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Abstract

This work analyzes the robust learning problem in the multiclass setting. Under the
framework of Probably Approximately Correct (PAC) learning, we first show that
the graph dimension and the Natarajan dimension, which characterize the standard
multiclass learnability, are no longer applicable in robust learning problem. We then
generalize these notions to the robust learning setting, denoted as the adversarial
graph dimension (AG-dimension) and the adversarial Natarajan dimension (AN-
dimension). Upper and lower bounds of the sample complexity of robust multiclass
learning are rigorously derived based on the AG-dimension and AN-dimension,
respectively. Moreover, we calculate the AG-dimension and AN-dimension of the
class of linear multiclass predictors, and show that the graph (Natarajan) dimension
is of the same order as the AG(AN)-dimension. Finally, we prove that the AG-
dimension and AN-dimension are not equivalent.

1 Introduction

Learning models that are robust to adversarial perturbations has attracted significant research attention
in recent years[1, 2, 3]. Notably, prior work on this subject has largely studied the theory of robust
learnability in the context of binary supervised learning. However, many important problems require
classification into a great number of target classes. For example, in image object recognition and
language models building[4, 5, 6, 7, 8, 9], the number of classes scales as the number of possible
objects or the dictionary size respectively. It is thus of both practical and theoretical interest to
generalize the robust binary learning theory to the robust multiclass setting.

In the standard multiclass learning setting, the finiteness of the Natarajan dimension or graph
dimension [10] (both of which are generalized from the VC-dimension [11]) is necessary and
sufficient to ensure learnability [12]. Recent work has shown that the finiteness of the VC-dimension
is neither sufficient nor necessary for (proper) robust binary classification [13]. Inspired by [13], this
paper demonstrates that the Natarajan/graph dimension can no longer characterize robust learnability
in the multiclass problem. Meanwhile, some questions naturally arise: In multiclass setting, how can
robust learning be ensured? And what is necessary for robust learning?

To answer these questions, we generalize the corrupted hypothesis classes [14], which arise from
standard hypothesis classes in the binary setting in the presence of an adversary, and use them to
reduce the robust learning problem to a non-robust one. By considering the graph dimension and
Natarajan dimension of the corrupted hypothesis classes—which are defined as the adversarial graph
dimension (AG-dimension) and adversarial Natarajan dimension (AN-dimension) respectively—we
derive the upper and lower bounds of sample complexity of the robust multiclass learning problem.
We then analyze the AG-dimension and the AN-dimension of linear multiclass predictor class,
showing that the AG(AN)-dimension and the graph (Natarajan) dimension are of the same order.
Since it is proven that the graph dimension and the Natarajan dimension are equivalent when the
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target class is finite [12], is it possible to use the AG-dimension and AN-dimension to bound each
other? Our work suggests that the equivalent relationship does not hold, which is illustrated by
constructing a hypothesis class with finite AN-dimension but not robustly learnable.

Related work. [15, 16, 17, 18] focus on the robust binary classification problem. [10] characterize
the multiclass learnability in non-robust setting. [19, 12, 20] define a large family of notions of dimen-
sions, all of which generalize the VC-dimension and may be used to estimate the sample complexity
of multiclass classification. [21] calculate the graph dimension and the Natarajan dimension of linear
multiclass predictor class. [22] upper bounds the adversarial risk of linear multiclass classifiers
based on Rademacher complexity, which cannot directly derive bounds of sample complexity of
general robust multiclass learning problems. The theory on robust multiclass learnability for general
hypothesis class is less explored. This work takes some steps towards solving this problem.

2 Preliminaries

This section introduces some basic notations and concepts used throughout the present study.

In the remainder of this article, R,N,R+ and Rd represent the sets of real numbers, natural numbers,
non-negative real numbers and d-dimensional vectors over R, respectively. We denote the set
{1, . . . , n} (for n ∈ N) by [n]. If A and B are sets, we use BA to denote the collection of all
mappings from A to B and 2A to denote the power set of A, that is the collection of all subsets of A.
Let C = {c1, . . . , cm} ⊂ X and C ′ ⊂ C be a subset of C, then IC′ ∈ [m] denotes the index set of
C ′. Let H be a class of functions defined in X , then H|C represents the restriction of H to C, that is
HC = {(h(c1), . . . , h(cm)) : h ∈ H}. We denote the indicator function by 1(event), that is 1 if an
event happens and 0 otherwise. Finally, ∥ · ∥p represents the ℓp norm.

