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Abstract

In risk-averse reinforcement learning (RL), the goal is to optimize some risk mea-
sure of the returns. A risk measure often focuses on the worst returns out of the
agent’s experience. As a result, standard methods for risk-averse RL often ignore
high-return strategies. We prove that under certain conditions this inevitably leads
to a local-optimum barrier, and propose a mechanism we call soft risk to bypass
it. We also devise a novel cross entropy module for sampling, which (1) preserves
risk aversion despite the soft risk; (2) independently improves sample efficiency.
By separating the risk aversion of the sampler and the optimizer, we can sample
episodes with poor conditions, yet optimize with respect to successful strategies.
We combine these two concepts in CeSoR – Cross-entropy Soft-Risk optimization
algorithm – which can be applied on top of any risk-averse policy gradient (PG)
method. We demonstrate improved risk aversion in maze navigation, autonomous
driving, and resource allocation benchmarks, including in scenarios where stan-
dard risk-averse PG completely fails. Our results and CeSoR implementation are
available on Github. The stand-alone cross entropy module is available on PyPI.

1 Introduction

Risk-averse reinforcement learning (RL) is important for high-stake applications, such as driv-
ing, robotic surgery, and finance [Vittori et al., 2020]. In contrast to risk-neutral RL, it optimizes
a risk measure of the return random variable, rather than its expectation. A popular risk mea-
sure is the Conditional Value at Risk (CVaR), defined as CVaRα(R) = E [R |R ≤ qα(R)], where
qα(R) = inf{x |FR(x) ≥ α} is the α-quantile of the random variable R and FR is its CDF. Intu-
itively, CVaR measures the expected return below a specific quantile α, also termed the risk level.
CVaR optimization is widely researched in the RL community, e.g., using adjusted policy gradient
approaches (CVaR-PG) [Tamar et al., 2015b, Hiraoka et al., 2019]. In addition, CVaR is a coherent
risk measure, and its optimization is equivalent to a robust optimization problem [Chow et al., 2015].

Since risk-averse RL aims to avoid the hazardous parts of the environment (e.g., dangerous areas
in navigation), CVaR-PG algorithms typically sample a batch of N trajectories (episodes), and then
optimize w.r.t. the mean of the αN trajectories with worst returns [Tamar et al., 2015b, Rajeswaran
et al., 2017]. This approach suffers from two major drawbacks: (i) 1− α of the batch is wasted and
excluded from the optimization (where often 0.01 ≤ α ≤ 0.05), leading to sample inefficiency; (ii)
focusing on the worst episodes inherently overlooks good agent strategies corresponding to high
returns – a phenomenon we refer to as the blindness to success.

An illustrative example – the Guarded Maze: Consider the Guarded Maze benchmark (visualized
in Figure 1d). The goal is to reach the target zone (a constant location marked in green), resulting in
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(a) Guarded Maze (b) Driving Game (c) Servers Allocation

(d) CeSoR learns to avoid the risk
(red) and take the long path to
the target (green), whereas GCVaR
fails due to blindness to success.

(e) CeSoR maintains a safe margin
from the leader, while PG has an
accident and GCVaR maintains a
too conservative distance.

(f) CeSoR handles the exceptional
peak in user-requests without pay-
ing for as many servers as GCVaR,
while PG fails to handle the peak.

Figure 1: Over 3 benchmarks, test results of 3 agents: risk-neutral PG, standard CVaR-PG (GCVaR, Tamar
et al. [2015b]), and our CeSoR. Top: the lower quantiles of the returns distributions. Bottom: sample episodes.

a reward of 16 points. However, the guarded zone (in red) may be watched by a guard who demands
a payment from any agent that passes by. Every episode, the probability that a guard is present is
ϕ1 = 20%, and the payment is exponentially-distributed with average ϕ2 = 32. That is, the cost of
crossing the guarded zone in a certain episode is C = C1 ·C2, where C1 ∼ Ber(ϕ1), C2 ∼ Exp(ϕ2)
are independent and unknown to the agent. The agent starts at a random point at the lower half, and
every time-step, observing its location, it selects an action: left, right, up or down, with an additive
control noise. One point is deducted per step, up to 32 deductions.

In this maze, the shortest path maximizes the average return; yet, the longer path is CVaR-optimal,
since sometimes short cuts make long delays [Tolkien, 1954]. However, the standard CVaR-PG
optimizer (GCVaR in Figure 1) suffers from blindness to success: in a batch of N random episodes,
the worst αN returns (e.g., for α = 5%) usually correspond to either encountering a guard in the
short path, or not reaching the goal at all. Hence, the desired long path is never even observed by the
CVaR-PG optimizer, and cannot be learned.

Our key insight is that the variation in returns comes from both environment conditions (epistemic
uncertainty) and agent actions (aleatoric uncertainty). We wish to focus on the low quantiles w.r.t. the
conditions (e.g., a costly guard in the short path of the maze), yet to be exposed to the high quantiles
w.r.t. the strategies (e.g., taking the long path in the maze). To that end, we devise two mechanisms:
first, we use a soft risk-level scheduling method, which begins the training with risk neutrality α′ = 1,
and gradually shifts the risk aversion to α′ = α. Second, we present a novel dynamic-target version
of the Cross Entropy method (CE or CEM) [de Boer et al., 2005], aiming to sample the worst parts of
the environment. That is, the CEM samples trajectories with more challenging or riskier conditions,
and the soft risk feeds a larger part of them (α′ ≥ α) to the CVaR-PG optimizer. Together, these
constitute the Cross-entropy method for Soft-Risk optimization (CeSoR). CeSoR can be applied on
top of any CVaR-PG method to learn any differentiable model (e.g., a neural network).

To apply the CEM, we assume to have certain control over the environment conditions. For example,
in driving we may choose the roads for collecting training data, or in any simulation we may control
the environment parameters (e.g., ϕ1, ϕ2 in the Guarded Maze). Note that (i) only the CE sampler
(not the agent) is aware of the conditions; (ii) their underlying effect is unknown to the sampler and
may vary with the agent throughout the training, hence the CEM needs to learn it adaptively.

Contribution: We present the following contribution for PG algorithms under risk-sensitive MDP
problems (as defined in Section 2):
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1. We analyze the phenomenon of blindness to success in the standard CVaR-PG, and show
that it leads to a local-optimum barrier in certain environments (Section 3.1).

2. We analyze the potential increase in sample efficiency – if we could sample directly from
the tail of the returns distribution (Section 3.2).

3. We introduce the CeSoR algorithm (Section 4), which modifies any CVaR-PG method with:
(i) a soft risk mechanism preventing blindness to success; (ii) a novel dynamic-CE method
that over-samples the riskier realizations of the environment, increasing sample efficiency.

4. We demonstrate the effectiveness of CeSoR in 3 risk-sensitive domains (Section 5), where it
learns faster and achieves higher returns (both CVaR and mean) than the baseline CVaR-PG.

1.1 Related Work

Optimizing risk in RL is crucial to enforce safety in decision-making [García and Fernández, 2015,
Paduraru et al., 2021]. It has been long studied through various risk criteria, e.g., mean-variance [Sato
et al., 2001, Prashanth and Ghavamzadeh, 2013, 2016, Xie et al., 2018], entropic risk measure [Borkar
and Meyn, 2002, Borkar and Jain, 2014, Fei et al., 2021] and distortion risk measures [Vijayan and
Prashanth, 2021]. Tamar et al. [2015a] derived a PG method for general coherent risk measures,
given their risk-envelope representation.

The CVaR risk measure specifically was studied using value iteration [Chow et al., 2015] and
distributional RL [Dabney et al., 2018a, Tang et al., 2019, Bodnar et al., 2020] (also discussed in
Appendix H). CVaR optimization was also shown equivalent to mean optimization under robustness
[Chow et al., 2015], motivating robust-RL methods [Pinto et al., 2017, Godbout et al., 2021]. Yet, PG
remains the most popular approach for CVaR optimization in RL [Tamar et al., 2015b, Rajeswaran
et al., 2017, Hiraoka et al., 2019, Huang et al., 2021b], and can be flexibly applied to a variety of
use-cases, e.g., mixed mean-CVaR criteria [Chow and Ghavamzadeh, 2014] and multi-agent problems
[Qiu et al., 2021].

Optimizing the CVaR for risk levels α≪ 1 poses a significant sample efficiency challenge, as only a
small portion of the agent’s experience is used to optimize its policy [Curi et al., 2020]. Keramati et al.
[2020] used an exploration-based approach to address the sample efficiency. Pessimistic sampling for
improved sample efficiency was suggested heuristically by Tamar et al. [2015b] using a dedicated
value function, but no systematic method was suggested to direct the pessimism level. In this work, we
use the CEM to control the sampled episodes around the desired risk level α, and demonstrate CVaR
optimization for as extreme levels as α = 1%. Note that unlike other CE-optimizers in RL [Mannor
et al., 2003, Huang et al., 2021c], we use the CEM for sampling, to support a gradient-based optimizer.

2 Problem Formulation

Consider a Markov Decision Process (MDP) (S,A, P, γ, P0), corresponding to states, actions, state-
transition and reward distribution, discount factor, and initial state distribution, respectively. For any
policy parameter θ ∈ Rn, we denote by πθ the parameterized policy that maps a state to a probability
distribution over actions. Given a state-action-reward trajectory τ = {(st, at, rt)}Tt=0, the trajectory
total return is denoted by R(τ) =

∑T
t=0 γ

trt. The expected return of a policy πθ is defined as
J(πθ) = Eτ∼Pπθ [R(τ)] , (1)

where Pπθ (τ) = P0(s0)
∏T−1

t=0 P (st+1, rt|st, at)πθ(at|st) is the probability distribution of τ in-
duced by πθ. Under the risk-neutral objective, the PG method uses the gradient ∇θJ(πθ) to learn
θ, aiming to increase the probability of actions that lead to higher returns. In contrast, CVaR-PG
methods aim to optimize the risk-averse CVaRα objective (w.r.t. a given risk level α):

Jα(πθ) = Eτ∼Pπθ [R(τ) |R(τ) ≤ qα(R|πθ)] , (2)
where qα(R|πθ) is the α-quantile of the return random variable of policy πθ. Thus, CVaR-PG
algorithms aim to improve the actions specifically for episodes whose returns are lower than qα(R|πθ).
Specifically, given a batch of N trajectories {τi}Ni=1 whose empirical return quantile is q̂α =
q̂α({R(τi)}Ni=1), the CVaR gradient estimation is given by [Tamar et al., 2015b]:

∇θĴα({τi}Ni=1; πθ) =
1

αN

N∑
i=1

wi · 111R(τi)≤q̂α (R(τi)− q̂α)

T∑
t=0

∇θ log πθ(ai,t; si,t), (3)
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where wi = Pπθ (τi)/f(τi |πθ) is the importance sampling (IS) correction factor for τi, if τi is
sampled from a distribution f ̸= Pπθ . Specifically, as discussed below, we modify the sample
distribution using the cross entropy method over a context-MDP formulation of the environment.

