A Appendix

We present proofs omitted from the main text here.

Lemma 1. Let $m \in \mathbb{N}$. Then, there exists a hypothesis class $\mathcal{H} \subset \mathcal{Y}^{\mathcal{X}}$ such that for any learning rule $\mathcal{A} : \bigcup_{n=0}^{\infty} (\mathcal{X} \times \mathcal{Y})^n \to \mathcal{H}$, there exists a distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$ such that: 1. There exists a function $f^* \in \mathcal{H}$ with $R_{\mathcal{U}}(f^*; \mathcal{D}) = 0$.

2. With probability of at least 1/7 over the choice of $S \sim D^m$ we have that $R_{\mathcal{U}}(\mathcal{A}(S); \mathcal{D}) \geq 1/8$.

Proof. The proof follows from Lemma 3 in [13]. We construct \mathcal{H}_0 as follow. Pick 3m points x_1, \ldots, x_{3m} in \mathcal{X} such that for all $i, j \in [3m], \mathcal{U}(x_i) \cap \mathcal{U}(x_j) = \emptyset$. For each $b \in \{0, 1\}^{3m}$, we construct a set \mathcal{Z}_b : Initialize $\mathcal{Z}_b = \emptyset$, for each $i \in [3m]$, if $b_i = 1$ then pick a point $z \in \mathcal{U}(x_i)$ such that $z \notin \mathcal{Z}_{b'}$ for each $b' \neq b$, and add it to \mathcal{Z}_b . Let $h_b : \mathcal{X} \to \mathcal{Y}$ be a hypothesis such that $h_b(x) = 1$ if and only if $x \notin \mathcal{Z}_b$. Then, $\mathcal{H}_0 = \{h_b : b \in \{0, 1\}^{3m}\}$. Consider a subset of \mathcal{H}_0 :

$$\mathcal{H} \triangleq \{h_b \in \mathcal{H}_0 : \sum_{i=1}^{3m} b_i = m\}$$

and a family of distributions $\mathfrak{D} \triangleq \{\mathcal{D}_1, \ldots, \mathcal{D}_T\}$, where $T = \binom{3m}{2m}$ and \mathcal{D}_i is uniform over only 2m points in $\{(x_1, 1), \ldots, (x_{3m}, 1)\} \triangleq C$ for each $i = 1, \ldots, T$. For every distribution \mathcal{D}_i , there exists a classifier $h^* \in \mathcal{H}$ such that $R_{\mathcal{U}}(h^*; \mathcal{D}_i) = 0$. We now prove that there exists a distribution \mathcal{D}_r such that

$$\mathbb{E}_{\mathcal{S}\sim\mathcal{D}_r^m}\left[R_{\mathcal{U}}(\mathcal{A}(\mathcal{S});\mathcal{D}_r)\right] \geq \frac{1}{4}$$

To show this, we pick an arbitrary sequence $S \subset C$ with size m. Denote by E_S the event that $S \subset \text{supp}(\mathcal{D}_j)$, where \mathcal{D}_j is a randomly picked distribution from \mathfrak{D} . We first lower bound the expected robust loss of the classifier that rule \mathcal{A} outputs, namely $\mathcal{A}(S)$, given the event E_S ,

$$\mathbb{E}_{\mathcal{D}_i}[R_{\mathcal{U}}(\mathcal{A}(\mathcal{S});\mathcal{D}_i)|E_{\mathcal{S}}] = \mathbb{E}_{\mathcal{D}_i}\left[\mathbb{E}_{(x,y)\sim\mathcal{D}_i}\left[\sup_{x'\in\mathcal{U}(x)}\mathbb{1}[\mathcal{A}(\mathcal{S})(x')\neq y]\right]\right|E_{\mathcal{S}}\right].$$
(7)

By law of total probability, we have

$$\mathbb{E}_{(x,y)\sim\mathcal{D}_{i}}\left[\sup_{x'\in\mathcal{U}(x)}\mathbb{1}[\mathcal{A}(\mathcal{S})(x')\neq y]\right]$$

$$\geq \mathbb{P}_{(x,y)\sim\mathcal{D}_{i}}[E_{(x,y)\notin\mathcal{S}}]\mathbb{E}_{(x,y)\sim\mathcal{D}_{i}}\left[\sup_{x'\in\mathcal{U}(x)}\mathbb{1}[\mathcal{A}(\mathcal{S})(x')\neq y]|E_{(x,y)\notin\mathcal{S}}\right].$$
(8)

Since $|\mathcal{S}| = m$, and \mathcal{D}_i is uniform over its support of size 2m,

$$\mathbb{P}_{(x,y)\sim\mathcal{D}_i}[E_{(x,y)\notin\mathcal{S}}] \ge \frac{1}{2}.$$
(9)

Plug 8 and 9 into 7, we have

$$\mathbb{E}_{\mathcal{D}_i}[R_{\mathcal{U}}(\mathcal{A}(\mathcal{S});\mathcal{D}_i)|E_{\mathcal{S}}] \geq \frac{1}{2}\mathbb{E}_{\mathcal{D}_i}\left[\mathbb{E}_{(x,y)\sim\mathcal{D}_i}\left[\sup_{x'\in\mathcal{U}(x)}\mathbb{1}[\mathcal{A}(\mathcal{S})(x')\neq y]|E_{(x,y)\notin\mathcal{S}}\right]\Big|E_{\mathcal{S}}\right].$$