The robust learning problem is formalized as follows. Let X = Rd be the instance space and
Y = {1, . . . , k} be the label space. For an unknown distribution D over X × Y2 and a hypothesis
class H ⊂ YX , the goal of robust learning is to find a function f ∈ H, based on n labeled training
samples S = {(xi, yi)}ni=1 drawn independent and identically distributed (i.i.d.) from D, such that
under a small perturbation U : X → 2X , the adversarial risk

RU (f ;D) ≜ E (x,y)∼D

[
sup

x′∈U(x)

l(f(x′), y)

]
is minimal for the 0-1 loss l(ŷ, y) ≜ 1(ŷ ̸= y).

The perturbation U(x) is required to be nonempty, so some choice of x′ is always available. One
choice for the perturbation is the p-norm ball (p ≥ 1) with a small radius r, i.e. U(x) = {z ∈ X :

∥z − x∥p ≤ r}. Selecting r = 0 gives the identity perturbation: I(x) ≜ {x}. Note that in this case,
the problem is reduced to a standard learning problem, and RI(f ;D) is called the standard risk of f
over D.

The mechanism of finding a function is called a learning algorithm. In this paper, we focus on proper
learning algorithms, that is, learning algorithms will always pick a function from H. Formally, a
learning algorithm is a function A : ∪∞

n=0(X × Y)n → H. A common choice of robust learning
algorithm is to learn through adversarial empirical risk minimization or AERM for short:

f̂ ∈ AERMU (H;S) ≜ argmin
f∈H

RU (f ; D̂n),

where D̂n is the empirical distribution generated by S, i.e. for (x, y) ∼ D̂n, (x, y) is equal to (xi, yi)
with probability 1/n for each i ∈ {1, . . . , n}.
Learning algorithms like AERM do not always produce a function that achieves the optimal adver-
sarial risk, because a training set consisting of finite samples is not always sufficiently informative
to represent D. Thus, we introduce the definition of robust probably approximately correct (PAC)
learnability, in the realizable and agnostic setting [14, 13]:
Definition 1 (Agnostic Robust PAC Learnability). Under perturbation U , a hypothesis class H is
robustly PAC learnable in the agnostic setting if there is a function mag

H,U : (0, 1)2 → N and a

2Formally, there is a sigma algebra F ⊂ 2X×Y of events and D is a probability measure on (X × Y,F).
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learning algorithm A : ∪∞
n=0(X × Y)n → H with the following property. For every ϵ, δ ∈ (0, 1)

and every distribution D over X × Y, let S = {(xi, yi)}ni=1 be n samples i.i.d generated by D s.t.
n > mag

H,U (ϵ, δ). Then with probability at least 1− δ,

RU (A(S);D) ≤ min
f∈H

RU (f ;D) + ϵ.

The function mag
H,U is defined as the sample complexity of learning H under perturbation U in the

agnostic setting.

Definition 2 (Realizable Robust PAC Learnability). Under perturbation U , a hypothesis class H
is robustly PAC learnable in the realizable setting if there is a function mre

H,U : (0, 1)2 → N and a
learning algorithm A : ∪∞

n=0(X × Y)n → H with the following property. For every ϵ, δ ∈ (0, 1)
and every distribution D over X × Y, let S = {(xi, yi)}ni=1 be n samples i.i.d generated by D s.t.
n > mre

H,U (ϵ, δ). Then with probability at least 1− δ,

RU (A(S);D) ≤ ϵ.

The function mre
H,U is defined as the sample complexity of learning H under perturbation U in the

realizable setting.

These definitions agree with the standard PAC learnability when U = I, which has been widely
studied in both binary (k = 2) and multiclass (k > 2) setting. We recall the known result regarding
the sample complexity of binary learning. Recall the definition of the Vapnik-Chervonenkis dimension
(VC-dimension) [11]:

Definition 3 (VC-dimension). Let H ⊂ {0, 1}X be a hypothesis class and let S ⊂ X . We say that S
is shattered by H if H|S = {0, 1}S . The VC-dimension of H, denoted by VC(H), is the maximal
cardinality of a set that is shattered by H.

The following theorem, based on the VC-dimension, characterizes the sample complexity of learning
binary hypothesis classes.