Context-MDP: As mentioned above, we aim to focus on high-risk environment conditions. To
discuss the notion of conditions, given a standard MDP, we extend its formulation to a Context-MDP
(C-MDP) [Hallak et al., 2015], where the context is a set of variables that capture (part or all of)
the randomness of the original MDP. We define the extension as (S,A, C, PC , γ, P0, Dϕ0), where
C ∈ C is sampled from the context space C according to the distribution Dϕ0 parameterized by
ϕ0, and PC(·) = P (·|C) is the transition and reward distribution conditioned on C. In a C-MDP,
a context-trajectory pair is sampled from the distribution Pπθ

ϕ0
(C, τ) = Dϕ0

(C)Pπθ

C (τ), where

Pπθ

C (τ) = P0(s0)
∏T−1

t=0 PC(st+1, rt|st, at)πθ(at|st). The mean and CVaRα objectives J(πθ),
Jα(πθ) in Equations (1) and (2) are naturally generalized to C-MDP using the distribution Pπθ

ϕ0
(C, τ).

Once we extend an MDP into a C-MDP, we can learn how to modify the context-distribution
parameter ϕ to sample high-risk contexts and trajectories, focusing the training on high-risk parts
of the environment and thus improving sample efficiency. For this, we assume that certain aspects
of the training environment (represented by C) can be controlled. This assumption indeed holds in
many practical applications – in both simulated and physical environments. For example, consider a
data collection procedure for a self-driving agent training, which by default samples all driving hours
uniformly: C ∼ U([0, 24)). As the hour may affect traffic and driving patterns, a risk-averse driver
would prefer to sample more experience in high-risk hours. To that end, we could re-parameterize
the uniform distribution as, say, Beta(ϕ) with ϕ0 = (1, 1) (note that Beta(1, 1) is the uniform
distribution), learn the high-risk hours, and modify ϕ to over-sample them. As another example, in
the Guarded Maze described above, we can control the parameters ϕ1, ϕ2 of the simulation.

3 Limitations of CVaR-PG

Consider the standard CVaR-PG algorithm, which relies on Equation (3) to apply PG for maximization
of Jα(πθ) of (2). In this section, we analyze two major limitations of this algorithm. Section 3.1
analyzes the blindness to success phenomenon, which may bring CVaR-PG learning to a local-
optimum deadlock. This will motivate the soft-risk scheduling in Section 4. Section 3.2 analyzes the
potential increase in sample efficiency when the environmental context is sampled in correspondence
to the tail of the returns distribution. This will motivate the cross-entropy sampler in Section 4.

While the analysis focuses on CVaR-PG methods, Appendix H discusses Distributional RL algorithms
for CVaR optimization, and demonstrates that similar limitations apply to these methods as well.

3.1 Blindness to Success

We formally analyze how the blindness to success phenomenon can bring the policy learning to a
local-optimum deadlock by ignoring successful agent strategies.

Recall the α-quantile of a return distribution qπα = min{r |FR(a)|π(r) ≥ α}. We first introduce the
notion of a tail barrier, corresponding to a returns-distribution tail with a constant value.

Definition 1 (Tail barrier). Let α ∈ (0, 1]. A policy π has an α-tail barrier if ∀α′ ∈ [0, α] : qπα′ = qπα.

Note that in any environment with a discrete rewards distribution, a policy is prone to having a tail
barrier for some α > 0. In existing CVaR-PG analysis [Tamar et al., 2015b], such barriers are often
overlooked by assuming continuous rewards. For the Guarded Maze, Figure 13c in the appendix
demonstrates how a standard CVaR-PG exhibits a 0.9-tail barrier, since as many as 90% of the
trajectories reach neither the target nor the guard, and thus have identical low returns.

A tail barrier has a destructive effect on CVaR-PG. Consider a CVaRα objective, and a policy π with
a β-tail barrier where β > α. Intuitively, any infinitesimal change of π cannot affect the CVaR return,
since the returns infinitesimally-above qπα are identical to those below qπα. That is, any tail barrier
wider than α brings the CVaR-PG to a stationary point of type plateau. More formally, consider
∇θĴα of Equation (3) with a β-tail barrier β > α: any trajectory has either 111R(τi)≤qπα

= 0 (if its
return is above qπα) or R(τi)− qπα = 0 (otherwise), hence the whole gradient vanishes. Such a loss
plateau was also observed in a specific MDP in Section 5.1 of Huang et al. [2021a].
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In practice, a discrepancy between qπα and its estimate q̂α({R(τi)}) (used in Equation 3) may prevent
the gradient from completely vanishing, if qπα = qπβ < q̂α({R(τi)}). Otherwise, if q̂α({R(τi)}) ≤ qπβ
in every subsequent iteration, the gradient remains zero, the policy cannot learn any further, and
any trajectory returns beyond qπα will never be even propagated to the optimizer. We refer to this
phenomenon as blindness to success.
Definition 2 (Blindness to success). Let a risk level α ∈ (0, 1) and a CVaR-PG training step m0 ≥ 1,
and let β ∈ (α, 1). Denote by T ,Π the spaces of trajectories and policies, respectively, and by
{τm,i}Ni=1 ∼ Pπm the random trajectories in step m ≥ m0. We denote by Bm0,n

α,β the event of
blindness to success in the subsequent n steps (and the complementary event by ¬Bm0,n

α,β ):

Bm0,n
α,β =

{{(
{τm,i}Ni=1 , πm

)}
m0≤m<m0+n

∈ (T N ×Π)n
∣∣∣ ∀m : q̂α({R(τm,i)}) ≤ q

πm0

β

}
.

Note that Definition 2 uses qπm0

β (corresponding to step m0) to bound the returns in training steps
m > m0, thus indeed represents training stagnation. Theorem 1 shows that given a β-tail barrier with
β > α, the probability that CVaR-PG avoids the blindness to success decreases exponentially with
β − α. For example, for n = 106, α = 0.05, β = 0.25, and N = 400, we have P(¬Bm0,n

α,β ) < 10−7.

Theorem 1. Under Definition 2’s conditions, P
(
¬Bm0,n

α,β

∣∣πm0 has β-tail barrier
)
≤ ne−2N(β−α)2 .

Proof sketch (see the full proof in Appendix A). In every step m, we have q
πm0

β < q̂α({R(τm,i)})
only if at least 1−α of the returns are higher than q

πm0

β . We bound the probability of this event using
the Hoeffding inequality (Lemma 1). In the complementary event the gradient is 0 (due to the barrier),
thus the policy does not change, and the argument can be applied inductively to the next step.

3.2 Variance Reduction and Sample Efficiency

As discussed in Section 2, an MDP can be often re-parameterized as a C-MDP. In terms of the C-MDP,
CVaR-PG samples N context-trajectory pairs from the distribution Pπθ

ϕ0
(C, τ), and calculates the

policy gradients with respect to the αN trajectories with the lowest returns. That is, CVaR-PG aims
to follow the policy gradients corresponding to the tail distribution defined by

Pπθ

ϕ0,α
(C, τ) = α−1111R(τ)≤qα(R|πθ)P

πθ

ϕ0
(C, τ) (4)

Notice that by considering only α of the trajectories, CVaR-PG essentially suffers from α−1-reduction
in sample efficiency in comparison to risk-neutral PG.

Proposition 1 shows that if we could sample trajectories directly from Pπθ

ϕ0,α
, we would reduce the

variance of the policy gradient estimate (and thus increase the sample efficiency) back by a factor of
α−1. This will motivate the CEM in Section 4, which will aim to modify ϕ such that Pπθ

ϕ ≈ Pπθ

ϕ0,α
.

Proposition 1 (Variance reduction). If the quantile estimation error is negligible (q̂α = qα(R|πθ) in
Equation (3)), then

Varτi∼P
πθ
ϕ0,α

(∇θĴα({τi}Ni=1;πθ)) ≤ α ·Varτi∼P
πθ
ϕ0

(∇θĴα({τi}Ni=1; πθ)).

Proof sketch (see the full proof in Appendix B). Since the left term corresponds to the sample distri-
bution Pπθ

ϕ0,α
, the corresponding IS weights are w ≡ α w.p. 1. When applying IS analysis to the

expected value, w cancels out the distributional shift (as in Equation 5), resulting in the same expected
gradient estimate. When applying the same analysis to the variance, we begin with the square weight
w2, thus a w = α factor still remains after the distributional shift compensation.

The variance reduction can be connected to sample efficiency through the convergence rate as
follows. According to Theorem 5.5 in Xu et al. [2020], denoting the initial parameters by θ0, the
convergence of any CVaR-PG algorithm can be written as E[∥∇θJα(πθ)∥2] ≤ O(Jα(θ)−Jα(θ0)

M ) +

O(Var(∇θ Ĵα({τi}N
i=1;πθ))

αN ). Clearly, variance reduction of α-factor linearly improves the second term.
In particular, it cancels out the denominator’s α-factor attributed to tail sub-sampling, and brings the
sample efficiency back to the level of the risk-neutral PG.

5



4 The Cross-entropy Soft-Risk Algorithm

Algorithm 1 presents our Cross-entropy Soft-Risk algorithm (CeSoR), which uses a PG approach
to maximize Jα(πθ) in (2). CeSoR adds two components on top of CVaR-PG: soft-risk scheduling
to address the blindness to success analyzed in Section 3.1, and CE sampling to address the sample
efficiency analyzed in Section 3.2.

Algorithm 1: CeSoR
1 Input: risk level α; context distribution Dϕ; original

context parameter ϕ0; training steps M ; trajectories
sampled per batch N , where ν fraction of them is
from the original Dϕ0 ; smoothed CE quantile β;
risk-level scheduling factor ρ

2 Initialize: policy πθ, ϕ← ϕ0,
3 No ← ⌊νN⌋, Ns ← ⌈(1− ν)N⌉
4 for m in 1 : M do

// Sample contexts
5 Sample {Co,i}No

i=1 ∼ Dϕ0
, {Cϕ,i}Ns

i=1 ∼ Dϕ

6 C ← (Co,1, . . . , Co,No
, Cϕ,1, . . . , Cϕ,Ns

)
7 wo,i ← 1, ∀i ∈ {1, . . . , No}
8 wϕ,i ←

Dϕ0
(Cϕ,i)

Dϕ(Cϕ,i)
, ∀i ∈ {1, . . . , Ns}

9 w ← (wo,1, . . . , wo,No , wϕ,1, . . . , wϕ,Ns)
// Sample trajectories

10 {τCo,i}, {τCϕ,i
} ← run_episodes(πθ, C)

// Update CE sampler
11 q ← max(q̂α({R(τCo,i

)}), q̂β({R(τC·,i)}))
12 ϕ← argmaxϕ′

∑
i≤Nwi 111R(τCi

)≤q logDϕ′(Ci)
// PG step (e.g., Eq. 6)

13 α′ ← max(α, 1− (1− α) ·m/(ρ ·M))
14 q′ ← q̂α′({R(τCo,i

)})
15 θ ← CVaR_PG(πθ, ({τCo,i}, {τCϕ,i

}), w, q′)

Soft-risk scheduler: We set the policy op-
timizer (Line 15 in Algorithm 1) to use a
soft risk level α′ that gradually decreases
from 1 to α (Line 13 and Figure 2). This
is motivated by the blindness to success
analyzed in Section 3.1: by modifying
the risk level to α′ > α, and specifically
α′ ≈ 1 at the beginning of training, we
guarantee that there cannot be a wider tail
barrier β > α′. Thus, CeSoR can feed the
optimizer with trajectories whose returns
qπβ < R ≤ qπα′ are higher than any con-
stant tail; and since the fed returns are not
constant, they do not eliminate the gradi-
ent. In this sense, CeSoR looks beyond
local optimization-plateaus to prevent the
blindness to success.

