, α] ⊂ R+, we have

f(α) ≤ f(α) ≤ f(α) + f ′(α) · (α− α) ≤ f(α) + max{b} · (α− α).

Thus, if we find α, α sufficiently close such that α⋆ ∈ [α, α], then we can closely bound the optimal
objective value of problem (7) from below and above by f(α) and f(α) + max{b} · (α − α),
respectively.

As for the third step, finally, we bisect on α by starting with the initial bounds (α0, α0), halving the
length of the interval [αi, αi] in each iteration i = 0, 1, . . . by verifying whether f ′([αi + αi]/2) is
positive and terminating once αi − αi ≤ δ/max{b}. Since β −min{b} ≥ ω, we have

α0 − α0 = log

(
1

min{p}

)
· 1

β −min{b}
≤ 1

ω
· log

(
1

min{p}

)
,

and thus the length of the interval no longer exceeds δ/max{b} once the iteration number i satisfies

2−i · (α0 − α0) ≤ δ

max{b}
⇐= 2−i · 1

ω
· log

(
1

min{p}

)
≤ δ

max{b}

⇐⇒ i ≥ log2

(
max{b} · log(min{p}−1)

δω

)
,

that is, after O(log[max{b} · log(min{p}−1)/(δω)]) iterations. The interval [f(αi), f(αi)] then
provides the δ-accurate solution to the projection problem (5). The statement now follows from the
fact that evaluating the derivative f ′([αi + αi]/2) in each bisection step takes time O(S).
Remark 1. The proposed lower and upper bounds in Theorem 2 are tight up to constant factor. Indeed,
consider the example where S = 2 and A = 1 with β = 1.5, b = [1 2]⊤ and p = [P (1− P )]⊤ for
P ∈ (0, 0.5). Then the objective function in problem (7) is

−1.5α− log
(
P · e−α + (1− P ) · e−2α

)
.

The above problem satisfies the setting in Theorem 2 since min{b} = min{1, 2} < 1.5 = β. We
search for α that satisfies the first order condition:

−1.5− (−1) · P · e−α + (−2) · (1− P ) · e−2α

P · e−α + (1− P ) · e−2α
= 0

⇐⇒ P · e−α + 2 · (1− P ) · e−2α = 1.5 ·
(
P · e−α + (1− P ) · e−2α

)
⇐⇒ 0.5 · (1− P ) · e−2α = 0.5 · P · e−α

⇐⇒ 1− P

P
= eα

⇐⇒ α = log

(
1− P

P

)
.

We thus have α⋆ = O(log(1/P )), that is, the upper bound on α⋆ should be at least O(log(1/P )),
when P → 0.

Proof of Corollary 1. The proof of Theorem 1 employs an outer bisection over θ that requires
for each (s, a) ∈ S ×A the repeated solution of the projection problem (7) with b = rsa + λv and
β = θ ∈ [Rs(v) +

ϵ
2 , R−

ϵ
2 ] (since the outer bisection is stopped when the interval length no longer

exceeds ϵ) to an accuracy of δ = ϵκ/[2AR+Aϵ]. In that case, for each (s, a) ∈ S ×A we have

β −min{b} ≥ Rs(v) +
ϵ

2
−min{rsa + λv}

= max
a∈A

min
s′∈S
{rsas′ + λvs′}+

ϵ

2
−min

a∈A
min
s′∈S
{rsas′ + λvs′} ≥

ϵ

2
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and max{b} ≤ R. Plugging those estimates into the statement of Theorem 2, we see that the
projection problem (7) is solved in time

h(ϵκ/[2AR+Aϵ]) = O(S · log[AR
2 · log(min{p}−1)/(ϵ2κ)]).

Combining this estimate with the complexityO(AS ·h(ϵκ/[2AR+Aϵ]) · log[R/ϵ]) from Theorem 1,
we obtain

O(AS · S · log[AR
2 · log(min{p}−1)/(ϵ2κ)] · log[R/ϵ]),

and a reordering of terms proves the statement of the corollary.

Proof of Proposition 3. Plugging the convex conjugate ϕ⋆(y) = − log(1− y) of the Burg entropy
into the bivariate optimization problem (6), we obtain

maximize −βα+ ζ +
∑
s′∈S

psas′ · log(1 + αbs′ − ζ)

subject to 1 + αmin{b} ≥ ζ
α ∈ R+, ζ ∈ R.

