
A Lower bounds

In this section, we show the following lower bound:
Theorem A.1. Any algorithm for Euclidean (k, `)-clustering with a finite approximation ratio has
average sensitivity Ω(k/n).

We note that, for algorithms that select k centroids only from the input X (and not from Rd \X),
there is a trivial lower bound of Ω(k/n) because when one of the centroids is deleted, which happens
with probability Ω(k/n), the algorithm must change its output. Theorem A.1 shows that the same
lower bound applies even for algorithms that may select centroids from Rd \X .

Proof of Theorem A.1. Let A be an algorithm with a finite approximation ratio. Let X =
{x1, . . . , xn} be a set of points in Rn such that x1, . . . , xk+1 are all distinct and xk+1 = xk+2 =
· · · = xn. Then for any X(i) with 1 ≤ i ≤ k, the set Zi := {x1, . . . , xi−1, xi+1, . . . , xk+1} is the
unique optimal solution, which gives the objective value zero. Hence to have a finite approximation
ratio, the algorithm A must output Zi on X(i). Let pi be the probability that the algorithm A outputs
Zi on X . Then, the average sensitivity of A on X is

1

n

n∑
i=1

dTV(A(X), A(X(i))) ≥ 1

n

k∑
i=1

dTV(A(X), A(X(i))) ≥ 1

n

k∑
i=1

(1− pi)

≥ 1

n
(k − 1) = Ω

(
k

n

)
.

B Proof of Lemma 3.5

The following useful lemma is implicit in the proof of Lemma 2.3 of [15].
Lemma B.1. For ε, B,B′ > 0, let X and X ′ be sampled from the uniform distributions over
[B, (1 + ε)B] and [B′, (1 + ε)B′], respectively. Then, we have

dTV(X,X ′) ≤ 1 + ε

ε

∣∣∣∣1− B′

B

∣∣∣∣ .
Proof of Lemma 3.5. We now analyze the size of the coreset. As we mentioned, the approximation
ratio of D`-SAMPLING is O(2` log k). Also, we have E

∑
x∈X sX,Z(x) ≤ 22`+3O(log2 k)k =

O(22`k log2 k) by Lemma 3.4. Hence by the choice of mZ , the size of C is at most

O

(
22`k log2 k

ε2

(
dk(log(22`k log2 k)) + log

1

δ

))
= Õ

(
22`k

ε2

(
dk`+ log

1

δ

))
(5)

Next, we analyze the average sensitivity. LetX = {x1, . . . , xn}. Let Z and Z(i) be the outputs ofD`-
SAMPLING onX andX(i), respectively. Then by Theorem 2.1, we have (1/n)

∑n
i=1 dTV(Z,Z(i)) =

O(k/n). Let (C,w) and (C(i), w(i)) be the coresets constructed for X and X(i), respectively. We
have

1

n

n∑
i=1

dTV((C,w), (C(i), w(i)))

=
1

n

n∑
i=1

dTV(Z,Z(i)) +
1

n

n∑
i=1

∫
dTV({(C,w) | Z = Z̃}, {(C(i), w(i)) | Z(i) = Z̃})dZ̃

= O

(
k

n

)
+

1

n

n∑
i=1

∫
dTV({C | Z = Z̃}, {C(i) | Z = Z̃})dZ̃

+
1

n

∫ ∫ n∑
i=1

dTV({w | C = C̃, Z = Z̃}, {w(i) | C(i) = C̃, Z(i) = Z̃})dC̃dZ̃. (6)

13

Now, we bound the second term. Let p(x) and p(i)(x) denote the probability of sampling x from X

and X(i), respectively, in (one iteration of) CORESET. Conditioned on that Z = Z(i) = Z̃, we have
n∑
i=1

∑
x∈X(i)

|p(x)− p(i)(x)| =
n∑
i=1

∑
x∈X(i)

∣∣∣∣∣sX,Z̃(x)

SX,Z̃
−
sX(i),Z̃(x)

SX(i),Z̃

∣∣∣∣∣
=

n∑
i=1

∑
x∈X(i)

sX,Z̃(x)(SX,Z̃ − SX(i),Z̃)

SX,Z̃SX(i),Z̃

=

n∑
i=1

∑
x∈X(i)

sX,Z̃(x) · sX,Z̃(xi)

SX,Z̃SX(i),Z̃

=

n∑
i=1

sX,Z̃(xi)

SX,Z̃
= 1.

(7)

Then, we have

1

n

n∑
i=1

dTV({C | Z = Z̃}, {C(i) | Z = Z̃}) =
mZ̃

n

n∑
i=1

p(xi) +
∑

x∈X(i)

|p(x)− p(i)(x)|

 = O
(mZ̃

n

)
.

Hence, the second term of (6) is O(EmZ/n).