The scheduling defined in Line 13 and
Figure 2 is heuristic. As demonstrated in
Section 5, once we understand the limi-
tation of blindness to success, this sim-
ple heuristic is sufficient to bypass the
blindness. An adaptive α′ scheduling that
maximizes blindness prevention probabil-
ity would require tighter concentration in-
equalities [Boucheron et al., 2013], and is
left for future work.

Cross Entropy Method (CEM): The CEM [de Boer et al., 2005] is a general approach to rare-
event sampling and optimization, which we use to sample high-risk contexts and trajectories. First,
we review the standard CEM in terms adjusted to our setting and notations (for a more general
presentation, see Algorithm 2 in the appendix). Then, we discuss the limitations of the standard CEM
in the RL settings, and present our dynamic, regularized version of the CEM.

Motivated by the sample efficiency analysis of Section 3.2, we wish to align the agent’s experience
with the α worst-case returns – by sampling contexts whose corresponding trajectory-returns are
likely to be below qα(R|πθ). That is, we wish to sample context-trajectory pairs from Pπθ

ϕ0,α
of (4).

To that end, the CEM searches for a value of ϕ for which Pπθ

ϕ is similar to Pπθ

ϕ0,α
. More precisely, it

looks for ϕ∗ that minimizes the KL-divergence (i.e., cross-entropy) between the two:

ϕ∗ ∈ argminϕ′ DKL

(
Pπθ

ϕ0,α
(C, τ) ||Pπθ

ϕ′ (C, τ)
)

= argmaxϕ′ E(C,τ)∼P
πθ
ϕ0

[
α−1111R(τ)≤qα(R|πθ) logDϕ′(C)

]
= argmaxϕ′ E(C,τ)∼P

πθ
ϕ

[
α−1w(C, τ) 111R(τ)≤qα(R|πθ) logDϕ′(C)

]
,

(5)

where Pπθ

ϕ′ (C, τ) = Dϕ′(C)Pπθ

C (τ) (Section 2), and w(C, τ) =
P

πθ
ϕ0

(C,τ)

P
πθ
ϕ (C,τ)

=
Dϕ0

(C)

Dϕ(C) is the IS weight

corresponding to the sample distribution (C, τ) ∼ Pπθ

ϕ . The optimization problem in Equation (5)
often reduces to a simple closed-form calculation: if Dϕ is a Gaussian, for example, ϕ∗ reduces to
the weighted expectation and variance of {C |R(τ) ≤ qα}C,τ∼P

πθ
ϕ

with the IS weights w(C, τ).

Equation (5) may produce noisy results when estimated from data {(Ci, τi)}Ni=1, unless N ≫ α−1,
since only αN trajectory-samples satisfy R(τ) ≤ qα and are used in the estimation. To address this,
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Figure 2: The soft-risk scheduling (Al-
gorithm 1, Line 13). The linear phase
α′ > α prevents the blindness to suc-
cess (Section 3.1), while the CEM still
preserves risk aversion. The final con-
stant phase α′ = α provides a station-
ary objective and allows CeSoR to con-
verge (Appendix C).

Figure 3: An illustration of training batches. Each point repre-
sents an episode with return R and context C. Points of the same
color correspond to “similar” agent actions that induce similar pol-
icy gradients. Mean-PG averages over the whole batch and learns
the blue strategy. CVaR-PG considers the left part (low returns)
and learns the orange strategy. CeSoR over-samples the upper part
(high-risk contexts), and only later decreases α′ to explicitly focus
on low returns, thus learning the purple strategy. The illustrated
episodes are analogous to the strategies in Figures 1d,4.

the CEM reaches the α-tail gradually over iterations. Every iteration, it samples a batch of contexts
{Ci}Ni=1 from the current distribution Dϕ, and then solves Equation (5) with respect to a higher
quantile q ≥ qα. More specifically, denote by q̂ϕα the estimated α-quantile of {R(τ)}C,τ∼P

πθ
ϕ

; then,

we set q = max(q̂ϕ0
α , q̂ϕβ) with a hyperparameter β > α (often β = 0.2). Since the data is drawn

from Pπθ

ϕ , this guarantees at least βN samples per update step. The quantile q̂ϕ0
α corresponds to the

α-tail of the original context-distribution, and can be viewed as a stopping condition: once q̂ϕ0
α > q̂ϕβ ,

many of our samples are already in the tail, and β is no longer needed to smooth the update of ϕ.

Dynamic-target CEM: The standard CEM assumes to search for the tail of a constant distribution.
In our setting, however, we look for the tail of the distribution of the returns R(τ), where C, τ ∼ Pπθ

ϕ0

depend on πθ and thus are non-stationary throughout the training. The non-stationarity poses several
challenges for the CEM. First, the stopping condition q̂ϕ0

α varies with πθ and has to be re-estimated
every iteration1. Second, the high-risk contexts C (which correspond to the lowest returns) may vary
as the agent evolves; and if the CEM learns to only sample a strict subset of the context space, then it
may miss such changes in the high-risk contexts.

We address both issues using reference samples: every iteration, we sample two batches of contexts –
{Cϕ,i}Ns

i=1 from the current context distribution Dϕ and {Co,i}No
i=1 from the original distribution Dϕ0

.
The reference contexts provide an important regularization: they guarantee continual exposure to the
whole context space, in case that the high-risk contexts vary. In addition, the reference samples were
empirically found to stabilize the estimation of q̂ϕ0

α (Line 11 in Algorithm 1).

Consider the two batches of context-trajectory pairs, and denote the estimated return quantile q̂α =
q̂α({R(τi)}No

i=1). We can estimate the CVaR policy gradient, using the notation ∀1 ≤ i ≤ No +Ns :

Ci =

{
Co,i if 1 ≤ i ≤ No

Cϕ,i−No
if No + 1 ≤ i ≤ No +Ns

, by

∇θĴα(πθ) =
1

α(No +Ns)

No+Ns∑
i=1

wi · 111R(τi)≤q̂α (R(τi)− q̂α)

T∑
t=0

∇θ log πθ(ai,t; si,t), (6)

where wi = 1 for 1 ≤ i ≤ No and wi = Dϕ0(Ci)/Dϕ∗(Ci) for No + 1 ≤ i ≤ No +Ns.

Note that if the policy learning scale is slower than that of ϕ, the target context distribution Pπθ

ϕ0,α

is effectively stationary in the ϕ-optimization problem. In that case, according to de Mello and
Rubinstein [2003], the CEM will converge to the KL-divergence minimizer ϕ∗ of (5).

1For the sake of coherent notations, we presented the CEM with the quantile objective qα(R|πθ). In fact,
the standard CEM is usually defined with a constant numeric objective q0 ∈ R rather than a quantile; hence, as
shown in Algorithm 2 in the appendix, the standard CEM does not require any quantile estimation at all.
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Sample efficiency in practice: Proposition 1 guarantees an α−1-increase in sample efficiency when
using an accurate quantile estimate q̂α = qα(R|πθ) and sampling exactly from Pπθ

ϕ0,α
. The latter

condition is equivalent to the CE-sampler reaching its objective DKL(P
πθ

ϕ0,α
||Pπθ

ϕ ) = 0. In practice,
Pπθ

ϕ0,α
can only be approximated, and the sample efficiency is increased – but by a smaller factor than

α−1. Appendix D.3 demonstrates the increased sample size exploited by CeSoR in our experiments.

If q̂α ̸= qα(R|πθ), the quantile estimation error may theoretically lead to unbounded IS weights (see
Appendix B). Practically, we address this by clipping the weights (as mentioned in Section 5), and by
constraining the family of permitted distributions {Dϕ}ϕ to have a constant support independently of
ϕ. A side-effect is a function approximation error of the family {Dϕ}ϕ, as Dϕ∗(C)Pπθ

C (τ) cannot
replicate the tail distribution Pπθ

ϕ0,α
(C, τ) to achieve the full α−1-increase in sample efficiency.

Another limitation in the expressiveness of Pπθ

ϕ (C, τ) = Dϕ(C)Pπθ

C (τ) occurs when the context C
only controls part of the environment randomness in Pπθ

C (τ). As an extreme example in the Guarded
Maze, after πθ already learns to avoid the short path, the context (guard cost) does not affect the
outcome at all anymore. Indeed, Figure 10a in the appendix shows that high guard costs are sampled
in the beginning; then, once the short path is avoided, the sampler gradually falls back to the original
context distribution. Note that in this example, the invariance to C began after the learning was
essentially done, hence the CEM did play its part effectively.

Finally, note that the soft risk creates an intentional bias in the gradient estimate (to overcome the
blindness to success). As a result, in the first phase of training (α′ ≫ α), only a few trajectories are
overlooked every iteration. As α′ approaches α, the number of overlooked trajectories increases, and
so is the importance of over-sampling the tail. In the final steady-state phase (α′ = α), the sample
inefficiency is most severe, the soft risk produces no further biases, and the CEM helps CeSoR to
reduce the high variance in the policy gradient estimation.

The harmony between the soft risk and the CEM: Soft risk has the inherent side effect of reducing
the risk aversion. In the Guarded Maze, for example, as demonstrated in Section 5.1, soft risk alone
leads to learning the short path (instead of the risk-averse long path). Fortunately, the CEM reduces
this side effect. In that sense, the two mechanisms complement each other: α′ > α allows the
optimizer to learn policies with high returns, while the CE sampler still preserves the risk aversion –
as illustrated in Figure 3. This connection stands in addition to the independent motivations of the
two mechanisms, as discussed above.