Theorem 1 ([11] and [23]). There are absolute constants C1, C2 > 0 such that for every H ⊂
{0, 1}X ,

C1

(
VC(H) + ln 1

δ

ϵ

)
≤ mre

H,I(ϵ, δ) ≤ C2

(
VC(H) ln 1

ϵ + ln 1
δ

ϵ

)
,

and

C1

(
VC(H) + ln 1

δ

ϵ2

)
≤ mag

H,I(ϵ, δ) ≤ C2

(
VC(H) + ln 1

δ

ϵ2

)
.

It is natural to seek a generalization of the VC-dimension to hypothesis classes of non-binary functions.
We recall two generalizations, both introduced by [10]:

Definition 4 (Graph dimension). Let H ⊂ YX be a hypothesis class and let S ⊂ X . We say that H
G-shatters S if there exists an f : S → Y such that for every T ⊂ S, there is a g ∈ H such that

∀x ∈ T, g(x) = f(x), and ∀x ∈ S\T, g(x) ̸= f(x).

The graph dimension of H, denoted by dG(H), is the maximal cardinality of a set that is G-shattered
by H.

Definition 5 (Natarajan dimension). Let H ⊂ YX be a hypothesis class and let S ⊂ X . We say
that H N-shatters S if there exists f1, f2 : S → Y such that ∀x ∈ S, f1(x) ̸= f2(x), and for every
T ⊂ S, there is a g ∈ H such that

∀x ∈ T, g(x) = f1(x), and ∀x ∈ S\T, g(x) = f2(x).

The Natarajan dimension of H, denoted by dN (H), is the maximal cardinality of a set that is
N-shattered by H.

Both the graph dimension and the Natarajan dimension coincide with the VC-dimension for k = 2.
Based on these notions, the following theorem provides the upper and lower bounds of sample
complexity of standard multiclass learning:
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Theorem 2 ([10] and [12]). There are absolute constants C1, C2 > 0 such that for every H ⊂ YX ,

C1

(
dN (H) + ln 1

δ

ϵ

)
≤ mre

H,I(ϵ, δ) ≤ C2

(
dG(H) ln 1

ϵ + ln 1
δ

ϵ

)
,

and

C1

(
dN (H) + ln 1

δ

ϵ2

)
≤ mag

H,I(ϵ, δ) ≤ C2

(
dG(H) + ln 1

δ

ϵ2

)
.

3 AG-dimension and upper bounds for robust multiclass learning

We start by showing that finite graph dimension is not sufficient for robust multiclass learnability.
We then introduce the notion of corrupted hypotheses, presented by [14]. By computing the graph
dimension of these hypotheses, which is defined as adversarial graph dimension, we can upper bound
the sample complexity of robust multiclass learning problem in both realizable and agnostic settings.

3.1 Finite graph dimension is not sufficient for robust multiclass learning

Theorem 2 shows that the finiteness of the graph dimension is a sufficient condition for multiclass
learnability in non-robust setting. While in adversarial setting, for hypothesis classes with finite graph
dimension, one cannot ensure the robust PAC learnability of H, even if dG(H) = 1.

Theorem 3. There exists a hypothesis class H with dG(H) = 1 and an adversary U such that H is
not robustly PAC learnable with respect to U .

To prove this theorem, We first present a lemma, which is generalized from Lemma 3 in [13].
Lemma 1. Let m ∈ N. Then, there exists a hypothesis class H ⊂ YX such that for any learning rule
A : ∪∞

n=0(X × Y)n → H, there exists a distribution D over X × Y such that:

1. There exists a function f∗ ∈ H with RU (f
∗;D) = 0.

2. With probability of at least 1/7 over the choice of S ∼ Dm we have that RU (A(S);D) ≥ 1/8.

The proof of this lemma is presented in Appendix. We now proceed with the proof of Theorem 3.

Proof of Theorem 3. The argument follows closely a proof of an analogous result by [13] for binary
robust learning, but generalizes the constructions and analyzes to match the definition of graph
dimension in the multiclass setting. For each m ∈ N, let Xm = {x(m)

1 , . . . , x
(m)
3m } be a set that

contains 3m distinct points in X subject to ∀xi, xj ∈ ∪∞
m=1Xm, if xi ̸= xj , then U(xi)∩U(xj) = ∅.