(17)

Here, the first constraint ensures that the logarithms in the objective function are well-defined (as
usual, we assume that log 0 = −∞). Unlike the proof of Proposition 2, the first-order optimality
condition of this problem’s objective function does not lend itself to extracting the optimal value of ζ .
Instead, we consider the Karush-Kuhn-Tucker conditions for problem (17), which are:∑

s′∈S
psas′ ·

bs′

1 + αbs′ − ζ
= β − ηmin{b} − γ (Stationarity)∑

s′∈S
psas′ ·

1

1 + αbs′ − ζ
= 1− η (Stationarity)

1 + αmin{b} − ζ ≥ 0, α ∈ R+, ζ ∈ R (Primal Feasibility)
η, γ ∈ R+ (Dual Feasibility)
η(1 + αmin{b} − ζ) = 0, αγ = 0 (Complementary Slackness)

The optimal value of problem (17) is non-negative since (α, ζ) = 0 satisfies the constraints of (17).
Hence, complementary slackness implies that η⋆ = 0, as otherwise 1 + α⋆ min{b} − ζ⋆ = 0 would
imply that the optimal objective value of problem (17) was −∞. Multiplying the first stationarity
condition with α⋆ and the second one with 1− ζ⋆ and summing up then yields

α⋆

(∑
s′∈S

psas′ ·
bs′

1 + α⋆bs′ − ζ⋆

)
+ (1− ζ⋆)

(∑
s′∈S

psas′ ·
1

1 + α⋆bs′ − ζ⋆

)
= α⋆(β − γ⋆) + (1− ζ⋆)

⇐⇒
∑
s′∈S

psas′ ·
1 + α⋆bs′ − ζ⋆

1 + α⋆bs′ − ζ⋆
= α⋆(β − γ⋆) + (1− ζ⋆) ⇐⇒ ζ⋆ = α⋆β,

where the right-hand side of the first line exploits the fact that η⋆ = 0 and the last equivalence uses
complementary slackness to replace α⋆γ⋆ with 0. The result now follows from substituting ζ⋆ with
α⋆β in problem (17) and rescaling α via α← (β −min{b})α.

Proof of Theorem 3. Similar to the proof of Theorem 2, we show the statement in three steps.
Step 1 argues that f(α), which we henceforth use to denote of the objective function of problem (8),
is well-defined and continuously differentiable on the half-open interval α ∈ [0, 1) with a positive
derivative at 0 and a negative derivative close to 1, respectively. This ensures that the optimum is
attained on the open interval α ∈ (0, 1). Step 2 derives a global upper bound on f ′(α), which will
allow us to bound the maximum objective function value over any interval [a, α] ⊆ R+ due to the
concavity of f . Step 3, finally, employs a bisection search to solve (8) to δ-accuracy in the stated
complexity.

In view of the first step, we note that for α ∈ [0, 1) we have

(1− α)(β −min{b}) > 0 ⇐⇒ β −min{b}+ α(min{b} − β) > 0
=⇒ β −min{b}+ α(bs′ − β) > 0 ∀s′ ∈ S
⇐⇒ 1 + α

bs′ − β

β −min{b}
> 0 ∀s′ ∈ S,
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and thus the expression inside the logarithm of f(α) is strictly positive for all s′ ∈ S. Here, the first
inequality holds by assumption, and the last equivalence follows from a division by β −min{b},
which is strictly positive by assumption. We then observe that for α ∈ [0, 1), we have

f ′(α) =
∑
s′∈S

psas′

[(
1 + α

bs′ − β

β −min{b}

)−1

· bs′ − β

β −min{b}

]
=

∑
s′∈S

psas′

[
bs′ − β

β −min{b}+ α(bs′ − β)

]
.

In particular, we have f ′(0) = (psa
⊤b − β)/(β − min{b}), which is positive since β ∈(

min{b}, psa
⊤b
)

by assumption. (Recall that the projection problem is trivial if psa
⊤b ≤ β.)