Baseline optimizer: CeSoR can be implemented on top of any CVaR-PG method as a baseline
(Line 15). We use the standard GCVaR [Tamar et al., 2015b], which guarantees asymptotic conver-
gence under certain regularity conditions. Appendix C shows that these guarantees hold for CeSoR as
well, when implemented on top of GCVaR. Other CVaR-PG baselines can also be used, such as the
TRPO-based algorithm of Rajeswaran et al. [2017]. However, such methods often include heuristics
that introduce additional gradient estimation bias (to reduce variance), and thus do not necessarily
guarantee the same theoretical convergence.

5 Experiments

We conduct experiments in 3 different domains. We implement CeSoR on top of a standard CVaR-PG
method, which is also used as a risk-averse baseline for comparison. Specifically, we use the standard
GCVaR baseline [Tamar et al., 2015b], which guarantees convenient convergence properties (see
Appendix C) and is simple to implement and analyze. We also use the standard policy gradient
(PG) as a risk-neutral baseline. We stress that the comparison to PG is only intended to present the
mean-CVaR tradeoff, while each method legitimately optimizes its own objective. Appendix H also
compares CeSoR to risk-neutral and risk-averse Distributional RL algorithms.

In all the experiments, all agents are trained using Adam [Diederik P. Kingma, 2014], with a learning
rate selected manually per benchmark and N = 400 episodes per training step. Every 10 steps we
run validation episodes, and we choose the final policy according to the best validation score (best
mean for PG, best CVaR for GCVaR and CeSoR). For CeSoR, unless specified otherwise, ν = 20%
of the trajectories per batch are drawn from the original distribution Dϕ0 ; β = 20% are used for the
CE update; and the soft risk level reaches α after ρ = 80% of the training. As mentioned in Section 4,
for numerical stability, we also clip the IS weights (Algorithm 1, Line 9) to the range [1/5, 5].

8



Every policy is modeled as a neural network with tanh activation on its middle layers and softmax
operator on its output, with temperature 1 in training (i.e., network outputs are actions probabilities),
and 0 in validation and test (i.e., the max output is the selected action). We use a middle layer with 32
neurons in Section 5.2, 16 neurons in Section 5.3, and no middle layer (linear model) in Section 5.1.

In each of the 3 domains, the experiments required a running time of a few hours on an Ubuntu
machine with eight i9-10900X CPU cores. In addition to these RL-related experiments, Appendix D
presents dedicated experiments for the independent CE module.

5.1 The Guarded Maze

Figure 4: GCVaR, SoR, CeSoR: %-episodes that did
not reach the target ("stay"), or reached it through the
short or the long path in the Guarded Maze. Bottom
Right: %-long-paths among the trajectories fed to
the optimizer. See more details in Figure 13.

Benchmark: The Guarded Maze benchmark is
defined in Section 1. For the experiments, we set a
target risk level of α = 0.05, and train each agent
for n = 250 steps with the parameters described
above. The CEM controls C through ϕ = (ϕ1, ϕ2),
where ϕ0 = (0.2, 32) as mentioned above, and
updates ϕ1, ϕ2 using the weighted means of C1

and C2, respectively. As an ablation test, we add
two partial variants of our CeSoR: CeR (with CE,
without α-scheduling) and SoR (with scheduling,
without CE). See more details in Appendix E.1.

Results: Figure 1a summarizes the test scores, and
Figure 1d illustrates a sample episode. PG learned
the short path, maximizing the average but at the
cost of poor returns whenever charged by the guard.
CeSoR, on the other hand, successfully learned to
follow the CVaR-optimal long path. GCVaR, which
also aimed to maximize the CVaR, failed to do so.
As analyzed in Figure 4, throughout GCVaR training, the agent takes the long path in up to 50% of
the episodes per batch, but none of these episodes is ever included in the bottom α = 5% that are
fed to the optimizer. Thus, GCVaR is entirely blind to the successful episodes and fails to learn the
corresponding strategy. In fact, in most training steps, all the worst episodes of GCVaR reach neither
the guard nor the target, leading to a constant return of −32, a tail barrier, and a zero loss-gradient.

CeR suffers from blindness to success just as GCVaR. SoR is exposed to the successful long-path
episodes thanks to soft risk scheduling; however, due to the reduced risk-aversion, it fails to prefer
the long path over the short one. Only CeSoR both observes the "good" strategy (thanks to soft risk
scheduling) and judges it under "bad" environment variations (thanks to the CEM). Appendix E.2
presents a detailed analysis of the learning dynamics, the blindness to success and the learned policies.
It is important to notice that standard optimization tweaks cannot bring GCVaR to learn the long path:
a "warm-start" from a standard PG only encourages the short-path policy (as in SoR); and increased
batch size N does not expose the optimizer to the long path (see Theorem 1).

5.2 The Driving Game

Benchmark: The Driving Game is based on an inverse-RL benchmark used by Majumdar et al. [2017]
and Singh et al. [2018]. The agent’s car has to follow the leader (an "erratic driver") for 30 seconds as
closely as possible without colliding. Every 1.5 seconds (i.e., 20 times per episode), the leader chooses
a random action (independently of the agent): drive straight, accelerate, decelerate, change lane, or
brake hard ("emergency brake"), with respective probabilities ϕ0 = (0.35, 0.3, 0.248, 0.1, 0.002).
We denote the sequence of leader actions by C ∈ {1, ..., 5}20.

Every 0.5 seconds (60 times per episode), the agent observes its relative position and velocity to the
leader, with a delay of 0.7 seconds (representing reaction time), as well as its own acceleration and
steering direction. The agent chooses one of the five actions: drive in the same steering direction,
accelerate, decelerate, turn left, or turn right. Changing lane is not an atomic action and has to be
learned using turns. The rewards express the requirements to stay behind the leader, on the road, on
the same lane, not too far behind and without colliding. See the complete details in Appendix F.1.
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We set α = 0.01, and train each agent for n = 500 steps. To initiate learning, for each agent we begin
with shorter training episodes of 6 seconds and gradually increase their length. The CEM controls the
leader’s behavior through the probabilities ϕ = {ϕi}5i=1 described above.

(a)

(b)

Figure 5: Over all the time-steps in all the
test episodes in the Driving Game, the distri-
bution of (a) the distance between the agent
and the leader, (b) the agent actions. Evi-
dently, CeSoR learns to keep more distance
than the risk-neutral PG, and has a slightly
less frequent use of the gas and the brake.

Results: Figure 1b summarizes the test scores of the
agents, where CeSoR presents a reduction of 28% in the
CVaR cost in comparison to the baselines. GCVaR com-
pletely fails to learn a reasonable policy – losing in terms
of CVaR even to the risk-neutral PG. Figure 5 shows that
CeSoR learned an arguably-intuitive policy for risk averse
driving: it keeps a safer distance from the leader, and uses
the gas and the brake less frequently. This results in com-
plete avoidance of the rare accidents occurring to PG, as
demonstrated in Figure 1e. In Appendix D, we also see
that by over-sampling turns and emergency brakes of the
leader, the CEM manages to align the mean return of the
training samples with the 1%-CVaR of the environment,
and significantly increases the data efficiency.

5.3 The Computational Resource Allocation Problem

Benchmark: Computational resource allocation in serv-
ing systems, and in particular the tradeoff between re-
source cost and serving latency, is an important challenge
to both academia [Jiang et al., 2013, Tessler et al., 2022]
and industry [Barr, 2018, Lunden, 2022]. In popular ap-
plications such as E-commerce and news, latency is most
critical at times of peak loads [Garces, 2019], making
CVaR a natural metric for risk-averse optimization. In
our benchmark, the agent allocates servers to handle user
requests, managing the tradeoff between servers cost and
time-to-service (TTS). Requests arrive randomly with a
constant rate, up to rare events that cause sudden peak
loads, whose frequency is controlled by the CE sampler. See Appendix G for more details.

Results: As shown in Figure 1c, CeSoR significantly improves the CVaR return, and does not
compromise the mean as much as GCVaR. As demonstrated in Figure 1f, CeSoR learned to allocate
a default of 5 servers and react to peak loads as needed, whereas GCVaR simply allocates 8 servers
at all times. PG only allocates 4 servers by default, and thus its TTS is more sensitive to peak
loads. Appendix G describes the complete implementation and detailed results, discusses the poor
parameterization of Dϕ in this problem and shows the robustness of CeSoR to that parameterization.

6 Summary and Future Work

We introduced CeSoR, a novel method for risk-averse RL, focused on efficient sampling and soft risk.
In a variety of experimental domains, in comparison to a risk-averse baseline, CeSoR demonstrated
higher CVaR metric, better sample-efficiency, and elimination of blindness to success – where the
latter two were also analyzed theoretically.

There are certain limitations to CeSoR. First, we assume to have at least partial control over the
training conditions, through a parametric family of distributions that needs to be selected. Second,
CeSoR can be applied robustly on top of any CVaR-PG method, but is currently not applicable to
non-PG methods. Since the limitations of CVaR-PG apply in other risk-averse methods as well (as
we demonstrated for Distributional RL), future work may adjust CeSoR to such methods, as well
as to other risk measures. Third, in terms of blindness to success and estimation variance, CeSoR
shows both theoretical and empirical improvement – but is not proven optimal. Future work may
look for optimal design of CEM or risk scheduling. Considering the current results and the potential
extensions, we believe CeSoR may open the door for more practical applications of risk-averse RL.

Acknowledgements: This research was supported by the Israel Science Foundation (grant 2199/20).
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spent on participant compensation? [N/A]
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A Blindness to Success: Proof of Theorem 1

Theorem 1 considers the probabilistic event of a global blindness to success over n consecutive
training steps. We begin with a local blindness in a single training step.
Lemma 1 (Local blindness to success). Let a risk level α ∈ (0, 1) and a CVaR-PG training step
m ≥ 1, and let β ∈ (α, 1). Denote A =

{
{τm,i}Ni=1 ∈ T

N
∣∣ qπm

β < q̂α({R(τm,i)}Ni=1)
}

. Then,

P (A) ≤ e−
N(β−α)2

2β(1−β) ≤ e−2N(β−α)2

Proof. Denote Ri = R(τm,i), χq
i = 111Ri>q, and χi = χ

qπm
β

i . Note that χi ∼ Bernoulli(1 −
β). Also denote the percent of high-return trajectories by nq =

∑N
i=1 χ

q
i /N and n∗ =

nqπβ
. Since q̂α({Ri}Ni=1) = min

{
q | |{i |Ri≤q}|

N ≥ α
}

= min
{
q | |{i |Ri>q}|

N < 1− α
}

=

min
{
q | 1

N

∑N
i=1 χ

q
i < 1− α

}
, we have qπβ < q̂α({Ri})⇔ n∗ ≥ 1− α, i.e., A = (n∗ ≥ 1− α).

Since P(0 ≤ χi ≤ 1) = 1, E [χi] = 1 − β and the Bernoulli χi are sub-Gaussian with variance
factor σ2 = 1/4, by Hoeffding inequality [Hoeffding, 1994] we obtain

P(A) = P(n∗ ≥ 1− α) = P(n∗ − E [n∗] ≥ β − α) ≤ e
−N2(β−α)2

2
∑

i 1/4 = e−2N(β−α)2 .