And we construct Hm on Xm as follows. For each b ∈ {0, 1}3m, we construct a set Zb : Initialize
Zb = ∅, for each i ∈ [3m], if bi = 1 then pick a point z ∈ U(x(m)

i ) such that z /∈ Zb′ for each
b′ ̸= b, and add it to Zb. Let hb : X → Y be a hypothesis such that hb(x) = 1 if and only if x /∈ Zb

and x /∈ Xm′ for m′ ̸= m. Furthermore, for fixed m ∈ N and x ∈ Xm′ s.t. m′ ̸= m, we need all hb

map x into a same label yx(̸= 1), where yx is consistent for all m. That is,

hb(x) =


¬1, x ∈ Zb,

yx( ̸= 1), ∃m′ ̸= m,x ∈ Xm′ ,

1, otherwise,

where ¬1 is some label that is not equal to 1. Then define

Hm = {hb : b ∈ {0, 1}3m,

3m∑
i=1

bi = m}.

Let H = ∪∞
m=1Hm. We claim that dG(H) ≤ 1. That is, if pick two points x1, x2 ∈ X such that

x1 ̸= x2,H cannot G-shatters {x1, x2}. since for all h ∈ H and x ∈ X , there are at most two
cases of h(x), one of which is 1. Hence the only f : {x1, x2} → Y in Definition 4 that needs to be
considered is f(x1) = f(x2) = 1. There are six cases to consider:
(1) There exists m ∈ N such that z1, z2 ∈ Xm. Then ∀hb ∈ Hm, x1, x2 /∈ Zb by the construction of
Zb. Hence hb(x1) = hb(x2) = 1. And ∀h ∈ Hm′ for m′ ̸= m, we have h(x1) = yx1

̸= 1, h(x2) =
yx2

̸= 1. So we only obtain labelings (1, 1) and (¬1,¬1).
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(2) There exists m ∈ N such that x1, x2 ∈ U(Xm)\Xm. There are two sub-cases to consider. (i) ∃b
s.t. hb ∈ Hm and x1, x2 ∈ Zb, then we have hb(x1) ̸= 1 and hb(x2) ̸= 1. For the remaining h ∈ H
we have h(x1) = h(x2) = 1. So we only obtain labelings (1, 1) and (¬1,¬1) in this sub-case. (ii)
For the remaining sub-cases, labeling (¬1,¬1) cannot be obtained since x1, x2 /∈ Xm for all m and
there is no b such that x1, x2 are in Zb in the same time.
(3) x1 ∈ Xm and x2 ∈ Xm′ for m ̸= m′. In this case, we have h(x1) = 1, h(x2) ̸= 1 for h ∈ Hm,
and h(x1) ̸= 1, h(x2) = 1 for h ∈ Hm′ . For those predictors that are in neither Hm nor Hm′ , we
have h(x1) ̸= 1, h(x2) ̸= 1. Hence we cannot label both points x1 and x2 with (1, 1).
(4) x1 ∈ Xm and x2 ∈ U(Xm′)\Xm′ for m ̸= m′. Observe that h(x1) = 1 if and only if h ∈ Hm.
But for all h ∈ Hm, h always labels x2 with 1. Hence labeling (1,¬1) cannot be obtained.
(5) x1 ∈ U(Xm)\Xm and x2 ∈ U(Xm′)\Xm′ for m ̸= m′. Similar to the discussion above, for all
h ∈ H, either h(x1) = 1 or h(x2) = 1. So we cannot obtain labeling (¬1,¬1).
(6) The remaining cases, i.e. x1, x2 /∈ U(Xm) for all m ∈ N. In this case we can only obtain labeling
(1, 1) since for all h ∈ H, we have h(x1) = h(x2) = 1.

The arguments above show that dG(H) ≤ 1. It remains to show H is not robustly PAC learnable. By
Lemma 1, it follows that for any learning rule A : ∪∞

n=0(X × Y)n → H and for any m ∈ N, there
exists a distribution D over Xm ×Y where there exists a predictor h∗ ∈ H with RU (h

∗;D) = 0, but
with probability at least 1/7 over S ∼ Dm, RU (A(S);D) > 1/8 if A(S) ∈ Hm. Classifiers in Hm′

where m′ ̸= m are also non-robust since they make mistakes on points in Xm. This concludes that
H is not robustly PAC learnable, which completes the proof.