For α ↑ 1, on the other hand, the fractions in f ′(α) corresponding to the indices s′ ∈ S with
bs′ = min{b} evaluate to 1/(α− 1) −→ −∞, whereas the other fractions evaluate to

bs′ − β

(β −min{b})(1− α) + α(bs′ −min{b})
−→ bs′ − β

α(bs′ −min{b})
and thus remain finite. In conclusion, we have f ′(α) < 0 for α near 1.

As for the second step, we observe that

f ′(α) ≤ f ′(0) =
psa

⊤b− β

β −min{b}
≤ max{b}

β −min{b}
≤ max{b}

ω
,

where the inequalities follow from the concavity of f , the fact that psa ∈ ∆S as well as β ≥ 0,
and because β −min{b} ≥ ω, respectively. Similar arguments as in the proof of Theorem 2 then
allow us to closely bound the optimal value of problem (8) from below and above by f(α) and
f(α) + f ′(α) + (max{b}/ω) · (α− α), respectively, whenever α⋆ ∈ [α, α].

In view of the third step, finally, we bisect on α by starting with the initial bounds (α0, α0) =
(0, 1), halving the length of the interval [αi, αi] in each iteration i = 0, 1, . . . by verifying whether
f ′([αi + αi]/2) is positive and terminating once αi − αi ≤ δω/max{b}. Similar arguments as
in the proof of Theorem 2 show that this is the case after O(log[max{b}/(δω)]) iterations. The
statement now follows since evaluating the derivative f ′([αi + αi]/2) in each bisection step takes
time O(S).
Proof of Corollary 2. The proof of Theorem 1 employs an outer bisection over θ that requires
for each (s, a) ∈ S ×A the repeated solution of the projection problem (7) with b = rsa + λv and
β = θ ∈ [Rs(v) +

ϵ
2 , R−

ϵ
2 ] (since the outer bisection is stopped when the interval length no longer

exceeds ϵ) to an accuracy of δ = ϵκ/[2AR + Aϵ]. In that case, for each (s, a) ∈ S × A we have
max{b} ≤ R. Plugging this estimate into the statement of Theorem 3, we see that the projection
problem (8) is solved in time

h(ϵκ/[2AR+Aϵ]) = O(S · log[AR
2
/(ϵ2κ)]).

Combining this estimate with the complexityO(AS ·h(ϵκ/[2AR+Aϵ]) · log[R/ϵ]) from Theorem 1,
we obtain

O(AS · S · log[AR
2
/(ϵ2κ)] · log[R/ϵ]),

and a reordering of terms proves the statement of the corollary.

Proof of Proposition 4. Plugging in the definition of ϕ⋆(y), see Table 1, results in the following
variant of problem (6):

maximize −βα+ ζ −
∑
s′∈S

psas′ ·max {−1, −αbs′ + ζ}

subject to ζ ≤ 1 + αbs′ ∀s′ ∈ S
α ∈ R+, ζ ∈ R

Note that the constraints are equivalent to ζ ≤ 1 + αmin{b}. The above objective function is
piecewise linear in ζ with coefficients that are all non-negative. Thus, ζ⋆ = 1 + αmin{b}. In this
case, the problem simplifies to the problem in the statement of the proposition.

Proof of Theorem 4. There must be an optimal solution to this problem that is attained at

α⋆ ∈ {0} ∪
{

2

bs′ −min{b}
: s′ ∈ S

}
.

22



Since the objective function is concave in α, we can identify an optimal solution inO(logS) iterations
via a trisection search. Each evaluation requires time O(S), thus resulting in an overall complexity of
O(S logS) as claimed.

Proof of Corollary 3. Combining the estimate O(S logS) from Theorem 4 with the complexity
O(AS · h(ϵκ/[2AR+Aϵ]) · log[R/ϵ]) from Theorem 1, we obtain

O(AS · S logS · log[R/ϵ]),

and a reordering of terms proves the statement of the corollary.