Note that Lemma 1 does not depend on a tail-barrier: it simply implies that since a CVaR-PG
algorithm focuses on the worst α trajectories in every batch, we do not expect trajectories with high
returns R(τm,i) > qπm

β to be fed to the optimizer. Still, in general, even if high-return trajectories
are ignored, the CVaR-PG can learn to avoid low-return trajectories with R(τm,i) < qπm

β . The tail
barrier prevents this learning, since there are no returns strictly lower than qπm

β – all the tail identically
equals qπm

β . Since there are no worse trajectories to learn from, and better trajectories are ignored,
this brings the training to a deadlock, as stated by Theorem 1.

Proof of Theorem 1 (stated in Section 3.1). All probabilities below are conditioned on the event of
πm0

having a β-tail barrier. Thus, we simplify the notation to P(·) = P
(
·
∣∣πm0

has β-tail barrier
)
.

Denote by S =
{(
{τm,i}Ni=1 , πm

)}m0+n−1

m=m0

∈ (T N ×Π)n the sequence of trajectory batches and

policies, and by Rm = {R(τm,i)}Ni=1 the returns on step m. Also denote for simplicity B = Bm0,n
α,β .

We are interested in the probability of the event that there is no global blindness (Definition 2):

¬B = ¬Bm0,n
α,β =

{
S
∣∣ ∃m0 ≤ m < m0 + n : q

πm0

β < q̂α(Rm)
}
.

Define the event of blindness at step m, along with an unchanged policy: Am ={
S
∣∣πm = πm0

∧ q̂α(Rm) ≤ q
πm0

β

}
. Note that

⋂m0+n−1
m=m0

Am ⊆ B, hence

P(¬B) ≤ 1− P

(
m0+n−1⋂
m=m0

Am

)
= 1−

m0+n−1∏
m=m0

P (Am|Am0 , ..., Am−1) .

Thus, to complete the proof, we show below that P (Am|Am0 , ..., Am−1) ≥ 1 − δ, where δ =

e−2N(β−α)2 , hence P(¬B) ≤ 1− (1− δ)n ≤ 1− (1− nδ) = nδ.

For m = m0, we have immediately πm = πm0
, and from Lemma 1 P(qπm0

β < q̂α(Rm0
)) ≤ δ.

For m0 + 1 ≤ m ≤ m0 + n − 1, assume that Am0
, ..., Am−1 hold. In particular, q̂α(Rm−1) ≤

q
πm0

β , πm−1 = πm0
and πm−1 has a β-tail barrier. Now consider the m − 1 training batch: for

every trajectory 1 ≤ i ≤ N , if Rm−1,i > q̂α(Rm−1), then 111Rm−1,i≤q̂α(Rm−1) = 0; otherwise,
Rm−1,i ≤ q̂α(Rm−1) ≤ q

πm0

β , that is, Rm−1,i = q
πm0

β′ for some β′ ≤ β, and by the barrier property
Rm−1,i = q

πm0

β and thus Rm−1,i − q̂α(Rm−1) = 0. Hence, the gradient in Equation (3) is 0, the
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policy update vanishes, and we obtain πm = πm−1 = πm0 . Then again, according to Lemma 1 (and
since Rm and Rm0 are drawn from the same distribution corresponding to πm = πm0), we have
P(qπm0

β < q̂α(Rm)) = P(qπm0

β < q̂α(Rm0
)) ≤ δ, as required.

Note that the factor n may become quite negligible when the barrier is wider than α: if n = 106, α =
0.05, β = 0.25, N = 400, for example, we still have P(¬Bm0,n

α,β ) < 10−7. Indeed, the blindness
occurs with significantly smaller barriers than the β = 0.9 demonstrated in the Guarded Maze
in Appendix E.2. Note that the momentum term of the Adam algorithm [Diederik P. Kingma,
2014], while preventing the policy update from completely vanishing, was empirically insufficient to
overcome the barrier in the Guarded Maze. This should not come as a surprise, since the momentum
comes from previous gradients that encouraged the strategies of the barrier and brought them into the
tail in the first place.

B Variance Reduction: Proof of Proposition 1

Proof. Define H(C, τ) = α−1111R(τ)≤q̂α (R(τ)− q̂α)∇θ

∑
t log πθ(at; st), such that the CVaR

PG can be written as ∇θĴα
(
{Ci, τi}Ni=1;πθ

)
= 1

N

∑N
i=1 w(Ci, τi)H(Ci, τi), where w(C, τ) =

P
πθ
ϕ0

(C,τ)

P
πθ
ϕ0,α(C,τ)

is the IS weighting that accounts for the modified sample distribution. Since C, τ ∼ Pπθ

ϕ0,α
,

we have R(τ) ≤ qα(R|πθ) almost surely; and along with the assumption q̂α = qα(R|πθ), we obtain

w(C, τ) =
Pπθ

ϕ0
(C, τ)

Pπθ

ϕ0,α
(C, τ)

=
Pπθ

ϕ0
(C, τ)

α−1111R(τ)≤qα(R|πθ)P
πθ

ϕ0
(C, τ)

= α.

The assumption q̂α = qα(R|πθ), when applied to Equation (3), also guarantees that ∇θĴα
is an unbiased gradient estimator for both sample distributions P = Pπθ

ϕ0
and P =

Pπθ

ϕ0,α
: ECi,τi∼P [∇θĴα

(
{Ci, τi}Ni=1; πθ

)
] = ∇θJα (πθ). Its variance over N i.i.d samples is

VarCi,τi∼P [∇θĴα
(
{Ci, τi}Ni=1; πθ

)
] = 1

N VarC,τ∼P [∇θĴα (C, τ ; πθ)]. Denoting g := ∇θJα (πθ),
we obtain:

VarC,τ∼P
πθ
ϕ0,α

[∇θĴα (C, τ ; πθ)]

=EC,τ∼P
πθ
ϕ0,α

[w(C, τ)2H(C, τ)2]− g2

=EC,τ∼P
πθ
ϕ0

[w(C, τ)H(C, τ)2]− g2

=α · EC,τ∼P
πθ
ϕ0

[H(C, τ)2]− g2

≤α · (EC,τ∼P
πθ
ϕ0

[H(C, τ)2]− g2)

=α · VarC,τ∼P
πθ
ϕ0

[∇θĴα (C, τ ; πθ)],

which completes the proof.

Note that if q̂α ̸= qα(R|πθ), the term 111R(τ)≤q̂α in the denominator may vanish and the IS weight
w(τ, C) may become unbounded. To overcome this issue when using our CE-sampler (described
in Section 4), we constrain the family of distributions {Pπθ

ϕ }ϕ such that the sample distribution
Pπθ

ϕ always has the same support as the original distribution Pπθ

ϕ0
(even though this eliminates the

possibility of an exact tail sampling Pπθ

ϕ = Pπθ

ϕ0,α
). In addition, in the experiments of Section 5 we

clip the IS weights directly.

C Gradient Estimation Bias and CeSoR Convergence

The gradient estimator of Equation (3) is biased due to the biasedness of the empirical quantile.
However, Tamar et al. [2015b] show that the gradient estimator is still consistent, and bound its bias
by O(N−1/2). Lemma 2 below proves that a similar result holds for CeSoR – despite the CEM and
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the risk scheduling. Given Lemma 2, CeSoR’s convergence is a direct application of Theorem 5 in
Tamar et al. [2015b], as stated below. The soft-risk scheduling α′ introduces additional transient bias
to the CVaR gradient estimate when α′ > α, but this bias vanishes in the last steady-state 1− ρ steps
when α′ = α; hence, we can safely assume consistency of CeSoR’s gradient estimate, and focus our
asymptotic convergence analysis on the steady-state phase.

Formally, in terms of Section 2, assume that the update step includes a ℓp projection Γ to a compact
set with a smooth boundary: θm+1 = Γ(θm + ηm∇θĴα); and that the learning rate ηm satisfies∑∞

m=0 ηm = ∞,
∑∞

m=0 η
2
m < ∞ and

∑∞
m=0 ηm

∣∣∣E [∇θĴα

]
−∇θJα

∣∣∣ < ∞ w.p. 1. In addition,

denote by K the set of all asymptotically-stable equilibria of the ODE θ̇ = Γ(∇θJα(R;πθ)).

Theorem 2 (Convergence of CeSoR). Assume that for any ϕ, the sample distribution Dϕ of Algorithm
1 has the same support as the original distribution Dϕ0

. Then, under the smoothness assumptions
specified in Appendix C.1, and the projection and learning rate assumptions specified above, the
sequence of policy parameters {θm} generated by Algorithm 1 converges almost surely to K.

Theorem 2 relies on similar assumptions to Tamar et al. [2015b], two of them are of particular interest
in our context. First, the rewards are assumed to be continuous. Second, in the gradient estimator, the
baseline is assumed to be a consistent estimator of the returns α-quantile. Hence, while CeSoR is
compatible with any CVaR-PG method, the current derivation of theoretical convergence guarantees
only holds for PG methods with a consistent gradient estimate.

C.1 Gradient Estimation Bias

The gradient estimator of the standard CVaR PG may be inconsistent and unboundedly-biased, unless
the return baseline is a consistent estimator of the α-quantile of the returns [Tamar et al., 2015b].
Thus, we rely on the empirical quantile baseline q̂α used in Equation (3), which is a consistent (though
biased) estimator of the true quantile. Given certain smoothness assumptions, Tamar et al. [2015b]
bound the resulted bias of the gradient estimator E

[
∇θĴα

]
−∇θJα (as defined in Equations (2),(3)).

Lemma 2 guarantees that under the same assumptions, despite the modified sampling by the CEM,
the same bias bounds apply to CeSoR.

We first specify the smoothness assumptions. Note that Tamar et al. [2015b] consider
∇θ log fs|a(s|a, θ) in their calculations (or in their notation: ∇θ log fX|Y (X|Y, θ)). In RL ap-
plications, given the action a, the next-state distribution is independent of the policy πθ, and this
gradient vanishes. We accordingly ignore this term in the calculations, which simplifies the assump-
tions and the analysis. The remaining assumptions mostly consider the smoothness of the rewards,
and in particular do not hold in the case of discrete rewards as discussed in Section A.

Assumption 1 (Smoothness assumptions). For any policy πθ, the return R is a continuous random
variable; and∇θqα(R;πθ),∇θJα(πθ) and ∇θ log πθ(a) (for any a) are well defined and bounded.

Lemma 2 (Gradient estimation bias bound). In Algorithm 1 with a batch size N , consider a certain
step m ≥ ρM , and assume that the underlying PG follows Equation (3) (or Equation (6)). In addition,
assume that for any ϕ, the sample distribution Dϕ of Algorithm 1 has the same support as the original

distribution Dϕ0
. Then, under Assumption 1, E

[
∇θĴα

]
−∇θJα = O(N−1/2).