3.2 Adversarial graph dimension

Consider a given hypothesis f : X → Y. A labeled adversarial sample (x̃, y) is classified correctly if
x̃ ∈ f−1(y). A labeled example (x, y) is classified correctly if U(x) ⊂ f−1(y). Following [14], let
Ỹ = Y ∪ {⊥}, where ⊥ is the special “always wrong” output, i.e. l(y,⊥) = l(⊥, y) = 1 for every
y ∈ Ỹ. We define the mapping κU : YX → ỸX :

κU (f)(x) =

{
y, U(x) ⊂ f−1(y),

⊥, otherwise.
(1)

The corrupted set of hypotheses induced by perturbation U is then defined by H̃ = {κU (f) : f ∈ H}.
Lemma 2 (Lemma 2 in [14]). For any perturbation U and distribution D, RU (f ;D) =
RI(κU (f);D).

This lemma bridges the equivalence between robustly learning H and learning H̃ without adversary,
which enables us to use standard techniques to bound the sample complexity. Intuitively, we can
derive a sufficient condition by considering the graph dimension of H̃, which can be equivalently
formalized as follows:

Definition 6 (Adversarial Graph Dimension). Let H ⊂ YX be a hypothesis class and let S ⊂ X . We
say that H adversarially G-shatters S if there exists an f : X → Y such that for every T ⊂ S, there
is a g ∈ H such that

∀x ∈ T, ∀x′ ∈ U(x), g(x′) = f(x)

and
∀x ∈ S\T, ∃x′ ∈ U(x), g(x′) ̸= f(x).

The adversarial graph dimension (AG-dimension) of H, denoted by dUG(H), is the maximal cardinality
of a set that is adversarially G-shattered by H.

Proposition 1. Let H ⊂ YX be a hypothesis class and let H̃ be the corrupted set of hypotheses
induced by perturbation U . Then we have

dG(H̃) = dUG(H).

The proof is presented in Appendix.

Intuitively, by combining the above proposition with Lemma 2 and Theorem 2, we can upper bound
the sample complexity of robust multiclass learning. Formally:
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Theorem 4. There are absolute constants C > 0 such that for every H ⊂ YX ,

mre
H,U (ϵ, δ) ≤ C

(
dUG(H) ln( 1ϵ ) + ln( 1δ )

ϵ

)
, and mag

H,U (ϵ, δ) ≤ C

(
dUG(H) + ln( 1δ )

ϵ2

)
.

Proof. Let H ⊂ YX be a hypothesis class with dUG(H) = d. For every f ∈ H, define f̄ : X × Y →
{0, 1} by setting f̄(x, y) = 1 if and only if f(x′) = y for all x′ ∈ U(x). Note that according to our
construction, we have

P(x,y)∼D[f̄(x, y) ̸= 1] = E (x,y)∼D

[
sup

x′∈U(x)

1(f(x′) ̸= y)

]
. (2)

In the realizable case, let H̄ = {f̄ : f ∈ H}. From the definition, we can see that VC(H̄) = dUG(H).

By Theorem 1, there exists C > 0 such that when we draw m > C(dϵ ln(
1
ϵ ) +

1
ϵ ln(

1
δ )) samples i.i.d.

from some distribution D on X ×Y, then with probability at least 1− δ we have P(x,y)∼D[f̄(x, y) ̸=
1] ≤ ϵ. Plugging 2 into this inequality, we complete the proof for the realizable case and it is similar
for the agnostic case.

4 AN-dimension and lower bounds for robust multiclass learning

In this section, we discuss the necessary conditions for robust multiclass learnability.

4.1 Finite Natarajan dimension is not necessary for robust multiclass learning

We first show that the finiteness of ordinary Natarajan dimension is also not necessary for robust
multiclass learnability.
Theorem 5. There exist H,U such that dN (H) = ∞ but H is robustly PAC learnable under U , i.e.
mag

H,U (ϵ, δ) < ∞.

Proof. The proof follows the construction from [13], which shows that finite VC-dimension is not
necessary for robust binary learnability. Let H = YX be the family of all mappings from X to Y
and U(x) = X be an all-powerful adversary. It is easy to see that ∀n ∈ N, there exist n distinct
points in Rd that are N-shattered by H, hence dN (H) = ∞. Given a distribution D on X × Y, let
S = {(xi, yi)}mi=1 be m samples drawn i.i.d from D and A be a learning rule such that A(S) returns
a constant-label predictor h :

h(x) = km := argmax
k∈Y

∣∣{1 ≤ i ≤ m : yi = k}
∣∣, ∀x ∈ X .