Proof of Theorem 5. To solve this problem, we sort the components of b so that the associated
expressions {−αbs + ζ}Ss=1 are monotonically non-decreasing (that is, {bs}Ss=1 are monotonically
non-increasing). For each Ŝ = 0, 1, 2, . . . , S, we can then consider the subproblem

maximize −βα+ ζ +

Ŝ∑
s′=1

psas′ −
S∑

s′=Ŝ+1

psas′ ·
(
(−αbs′ + ζ) +

(−αbs′ + ζ)2

4

)
subject to −αbs′ + ζ ≤ −2 ∀s′ = 0, . . . Ŝ

−αbs′ + ζ ≥ −2 ∀s′ = Ŝ + 1, . . . S
α ∈ R+, ζ ∈ R,

which due to the monotonically non-decreasing ordering of {−αbs + ζ}Ss=1 is equivalent to

maximize −βα+ ζ +

Ŝ∑
s′=1

psas′ −
S∑

s′=Ŝ+1

psas′ ·
(
(−αbs′ + ζ) +

(−αbs′ + ζ)2

4

)
subject to −αbŜ + ζ ≤ −2

−αbŜ+1 + ζ ≥ −2
α ∈ R+, ζ ∈ R.

(18)
The objective function of (18) can be re-expressed as Ŝ∑

s′=1

psas′

−βα+ζ+

 S∑
s′=Ŝ+1

bs′psas′

α−

 S∑
s′=Ŝ+1

psas′

 ζ−

1

4

S∑
s′=Ŝ+1

b2s′psas′

α2

+

1

2

S∑
s′=Ŝ+1

bs′psas′

αζ −

1

4

S∑
s′=Ŝ+1

psas′

 ζ2.

Recall that for a fixed value of α, the constraints of (18) impose that −2 + αbŜ+1 ≤ ζ ≤ −2 + αbŜ .
Therefore, for any fixed α, problem (18) reduces to a convex quadratic optimization problem with
one-dimensional box constraints. One can readily verify that this problem is solved by

ζ⋆ =



−2 + αbŜ+1 if
2
∑Ŝ

s′=1
psas′+

(∑S
s′=Ŝ+1

bs′psas′
)
α(∑S

s′=Ŝ+1
psas′

) ≤ −2 + αbŜ+1

−2 + αbŜ if − 2 + αbŜ ≤
2
∑Ŝ

s′=1
psas′+

(∑S
s′=Ŝ+1

bs′psas′
)
α(∑S

s′=Ŝ+1
psas′

)
2
∑Ŝ

s′=1 psas′ +
(∑S

s′=Ŝ+1 bs′psas′
)
α(∑S

s′=Ŝ+1 psas′
) otherwise.

We can consider each case separately. In the first case, we restrict the domain of α so that ζ⋆ =
−2 + αbŜ+1, and problem (18) reduces to

maximize −βα+ (−2 + αbŜ+1) +

Ŝ∑
s′=1

psas′ −
S∑

s′=Ŝ+1

psas′ ·

(
(−αbs′ − 2 + αbŜ+1) +

(−αbs′ − 2 + αbŜ+1)
2

4

)

subject to
2
∑Ŝ

s′=1 psas′ +
(∑S

s′=Ŝ+1 bs′psas′
)
α(∑S

s′=Ŝ+1 psas′
) ≤ −2 + αbŜ+1

α ∈ R+.
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Note that the constraint in this problem is equivalent to

2
∑Ŝ

s′=1 psas′ +
(∑S

s′=Ŝ+1 bs′psas′
)
α(∑S

s′=Ŝ+1 psas′
) ≤ −2 + αbŜ+1

⇐⇒ 2

Ŝ∑
s′=1

psas′ +

 S∑
s′=Ŝ+1

bs′psas′

α ≤
(
−2 + αbŜ+1

) S∑
s′=Ŝ+1

psas′


⇐⇒ 2 ≤

 S∑
s′=Ŝ+1

(bŜ+1 − bs′)psas′

α

⇐⇒ 2

 S∑
s′=Ŝ+1

(bŜ+1 − bs′)psas′

−1

≤ α

Here, the last equivalence holds since the components of b are sorted and
∑S

s′=Ŝ+1(bŜ+1 −
bs′)psas′ ≥ 0. We have thus reduced the problem to a one-dimensional convex quadratic program
with a box constraint, whose closed-form solution can be computed in O(1). Similar formulations
can be derived for the other two cases of ζ⋆.

In summary, the overall complexity is O(S logS) due to the sorting of the components of b, while
each of the O(S) subproblems can be solved in constant time O(1).
Proof of Corollary 4. The proof follows the same arguments as the proof of Corollary 3 and is
therefore omitted.

24


	Additional Results of the Experiments
	Proofs