Proof. We follow the steps of the proof of Theorem 4 in Tamar et al. [2015b] with the following
modifications. First, we take the gradient expectations with respect to the CE sampling distribution
Dϕ rather than the original distribution Dϕ0 . Second, the empirical quantile q̂α is calculated in
Algorithm 1 using a reduced sample size No = ⌊νN⌋ < N . Note that the estimator q̂α relies on
samples drawn from Dϕ0

, hence is not otherwise affected by the CEM.

Denote by Dϕi
the distribution from which was drawn Ci, i.e., ϕi = ϕ0 for i ≤ No and ϕi = ϕ for

i > No. Since m ≥ νN , according to Line 13 in Algorithm 1 we have α′ = α. Denoting by qα the
true α-quantile of the returns, we have

∇θJα(R;πθ) = E{ϕi}N
i=1

[
1

αN

N∑
i=1

wi111Ri≤qα (Ri − qα)∇θ log πθ(τi)

]
(7)
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We now substitute wi =
Dϕ0

(Ci)

Dϕi
(Ci)

, which is finite due to the assumption that Dϕi
has the same support

as Dϕ0
. Using the notation Eϕ0

[·] = EC∼Dϕ0
, τ∼P

πθ
C

[·] and πθ(τi) = Πtπθ(ai,t; si,t), we obtain

∣∣∣ECi∼Dϕi
, τi∼P

πθ
Ci

[
∇θĴα({τi};πθ)

]
−∇θJα(πθ)

∣∣∣
≤ ECi∼Dϕi

, τi∼P
πθ
Ci

[
1

αN

N∑
i=1

Dϕ0
(Ci)

Dϕi
(Ci)

|∇θ log πθ(τi) (111Ri≤q̂α (Ri − q̂α)− 111Ri≤qα (Ri − qα))|

]

= Eϕ0

[
1

αN

N∑
i=1

|∇θ log πθ(τi) (111Ri≤q̂α (Ri − q̂α)− 111Ri≤qα (Ri − qα))|

]

= Eϕ0

[
1

αN

N∑
i=1

|∇θ log πθ(τi) ((111Ri≤q̂α − 111Ri≤qα) (Ri − q̂α) + 111Ri≤qα((Ri − q̂α)− (Ri − qα))|

]

≤ Eϕ0

[
1

αN

N∑
i=1

|∇θ log πθ(τi)(111Ri≤q̂α − 111Ri≤qα) (Ri − q̂α)|

]

+ Eϕ0

[
1

αN

N∑
i=1

|∇θ log πθ(τi)111Ri≤qα (qα − q̂α)|

]
(8)

From this point, the proof is mostly identical to Theorem 4 in Tamar et al. [2015b]. Namely, the first
term is o(N−1/2) according to Hong and Liu [2009], given Assumption 1; and since q̂α is estimated
using νN samples, we have |qα − q̂α| = O((νN)−1/2) = O(N−1/2) in probability (note that ν is
constant, e.g., ν = 0.2 or ν = 0.5 in the experiments of Section 5). Together, the whole expression is
O(N−1/2) as required.

D The Cross Entropy Module: Extended Discussion

The Cross Entropy Method (CEM) with non-stationary score function has a major role in CeSoR.
The CEM code is implemented and available as an independent module [Greenberg, 2022]. Below
we present an analysis of the CEM empirical results over both a dedicated toy problem (which tests
the CEM independently of CeSoR) and as part of CeSoR in the benchmarks of Section 5.

D.1 The CEM Algorithm

For clarity, we first provide the pseudo-code for the general CEM algorithm. This version repeatedly
generates samples from the tail of the distribution Dϕ0

. A similar version [de Boer et al., 2005] would
stop once qβ

(
{R(xi)}Ni=1

)
≤ q (as it means that at least βN samples are already beyond q), and use

all the recent samples R(xi) ≤ q to estimate the probability of the “rare event” R(X) ≤ q.

Note that unlike CeSoR, Algorithm 2 relies on a constant mapping R(x) and a constant target q.
Our CEM version in CeSoR, as implemented in our code and presented in Algorithm 1, supports a
quantile-target α with respect to a return mapping R that varies dynamically with the learning agent.
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Algorithm 2: The Cross Entropy Method for Sampling
1 Input: distribution Dϕ0 ; score function R; target level q; batch size N ; update selection rate β.

2 ϕ← ϕ0

3 while true do
// Sample

4 Sample x ∼ DN
ϕ

5 wi ← Dϕ0
(xi)/Dϕ(xi) (1 ≤ i ≤ N)

6 Print x
// Update

7 q′ ← max
(
q, qβ

(
{R(xi)}Ni=1

))
8 ϕ← argmaxϕ′

∑N
i=1 wi111R(xi)≤q′ logDϕ′(xi)

D.2 Sample Distribution

The goal of the CEM is to align the sample distribution with the bottom-α percent of the reference
distribution. Note that given a parametric family of distributions Dϕ with a limited expressiveness,
a perfect alignment is not always possible. For example, if the CEM controls the mean of an
exponential distribution C ∼ Exp(ϕ), and the returns decrease with c, then the lower quantiles of
the returns correspond to C ≥ qα(C). However, no value of ϕ could eliminate the lower values
C ∈ [0, qα] – but could merely assign more probability density to higher values. Even when the
family of distributions is expressive enough, the CEM has to learn the desired sample distribution
without any prior knowledge about the meaning of the parameters that it controls. In particular, it
cannot know in advance in which direction each parameter may affect the agent return, what the size
of the effect would be, and how it would change during the training.

Formally, the objective of the CEM is often defined as minimization of the KL-divergence between
the sample distribution and the desired tail of the reference distribution [Dambreville, 2006]. Indeed,
this objective is well-defined even if the expressiveness of Dϕ does not allow a perfect alignment.

In this section, we focus on the comparison between the mean and the CVaR of the sample distribution
and the reference distribution of the returns. Specifically, while both distributions begin with the same
mean and CVaR, we hope that the sample mean would align with the reference CVaR as quickly as
possible.

First, we consider a toy problem with a static reference distribution and no RL environment. The
parametric family of distributions is C ∼ Beta(2ϕ, 2− 2ϕ) (such that E [C] = ϕ), and the reference
distribution corresponds to ϕ0 = 0.5, which results in the uniform distribution Beta(1, 1) = U(0, 1).
We are interested in the bottom α = 10% of the reference distribution, i.e., U(0, 0.1). We run the
CEM for n = 10 steps with N = 1000 samples per step, ν = 20% of them are drawn from the
original reference distribution, and update ϕ using the mean of the lower β = 50% samples. Note
that generally in this work, C is the context or configuration of an environment that produces returns;
in this toy example, we do not have an RL environment and we simply define R(C) = C.

Figure 6: The converges of the CE sample mean to the reference CV aR10% in the toy Beta distribution
problem.
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The CV aR10% of C (or equivalently, the mean of U(0, 0.1)) is 0.05. Note that no value of ϕ can
yield the distribution U(0, 0.1), as the support of the Beta distribution is always (0, 1). Yet, as shown
in Figure 6, the sample mean converges to the reference CVaR within mere 2 iterations, and remains
around this level.

Figure 7 presents the same metrics for the experiments described in Section 5. In these cases, the
reference returns distribution corresponds to the agent returns under the original environment. Note
that this reference returns distribution is dynamic during the training, as it changes with the agent
(and in certain benchmarks also with the episode length that increases throughout the training). Yet,
in the Driving Game benchmark, for example, we see that the sample mean reasonably aligns with
the reference CVaR throughout most of the training, even as both of them vary.

(a) Guarded Maze (first 60 iterations) (b) Driving Game (c) Servers Allocation

Figure 7: The mean and CVaR metrics of the CE sample distribution and the reference original distribution
throughout the training of CeSoR over different benchmarks.

In the Guarded Maze, the sample mean also quickly converges into the reference CVaR. However,
once the agent learns to avoid the short path, the CE sampler can no longer control the agent
performance at all, and due to the regularizing reference samples, the sample distribution gradually
goes back to the original one. This is a valid behavior, as the agent already learned to avoid the risk,
and if for some reason it came back to the risky short path, the CE would simply learn again to focus
on the risky configurations of the environment.

The Servers Allocation Problem takes the challenge of the CEM to the limit, as the target is α = 1%,
the difficulty to the agent arrives in a non-smooth manner as rare and discrete events, and the given
family of distributions (Binomial) has limitations in expressing the desired distribution. Specifically,
we would like most of the sample episodes to include a peak event, but not more than one; whereas
the Binomial distribution is not best-suitable for this. However, even as the CEM struggles to fit
the reference CV aR1% (Figure 7c), CeSoR is still shown to provide beneficial results (Section 5.3,
Appendix G). This demonstrates the robustness of CeSoR to limitations and misspecification of the
modeled family of distributions.

Sensitivity to β: As discussed in Sections 2 and 4, the smoothness parameter β determines the
minimal percent of data samples used for the update step in the CEM. We argue that CeSoR has a
low sensitivity to the parameter β.

Intuitively, every iteration of the CEM focuses on the β-tail of the previous iteration (until reaching
the α-tail of the reference distribution). Theoretical analysis of the convergence rate is challenging,
due to the limited expressiveness of Dϕ and the non-stationary agent returns; yet, according to the
qualitative intuition above, we expect exponential convergence to the tail, which applies even for high
values of β. On the other hand, while low values of β may increase the noise in the update step of the
CEM, any noisy update could be corrected throughout the training. Note that Algorithm 1 uses the
original context-distribution for a certain part of the samples of each batch; this guarantees that any
update step is reversible, as CeSoR continues to be exposed to the complete context-space.

Empirically, we repeated the experiments of Section 5 with various values of β ∈ [0.05, 0.3]. In the
Guarded Maze and the Driving Game, all the values of β resulted in similar test returns; in addition,
Figure 8 shows that the CEM successfully aligned the sample mean return with the reference CVaR,
independently of β. The Servers Allocation Problem is more challenging for the CEM (as discussed
above), making the sampler more sensitive to the parameter β, and in particular leading to a failure for
β = 0.3. However, note that even under such a combination of poor algorithmic choices (Binomial
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parameterization of Dϕ and very high β), the failure of the CEM is easy to notice through Figure 8c
(as the sample-mean fails to deviate from the reference-mean), and is easy to fix.

(a) Guarded Maze

(b) Driving Game

(c) Servers Allocation

Figure 8: Returns statistics of the sample distribution and the reference original distribution, throughout the
training of CeSoR over different benchmarks, for different values of β ∈ [0.05, 0.3].