According to the weak law of large numbers, D̂m → D as m → ∞, where D̂m is the empirical
distribution generated by S, we have P

[
km = argmaxk∈Y P(x,y)∼D[y = k]

]
→ 1 as m → ∞.

Hence for all δ ∈ (0, 1) there exists a m0 ∈ N such that when m > m0, RU (h;D) reaches the
optimal adversarial risk in H, i.e. RU (h;D) = argminf∈H RU (f ;D) with probability at least
1− δ.

4.2 Adversarial Natarajan dimension

Following the idea of generalizing the graph dimension to the AG-dimension, for a given hypothesis
class H, one can consider the Natarajan dimension of its corrupted hypothesis class to lower bound
the sample complexity of robust learnability. However, there are several natural but different ways
in which the notion of N-shattering can be generalized: that is, we can either let f2 that witnesses
H̃ N-shattering S take the value “ ⊥ ” or not. Both notions derive a necessary condition for robust
learnability. In this work, we choose the stronger notion, i.e. we need the entire perturbation sets to
be N-shattered by H.

Definition 7 (Adversarial Natarajan Dimension). Let H ⊂ YX be a hypothesis class and let S ⊂ X .
We say that H adversarially N-shatters S if there exist f1, f2 : X → Y such that ∀y ∈ S, f1(y) ̸=
f2(y), and for every T ⊂ S, there is a g ∈ H such that

∀x ∈ T, ∀x′ ∈ U(x), g(x′) = f1(x)

6



and
∀x ∈ S\T, ∀x′ ∈ U(x), g(x′) = f2(x).

The adversarial Natarajan dimension (AN-dimension) of H, denoted by dUN (H), is the maximal
cardinality of a set that is adversarially N-shattered by H.

Based on this definition, we present that:
Theorem 6. There are absolute constants C > 0 such that for every H ⊂ YX ,

mre
H,U (ϵ, δ) ≥ C

(
dUN (H) + ln( 1δ )

ϵ

)
, and mag

H,U (ϵ, δ) ≥ C

(
dUN (H) + ln( 1δ )

ϵ2

)
.

Proof. Let H ⊂ YX be a hypothesis class such that dUN (H) = d, and let Hd = {0, 1}[d] be the
family of all mappings from [d] to {0, 1}. We want to show that for every learning algorithm A for
H and every ϵ, δ ∈ (0, 1), there exists a learning algorithm Ā satisfying: if there exists a function
mre

A,U : (0, 1)2 → N such that when A witnesses m > mre
A,U (ϵ, δ) samples (denoted as S) drawn

i.i.d from some distribution D,P[RU (A(S);D) ≤ ϵ] > 1− δ. Then when Ā witnesses m samples
(denoted as S′) drawn i.i.d from some distribution D′ on [d]×{0, 1},P[RI(Ā(S′);D′) ≤ ϵ] > 1− δ
holds. By this claim, we have mre

Ā,I ≤ mre
A,U , thus mre

Hd,I ≤ mre
H,U . Note that VC(Hd) = d, so by

Theorem 1 we have mre
H,U (ϵ, δ) ≥ C(d+ln(1/δ)

ϵ ) for some constant C > 0 (independent of H), and
similarly for the agnostic case.

We now prove the claim. Let {s1, . . . , sd} ⊂ X be a set and let f0, f1 be functions that witness
the adversarial N-shattering of H. Given a sample set S′ ≜ {(xi, yi)}mi=1 ⊂ [d] × {0, 1}, let
g = A({sxi , fyi(sxi)}mi=1). Consider the learning algorithm Ā : ∪∞

n=0([d]× {0, 1})n → Hd :

Ā(S′)(j) =

{
1, g(s′j) = f1(sj),∀s′j ∈ U(sj),
0, otherwise.

Denote Ā(S′) by f. By the definition of adversarial N-shattering, it can be derived that f(j) = 0 if
and only if g(s′j) = f2(sj),∀s′j ∈ U(sj). By the construction we have

E (j,y)∼D′ [1(f(j) ̸= y)] = E (j,y)∼D′ [ sup
s′j∈U(sj)

1(g(s′j) ̸= fy(sj))] = E (x,y)∼D̂′
m
RU (g; D̂′

m),

where D̂′
m is defined by PD̂′

m
(X = sj , Y = fy(sj)) = PD′(J = j, B = y).