Since $\mathcal{A}(\mathcal{S}) \in \mathcal{H}$, by construction of \mathcal{H} , there are at least *m* points in *C* where $\mathcal{A}(\mathcal{S})$ is not robustly correct. Hence we can unroll the expectation over \mathcal{D}_i as follows

$$\mathbb{E}_{\mathcal{D}_{i}}\left[\mathbb{E}_{(x,y)\sim\mathcal{D}_{i}}\left[\sup_{x'\in\mathcal{U}(x)}\mathbb{1}[\mathcal{A}(\mathcal{S})(x')\neq y]|E_{(x,y)\notin\mathcal{S}}\right]\Big|E_{\mathcal{S}}\right]$$

$$\geq \frac{1}{m}\sum_{(x,y)\notin\mathcal{S}}\mathbb{E}_{\mathcal{D}_{i}}[\mathbb{1}_{(x,y)\in\mathrm{supp}(\mathcal{D}_{i})}|E_{\mathcal{S}}]\sup_{x'\in\mathcal{U}(x)}\mathbb{1}[\mathcal{A}(\mathcal{S})(x')\neq y]$$

$$\stackrel{(\mathrm{i})}{\geq}\frac{1}{m}\sum_{(x,y)\notin\mathcal{S}}\frac{1}{2}\sup_{x'\in\mathcal{U}(x)}\mathbb{1}[\mathcal{A}(\mathcal{S})(x')\neq y]\stackrel{(\mathrm{ii})}{\geq}\frac{1}{2},$$
(10)

where step (i) use the fact that $\mathbb{E}_{\mathcal{D}_i}[\mathbb{1}_{(x,y)\in \text{supp}(\mathcal{D}_i)}|E_{\mathcal{S}}] = \frac{1}{2}$, since for every $(x, y) \notin \mathcal{S}$, there are exactly half of the distributions in $\{\mathcal{D}\in\mathfrak{D}|E_{\mathcal{S}}\}$ whose supports contain (x, y). And in step (ii), for every point $(x, y)\notin \mathcal{S}$, we have $\sup_{x'\in\mathcal{U}(x)}\mathbb{1}[\mathcal{A}(\mathcal{S})(x')\neq y] = 1$.

Thus it follows by 10 that $\mathbb{E}_{\mathcal{D}_i}[R_{\mathcal{U}}(\mathcal{A}(\mathcal{S});\mathcal{D}_i)|E_{\mathcal{S}}] \geq \frac{1}{4}$. By law of total expectation,

$$\mathbb{E}_{\mathcal{D}_i}\left[\mathbb{E}_{\mathcal{S}\sim\mathcal{D}_i^m}[R_{\mathcal{U}}(\mathcal{A}(\mathcal{S});\mathcal{D}_i)]\right] = \mathbb{E}_{\mathcal{S}\sim\mathcal{D}_i}\left[\mathbb{E}_{\mathcal{D}_i}[R_{\mathcal{U}}(\mathcal{A}(\mathcal{S});\mathcal{D}_i)|E_{\mathcal{S}}]\right] \ge \frac{1}{4}$$

This implies that there exists $r \in [3m]$ such that $\mathbb{E}_{S \sim \mathcal{D}_r^m}[R_{\mathcal{U}}(\mathcal{A}(S); \mathcal{D}_r)] \geq \frac{1}{4}$. By Markov's inequality,

$$\mathbb{P}_{\mathcal{S}\sim\mathcal{D}_r^m}\left[R_{\mathcal{U}}(\mathcal{A}(S);\mathcal{D}_r)>1-7/8\right]\geq \frac{\mathbb{E}_{\mathcal{S}\sim\mathcal{D}_r^m}\left[R_{\mathcal{U}}(\mathcal{A}(\mathcal{S});\mathcal{D}_r)\right]-(1-7/8)}{7/8}\geq \frac{1}{7},$$

which completes the proof.

Proposition 1. Let $\mathcal{H} \subset \mathcal{Y}^{\mathcal{X}}$ be a hypothesis class and let $\tilde{\mathcal{H}}$ be the corrupted set of hypotheses induced by perturbation \mathcal{U} . Then we have

$$d_G(\tilde{\mathcal{H}}) = d_G^{\mathcal{U}}(\mathcal{H}).$$

Proof. Obviously $d_G(\tilde{\mathcal{H}}) \geq d_G^{\mathcal{U}}(\mathcal{H})$ by definition. We now prove $d_G(\tilde{\mathcal{H}}) \leq d_G^{\mathcal{U}}(\mathcal{H})$, that is, let $S = \{x_1, \ldots, x_n\} \subset \mathcal{X}$ be G-shattered by $\tilde{\mathcal{H}}$, S is also adversarially G-shattered by \mathcal{H} . Suppose $f : \mathcal{X} \to \tilde{\mathcal{Y}}$ is the function that witnesses the adversarial G-shattering of $\tilde{\mathcal{H}}$. For each $1 \leq i \leq n$, (i) if $f(x_i) = y_i \in \mathcal{Y}$, then $\tilde{g} \in \tilde{\mathcal{H}}, \tilde{g}(x_i) = y_i$ implies that $g(x') = y_i, \forall x' \in \mathcal{U}(x_i)$ and $\tilde{g}(x_i) \neq y_i$ implies that $g(x') \neq y_i, \forall x' \in \mathcal{U}(x_i)$ or $\tilde{g}(x_i) = \bot$. Both cases imply that $\exists x' \in \mathcal{U}(x_i), g(x') \neq f(x_i)$. (ii) if $f(x_i) = \bot$, then $\tilde{g}(x_i) = \bot$ means $\exists x' \in \mathcal{U}(x_i), g(x') \neq f(x_i)$ and $\tilde{g}(x_i) \neq \bot$ means $\tilde{g}(x_i) = y_i$ for some $y_i \in \mathcal{Y}$, which implies $g(x') = y_i, \forall x' \in \mathcal{U}(x_i)$. In this case $\tilde{\mathcal{H}}$ G-shatters S coincides with the definition of \mathcal{H} adversarially G-shatters S by replacing $T = S \setminus T$ in Definition 4.