D.3 Sample Efficiency

An important aspect of the CEM is its increase of sample efficiency (Section 3.2). While the results
in Section 5 already demonstrate that CeSoR learns better and faster than the standard GCVaR, here
we measure the effective sample size directly. While PG always uses the entire batch, and GCVaR
always uses at most α of the episodes, Figure 9 shows that CeSoR manages to optimize CVaRα while
using more than α percent of the data. Note that even beyond the risk level scheduling (which ends
after ρ = 80% of the training), the CEM still allows for more than α percent of each batch to be used.

Note that GCVaR effectively uses less than α episodes in a batch if multiple episodes {τi} satisfy
R(τi) = qα – since the contribution of any such episode to the gradient in Equation (3) is 0. In the
extreme case, as discussed in in Section 3.1 and Appendix E.2, all the worst α episodes are identical,
and the whole loss gradient is identically 0.

22



(a) Guarded Maze

(b) Driving Game

(c) Servers Allocation

Figure 9: Left – sample size: the percent of episode samples (out of N = 400 episodes per training iteration)
used by the optimizer. Note that only returns R(τi) < qα are counted (strict inequality), since the contribution
of episodes with R(τi) = qα to the loss is 0 (Equation (3)). Right – effective sample size: this takes into account
the IS weights: the effective sample size equals the number of equally-weighted independent samples needed
to obtain the same estimation variance [Kish, 1965, Leinster, 2014]: neff = (

∑
i wi)

2/
∑

i w
2
i . Note that for

equal weights, neff = n.

D.4 Risk Characterization

The CEM not only allows CeSoR to sample the most relevant environment conditions for CVaR
optimization, but also allows us to characterize the conditions that correspond to the risk level α. This
enhances our understanding of the problem and may help us to anticipate poor returns in advance.

Figure 10 presents the evolution of the sample distribution parameters ϕ throughout the CeSoR
training process in the various benchmarks. In the Guarded Maze, for example, ϕ goes back to its
original values once the agent behavior converges, which teaches us that a risk-averse agent can be
entirely insensitive to the environment conditions. In the Driving Game, on the other hand, the agent
must still beware a leader that applies many turns and emergency brakes. Furthermore, the CEM
provides the connection between the risk level of interest (α) and the corresponding values of ϕ (e.g.,
how many turns and brakes it takes to bring us to this risk level).
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(a) Guarded Maze (b) Servers Allocation

(c) Driving (d) Driving (e) Driving

(f) Driving (g) Driving

Figure 10: The evolution of the CE distribution parameters ϕ′ throughout the training in various benchmarks.

E The Guarded Maze: Extended Discussion

E.1 Implementation Details

In this section we specify the implementation details of the Guarded Maze. The full code is available
in the gym environment and the corresponding jupyter notebook.

The Guarded Maze benchmark: The benchmark introduces a maze of size 8× 8, with the walls
marked in gray in Figure 1d. The target is a 1× 1 square marked in green. Every episode, the initial
agent location is drawn from a uniform distribution over the lower-left quarter of the maze. Every
time step, the agent can walk in one of the directions left, right, up and down, with a step size of 1,
and an additive normally-distributed noise with standard deviation of 0.2 in each dimension. That is,

st+1 = st + at + (ϵ1, ϵ2)
⊤

where st, at ∈ R2 and ϵi ∼ N (0, 0.22) (i ∈ {1, 2}). A step that ends in a wall is cancelled, and the
agent remains in its place.

Every time-step, the agent observes its location st. In practice, we use a soft (continuous) one-hot
encoding of the agent location in the maze, calculated as a 2D interpolation between the 4 nearest
points of a 8× 8 grid, represented as a corresponding 8× 8 matrix. That is, if the agent is located
between the grid points (i, j), (i, j + 1), (i + 1, j), (i + 1, j + 1), then all the other elements of
the matrix are set to 0, and these 4 elements are assigned positive value that are summarized to 1,
according to the relative location of the agent between them. Note that the locations of the target and
the guarded zone are constant, and are not given as input.

An episode ends either when reaching the target or after 160 time-steps. The rewards are specified in
Section 5.1. The return of an episode is the sum of its rewards (i.e., no discount factor). The maze
is designed such that the mean-optimal strategy is taking the shortest path to the target, where the
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expected cost of crossing the guarded zone is E [C1C2] = ϕ1ϕ2 = 0.2 · 32 = 6.4 – smaller than the
additional cost of the longer path. The CV aR0.05-optimal strategy, however, is to take the longer
path, since sometimes short cuts make long delays [Tolkien, 1954].

Algorithms implementation: The training algorithms are specified in Section 5. In the maze
benchmark, all of them are applied to a linear model that takes as an input the one-hot encoding
described above (∈ R64), and is followed by a softmax operator with temperature T . That is,
P (aj ; θ) = exp(Tyj)/

∑
j′ exp(Tyj′) (where 1 ≤ j ≤ 4 and yj is the corresponding output of the

linear model Fθ). We set a constant T = 1 over the whole training, and T = 0 (i.e., choosing the
max-probability action) for validation and test episodes.

The CE module in CeR and CeSoR controls the parameters ϕ of the Bernoulli and the Exponential
distributions. Note that the module is aware of the original ("true") values of ϕ, but not of their
semantic meaning in the maze (e.g., it is not aware that high values are "bad", or that they only affect
the agent through the guarded zone). The sample parameters update using the moments-method is as
simple as ϕ← (mean(C1),mean(C2)), calculated over the episodes selected by the CE (Line 12 in
Algorithm 1).

E.2 Detailed Results

Figure 11 shows the distribution of the trained agent returns over the test episodes in the Guarded
Maze (note that the left tail of this distribution is displayed in Figure 1a. Figure 12 shows the mean
and CVaR of the training and validation scores throughout the training process. Below we elaborate
on the training dynamics in general, and the blindness to success in particular.

Figure 11: The full distribution of the trained agent returns over the test episodes in the Guarded Maze. Note
that Figure 1a displays the left tail of the same distribution.

Figure 12: Mean and CVaR scores over the train and validation episodes throughout the Guarded Maze training.
The shading corresponds to 95% confidence-intervals, based on bootstrapping over the episode-samples. Note
that validation and train policies are not entirely identical, as the former deterministically chooses the action of
max-probability (temperature T = 0), and the latter operates stochastically (T = 1).

Blindness to success: Section D.3 discusses the contribution of the CE sampling to the sample
efficiency. Here we discuss the contribution of soft risk level scheduling to the sample efficiency, and
in particular its prevention of blindness to success.
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(a) (b) (c)

(d)

Figure 13: For the first 100 iterations of the Guarded Maze training, (a) the percent of episodes that reached the
target through the long path; (b) the total weight of such long-path episodes that were fed to the optimizer (out
of the total weight of episodes fed to the optimizer); (c) the returns distribution over the 30th training batch; and
(d) percent of episodes (top) and total weight (bottom) for all 3 agent strategies (not only long path as in (a),(b)).

As displayed in Figure 13a, for all the agents in the beginning of the optimization process, around
10% of the episodes in every batch reach the target through the long path. At the same time, around
70% of the episodes reach the target through the short (and risky) path. As a risk-averse algorithm,
GCVaR learns to avoid the short path, and the ratio of the long-path episodes increases accordingly –
reaching up to 50% around the 15th batch (recall that in training episodes the actions are selected
randomly according to the policy softmax output with temperature 1, which allows the agent to
randomly reach the target). Nonetheless, as shown in Figure 13b, in all of the train iterations, none
of the long-path episodes belong to the bottom α = 5% episodes (which are fed to the optimizer),
hence GCVaR never learns to prefer the long-path. This demonstrates the blindness of GCVaR to the
successful long path.

In fact, after around 10 training iterations of GCVaR, all the bottom α = 5% episodes in most batches
already follow the stay-strategy (i.e., do not reach the target, nor take the guarded-zone risk), and
achieve a constant return of −32 (Figure 13c). Note that according to Equation (3), this means that
the loss gradient is identically 0. As shown in Figure 9a, the used sample size of GCVaR is indeed 0
after the 10th iteration, the effective sample efficiency is 0, and most of the changes in the agent from
this point are attributed to the remaining Adam gradient momentum.

The soft risk level scheduling eliminates the blindness to success, and allows the optimizer to observe
the long-path episodes (SoR in Figure 13b). However, at the same time, it reduces the risk-aversion
of the agent, and the long path is no longer preferred over the short path. When the risk level reduces
sufficiently, the agent may re-learn to avoid the short path, but the long path is no longer sampled at
all and cannot be learned.

Only CeSoR manages both to observe the long-path episodes (thanks to soft risk level scheduling)
and to prefer them over the short path (thanks to the risk-aversion induced by the CEM).
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Examples and visualization: Figure 14 visualizes the policies learned by PG, GCVaR and CeSoR.
While the policies are defined over all the continuous state space, the visualization is restricted to
a discrete grid. Note that CeSoR and GCVaR behave similarly in the lower-left part of the maze,
corresponding to guarded-zone avoidance; however, since GCVaR never observed the long path and
learned its benefits, it fails to learn the CVaR-optimal strategy in the upper part of the maze.

(a) (b) (c)

Figure 14: The policies learned by PG, GCVaR and CeSoR, visualized over a discrete grid within the
continuous state space of the Guarded Maze. The colors brightness around each point in the grid corresponds to
the probabilities assigned to the actions by the policy given this point.

Figure 15 shows a sample of test episodes for each of the trained agents. Due to the reduced risk-
aversion of SoR (as discussed above), its best validation CVaR score was obtained early in the
training, which may explain its non-smooth behavior in Figure 15.

Figure 15: A sample of test episodes for each of the trained agents in the Guarded Maze.
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F The Driving Game: Extended Discussion

F.1 Implementation Details

In this section we specify the implementation details of the Driving Game. The full code is available
in the gym environment and the corresponding jupyter notebook. Note that the leader behavior
generation mechanism and the policy architecture are already specified in Section 5.

Observation space: the policy receives the following variables as inputs: relative position dx, dy,
relative on-track velocity dvx, agent acceleration ax and agent direction θ.

Action space: the possible agent actions are (1) keep speed and steer; (2) accelerate; (3) decelerate;
(4) steer left; (5) steer right. The acceleration and deceleration magnitudes (+4m/s2,−6m/s2) were
determined according to the typical acceleration value described in Singh et al. [2018].

Rewards: we use the rewards defined in Singh et al. [2018], with the parameters r1 = 0.5, r2 =
0.05, r3 = 0.1, r4 = 0.5, r5 = 1, r6 = 0.5. These parameters determine the scale of the 6 additive
rewards of Singh et al. [2018], which correspond to staying behind the leader, staying close to the
leader, keeping similar speed to the leader, keeping smooth agent acceleration, staying in the same
lane as the leader, and staying on-road, respectively. We also add a new additive reward of size 5 for
any time-step with overlap between the agent and leader cars, meant to penalize collisions – which
are not explicitly expressed in the original rewards.