Now we bound the third term of (6). By Lemma B.1, it can be bounded by

EmZ

n

n∑
i=1

 ∑
x∈X(i)

min
{
p(x), p(i)(x)

}
· 1 + ε

ε

∣∣∣∣1− p(i)(x)

p(x)

∣∣∣∣

≤ EmZ

n

n∑
i=1

 ∑
x∈X(i)

1 + ε

ε

∣∣∣p(x)− p(i)(x)
∣∣∣
 = O

(
EmZ

εn

)
,

where the last equality is by (7). By combining above, the average sensitivity of the algorithm is
given as

O

(
k

n

)
+O

(
EmZ

n

)
+O

(
EmZ

εn

)
= O

(m
εn

)
.

By combining the above and (5), the claim follows.

C Consistent transformation

In this section, we show that the general transformation discussed in Section 3 can be used to design
consistent algorithms in the random-order model. To this end, we first prove the following.
Lemma C.1. Let A be the algorithm of Lemma 3.5. Then, the probability transportation for A with
average sensitivity as in Lemma 3.5 is computable.

Proof. Let us fix a set X of n points in Rd and i ∈ [n]. Then, given a coreset (C(i), w(i)) for X(i),
we need to compute a coreset (C,w) for X . We apply the probability transportation used in the
proof of Theorem 4.3 to compute a set Z of k points for X from a set Z(i) of k points for X(i).
If Z 6= Z(i), then we compute the coreset (C,w) by running CORESET. If Z = Z(i), then we
recompute points (and weights) added to C by applying LAZYSAMPLING on each point in C(i). This
provides a probability transportation, and we can observe that all the conditions of Definition 4.1 are
satisfied.

Theorem C.2. Let A be an α-approximation algorithm for Euclidean (k, `)-clustering. Then for
any ε, δ > 0, there exists an algorithm for consistent Euclidean (k, `)-clustering in the random-order
model such that (i) it outputs (1 + ε)α-approximation with probability at least 1 − δ at each step,
and (ii) its inconsistency is

Õ

(
22`k2 log n

ε3

(
dk`+ log

1

δ

))
.

Proof. We combine Lemma 4.2 and Lemma C.1. The approximation guarantee is clearly satisfied.
The inconsistency of the algorithm is k ·

∑n
t=1O(E |C|/εt) = k log n ·O(E |C|/ε), and hence the

claim holds.

14

D Dynamic transformation

We show that the consistent transformation discussed in Section C can be implemented in such a
way that the amortized update time in the random-order model is small. Specifically, we show the
following:
Theorem D.1. Let A be an α-approximation algorithm for Euclidean (k, `)-clustering with time
complexity T (n, d, k, `). Then for any ε, δ > 0, there exists an algorithm for dynamic Euclidean
(k, `)-clustering in the random-order model that (i) outputs (1 + ε)α-approximation with probability
at least 1− δ, and (ii) its amortized update time is

O

(
dk +

(
k(k + log n) +

mT (m, d, k, `)

ε

)
log n

)
,

where m = Õ
(

22`k
ε2

(
dk`+ log 1

δ

))
.

Proof. The consistent transformation has two components, that is, D`-SAMPLING and coreset
construction.

We use the dynamic algorithm of Theorem 5.1 to run the D`-SAMPLING part and hence the amortized
update time of this part is O(dk + (k + log n)k log n).

For the coreset construction part, we maintain a coreset (C,w) and a sequence S storing
s(x1), . . . , s(xt), where s(x) is the upper bound on the sensitivity of x as in the proof of Lemma 3.5.
We maintain a binary tree on S as with dynamic version of D`-SAMPLING. When the output of
D`-SAMPLING changes after xt arrives, we recompute (C,w) and the sequence S from scratch.
When the output of D`-SAMPLING does not change, we append s(xt) to S, and then update the
coreset (C,w) using LAZYSAMPLING.

Now we analyze the amortized update time of the coreset construction part. At each step we need
O(|C| log n) time to update (C,w). Also, when the output of D`-sampling changes, we need
additional O(t log t) time to reconstruct a binary tree over S. Finally, when (C,w) is updated,
we need to recompute an optimal solution for C, which takes T (|C|, d, k, `) time. Recalling that
|C| ≤ m by Lemma 3.5, in expectation, the total computational time is bounded as

E

[
O(|C| log n) · n+

n∑
t=1

O

(
k

t

)
O(t log t) +

n∑
t=1

O

(
|C|
εt

)
· T (|C|, d, k, `)

]

= O

((
m+ k +

mT (m, d, k, `)

ε

)
· n log n

)
= O

((
k +

mT (m, d, k, `)

ε

)
n log n

)
.

Combined with the amortized time of dynamic D`-SAMPLING, the claim holds.

15

	Introduction
	Our contributions
	Related work

	Average sensitivity of D-sampling
	General transformation
	Preliminaries
	Coreset construction with low average sensitivity
	Proof of Theorem 3.1

	Consistent clustering in the random-order model
	Low average sensitivity to consistency
	Consistent D-sampling

	Dynamic clustering in the random-order model
	Dynamic D-sampling

	Conclusion
	Lower bounds
	Proof of Lemma 3.5
	Consistent transformation
	Dynamic transformation