F.2 Detailed Results

Figures 16-18 present a detailed analysis of the results of the Driving Game experiments.

Figure 16: The full distribution of the trained agent returns over the test episodes in the Driving Game. Note
that Figure 1b displays the left tail of the same distribution.

(a) Mean (b) CV aR1%

Figure 17: Mean and CVaR scores over the validation episodes throughout the Driving Game training. The
shading corresponds to 95% confidence-intervals, based on bootstrapping over the episode-samples.
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(a) (b) (c)

(d)

Figure 18: (a-c) A sample frame in a test episode in the Driving Game. All the agents deal with the same
situation (the same sequence of leader actions, which happened to include a sequence of decelerations). While
PG collides with the leader, CeSoR keeps a safe margin – without losing as much distance as GCVaR. Note
that Figure 1e effectively displays these 3 frames together. (d) The agent-leader distance evolution in the whole
episode, and the final episode score of each agent.

Figure 19: Additional ablation tests for the Driving Game: the full returns distributions (left) and zoom-in to
their tails (right). Note that we reran the experiment for the ablation test, resulting in slightly different returns
than Figure 1. Both CeR and SoR lose to CeSoR in terms of CVaR and mean, indicating the necessity of both
soft risk and CE-sampler in CeSoR.

G The Computational Resource Allocation Problem: Extended Discussion

G.1 Implementation Details

In this section we specify the implementation details of the Resource Allocation Problem pre-
sented in Section 5.3. The full code is available in the gym environment and the corresponding
jupyter notebook.

The benchmark simulates one-hour episodes, where user-requests arrive randomly and the agent is
responsible to allocate sufficiently many servers to handle them. Once a request is attended, its service
time is distributed exponentially with an average of 1 second. Every second t, the number of arrivals
is distributed ∼ Exp(λt), where the arrival rate λt is itself an exponential moving average (EMA)
of the (unknown) users interest rt, with a typical decay of 5 minutes (i.e., λt =

299
5·60λt−1 +

1
5·60rt).

rt = 3 is usually constant, but an unpredictable event causes a peak load every second with probability
ϕ0 = 1

3·24·3600 , i.e., every 3 days (or 72 episodes) on average. In case of a peak load we set the
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momentary user interest to rt = 3 · 300, which means that the arrival rate doubles immediately to
λt =

299
300λt−1 +

1
300rt =

299
3003 +

1
3003 · 300 ≈ 6, and then starts decreasing exponentially back to 3,

with a typical decay of 5 minutes.

Every minute, the agent observes the number of active servers 3 ≤ ns ≤ 10 (initialized every episode
to ns = 4) and the number of pending user-requests in the system, and may choose to add or remove
one server (or to keep the number of servers as before). Uploading a new server takes a 2-minute
delay before the server is ready to handle requests. Removing a busy server takes effect once the
server ends its current task. Note that the servers form an ordered list, and only the last server in the
list can be directly removed. This constraint has little significance, since (1) the queue of pending
requests is a global FIFO queue (i.e., the assignment only happens when a server becomes available –
there is no separate queue per server); (2) the requests serving time is exponentially distributed, i.e.,
the remaining time of the current task is independent of the task history and thus is identical for all
the busy servers at any point of time.

Denoting by ttsi the Time-To-Service (TTS) latency of a request, the agent return is

R = −user cost− servers cost = −
∑

i∈requests

ttsi − 2

3600∑
t=1

ns
t .

Once a request is assigned to a server, its serving time∼ Exp(1) is independent of the agent decisions.
Thus, to simplify computations and to reduce the noise, we measure the TTS of a request only as the
waiting time between arrival and beginning of serving.

We set a target risk level of α = 0.01, and train each agent for n = 100 steps. During the training, we
gradually increase the episodes length L from 15 to 60 seconds. The CEM controls the peak events
frequency ϕ, or equivalently, the number of peaks per episode (which is distributed ∼ Binom(ϕ,L)).
The update function of ϕ is simply the (weighted) average number of peaks per selected episode,
divided by the episode length. ν = 50% of the episodes per batch are drawn from the original
distribution Dϕ0 .

Note that at times of no peak-loads, the arrival rate is λ = 3 and the service rate equals the number
of servers ns (since the service takes 1 second on average). Thus, in terms of queueing theory,
any number of servers ns ≥ 4 guarantees that the expected number of requests in the system is
E [nr] = 3/(ns − 3) ≤ 3. In particular, this means that the policy learned by PG (see Section 5.3)
chooses the minimal number of servers ns = 4 that can handle no-peak demand, and adds resources
only when required.

The agent policy receives a 9-dimensional vector as an input. The first 8 elements correspond to a
one-hot encoding of the current number of paid servers 3 ≤ ns ≤ 10 (including new servers that
are not finished uploading yet). The last element corresponds to the current number of pending user
requests in the queue, divided by 10r = 30 (the average number of arriving requests in 10 seconds of
no peak-load).

G.2 Detailed Results

Figure 1c summarizes the test scores of the agents, where CeSoR presents a reduction of 44% and 17%
in the CVaR cost in comparison to PG and GCVaR, respectively. In addition, its average cost is only
7% higher than PG, and 33% lower than GCVaR. That is, CeSoR significantly improves the CVaR
return without as a large compromise to the mean as in GCVaR. CeSoR also outperforms GCVaR
in episodes both with and without peak events, as shown in Figure 20b below. As demonstrated
in Figure 1f and summarized in Figure 22, PG and CeSoR learned to allocate a default of 4 and 5
servers, respectively, and to react to peak loads as needed; whereas GCVaR simply allocates 8 servers
at all times.

Note that the CE task – sampling the bottom α = 1% – is particularly challenging in this problem, due
to the combination of very rare peak events and limited expressiveness of the Binomial distributions
family. In particular, this family cannot guarantee the existence of a peak in a simulated episode
without simulating multiple peaks per episode (i.e., Pπθ

ϕ∗ ̸= Pπθ

ϕ0,α
in terms of Section 3.2). Yet,

CeSoR is demonstrated robust to the poor parameterization selection of Dϕ, as it presents a reasonable
sampling (see Appendix D.2) and improves the returns CVaR.

Figures 20-23 present a detailed analysis of the results.
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(a) (b)

Figure 20: (a) The full distribution of the trained agent returns over the test episodes in the Servers Allocation
Problem. Note that Figure 1c displays the left tail of the same distribution. (b) A box-plot of the returns
distribution for test episodes – separately for episodes with and without a peak-overloading event. CeSoR
achieves the best scores in episodes with peak events.

(a) Mean (b) CV aR1%

Figure 21: Mean and CVaR scores over the validation episodes throughout the Servers Allocation Problem
training. The shading corresponds to 95% confidence-intervals, based on bootstrapping over the episode-samples.

Figure 22: The distribution of the number of servers allocated by each agent, over all the time-steps in all the
test episodes. GCVaR allocates 8 servers in advance, whereas PG and CeSoR typically allocate 4 and 5 servers,
respectively, and add servers as needed in case of overloading.
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(a) Two episodes with no peak events: all agents ave near-zero TTS-cost, and servers cost correspond-
ing to their policy (which is itself shown in Figure 22).

(b) An episode with a peak event (right: zoom in around the event). This figure presents the same
episode displayed in Figure 1f, but normalizes the TTS and the servers allocation to the same units of
cost, as defined by the benchmark. Notice that both PG and CeSoR react to the event with allocation
of additional servers.

Figure 23: A sample of test episodes in the Servers Allocation Problem. The legends specify the TTS-cost, the
servers-cost and the total cost.

Figure 24: Additional ablation tests for the Servers Allocation Problem. Note that we reran the experiment for
the ablation test, resulting in slightly different returns than Figure 1. Both CeR and SoR lose to CeSoR in terms
of CVaR and mean, indicating the necessity of both soft risk and CE-sampler in CeSoR.
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H Distributional Reinforcement Learning for CVaR Optimization

Many RL algorithms aim to learn the value Q(s, a) of a state-action pair, representing the expected
return from choosing action a at state s. Then, given a state and a finite set of action candidates,
the agent can choose the action with the highest value. In Distributional Reinforcement Learning
(DRL), not only the expected return is learned, but rather the whole return distribution – conditioned
on s, a and the current policy. While standard DRL algorithms [Bellemare et al., 2017, Dabney et al.,
2018b] still optimize the expected return and thus are risk-neutral, the learning of the whole return
distribution encourages risk-averse variants as well [Dabney et al., 2018a].

A naive risk-averse DRL agent may simply use the learned return distribution to choose the action with
the highest risk measure (e.g., CVaR) over the returns. However, notice that the return distribution is
conditioned on the policy. Hence, similarly to other RL methods, the learned values become incorrect
once we change the policy: the CVaR of the current action does not take into account the change in
the next action. Thus, this naive approach would not truly optimize the CVaR.

Instead, a risk-averse DRL agent can train using a risk-averse actor, such that the learned distribution
is consistent with the risk-averse policy. This approach is valid and was indeed used by Dabney et al.
[2018a]. However, it suffers from similar limitations as CVaR-PG. Regarding sample-efficiency,
CVaR-DRL considers only the bottom quantiles of the distribution, whose corresponding loss function
assigns very low weights to all the returns except for the lowest ones, reducing the effective sample
size. In particular, since there is no separation between low returns and high-risk environment
conditions, still only a small portion of the data corresponds to high-risk, and it remains challenging
to learn how to act under such conditions. Regarding blindness to success, CVaR-DRL is still prone
to miss beneficial strategies: it still directs the actor policy according to the lowest returns rather than
the hardest conditions, and learns the distribution with respect to that policy.

We implemented the methods mentioned above for the Guarded Maze benchmark, on top of the
QR-DQN [Dabney et al., 2018b] implementation of Stable-Baselines [Raffin et al., 2021]. As shown
in Table 1, none of the DRL variants improved the CVaR return even in comparison to the baseline
CVaR-PG (GCVaR): the standard risk-neutral QR-DQN obtained similar returns to the risk-neutral
PG; the naive DRL approach resulted in a noisy and seemingly-meaningless policy, obtaining worse
returns than GCVaR; and the valid CVaR-DRL obtained identical returns to GCVaR.

These results support the discussion above, indicating that blindness to success and sample-
inefficiency are general limitations in risk-averse RL, and in particular apply to DRL in addition to
PG. We hope that our work will pave the way for other efficient risk-averse RL methods, beyond the
scope of PG algorithms.

Table 1: A comparison of CeSoR test returns to both PG and Distributional RL methods, over the Guarded
Maze benchmark. The first two methods are risk-neutral.

Algorithm Mean CVaR0.05
PG 4 -63

QR-DQN 3 -73
GCVaR -32 -32

CVaR-QR-DQN (only inference) -32 -39
CVaR-QR-DQN (training+inference) -32 -32

CeSoR 2 -7
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