5 The AG/AN-dimension of linear multiclass predictors

In this section, we calculate the AG-dimension and AN-dimension for linear multiclass predictors
under bounded lp perturbation, motivated by the binary results of [14] and the non-adversarial
results of [21]. Recall the definition of linear multiclass predictors. Let Ψ : X × Y → Rdk be a
class-sensitive feature mapping [24]:

Ψ(x, y) = [0, . . . , 0︸ ︷︷ ︸
∈R(y−1)d

, x(1), . . . , x(d)︸ ︷︷ ︸
∈Rd

, 0, . . . , 0︸ ︷︷ ︸
∈R(k−y)d

],

where x(i) represents the ith coordinate of x. The class of linear multiclass predictors is defined as

HΨ = {x 7→ argmax
i∈Y

⟨w,Ψ(x, i)⟩ : w ∈ Rdk}. (3)

We cite that the graph dimension and Natarajan dimension of HΨ is given by (d − 1)(k − 1) ≤
dN (HΨ) ≤ dG(HΨ) ≤ O(dk ln(dk)) [21]. We will demonstrate that the AG-dimension and AN-
dimension also satisfy this bound in the remainder of this section. To this end, we start by calculating
the AN-dimension of HΨ. Specifically, one can show that the AN-dimension of HΨ equals to the
standard Natarajan dimension of HΨ.
Theorem 7. Let U(x) = {z ∈ X : ∥z − x∥p ≤ r} for some r ∈ R+ and p ∈ R+ ∪ {∞}, and let
HΨ be as defined in 3. Then, the AN-dimension of HΨ satisfies dUN (HΨ) = dN (HΨ).
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Proof. Since adversarial N-shattering implies N-shattering, we have dUN (HΨ) ≤ dN (HΨ). To prove
the inverse inequality, it should be noted that the classifiers in HΨ are linear, hence if HΨ N-shatters
S, it also N-shatters the set with some x ∈ S replaced by ∀x′ ∈ lx, where lx is the half-line which
terminates at 0 and goes through x. For those x ∈ S that cannot be adversarially N-shattered by HΨ,
we can always find some x′ ∈ lx such that U(x′) does not cross the decision boundary of gT that
witnesses the N-shattering for all T ∈ S.

Note that the Natarajan dimension of HΨ satisfies (d− 1)(k − 1) ≤ dN (HΨ) ≤ dk (Corollary 29.8
in [25]). Combine this result with Theorem 7, we have:

Corollary 1. Under the conditions of Theorem 7, (d− 1)(k − 1) ≤ dUN (HΨ) ≤ dk.

Next, we present the AG-dimension of HΨ:

Theorem 8. Let U(x) = {z ∈ X : ∥z − x∥p ≤ r} for some r ∈ R+ and p ∈ R+ ∪ {∞}, and let
HΨ be as defined in 3. Then, the AG-dimension of HΨ satisfies

(d− 1)(k − 1) ≤ dUG(HΨ) ≤ O(dk ln(dk)).

To prove this result, we first present a lemma, which can be viewed as the generalization of Sauer’s
Lemma [26] in the adversarial setting. We first define the restriction of a corrupted class. Let H̃ be
the corrupted hypothesis class induced by U . Let S = {x1, . . . , xm} ⊂ X . Fix a f ∈ YS , for each
h ∈ H, define hf : S → {0, 1} such that hf (xi) = 1 if and only if κU (h)(xi) = f(xi), i ∈ [m].

Define Hf = {hf : h ∈ H}. The restriction of H̃ to S is defined by:

H̃|S = Hf∗|S , where f∗ = argmax
f∈YS

∣∣∣Hf |S
∣∣∣.

Lemma 3. Let U be an adversary and H be a hypothesis class with dUG(H) ≤ dG < ∞. Let H̃ be
the corrupted hypothesis class induced by U . Let S = {x1, . . . , xm} ⊂ X . Then, for all m > dG + 1
we have

|H̃|S | ≤
(
em

dG

)dG

.

Proof. By Sauer’s Lemma [26] and the fact that VC(Hf ) ≤ dUG(H) for all f ∈ YS .

We now prove Theorem 8. The construction idea follows the proof of the non-adversarial results in
[21].

Proof of Theorem 8: The lower bound follows from Theorem 7 and the fact that dUG(H) ≥ dUN (H)
for all H. To upper bound dG := dUG(H), let S = (x1, . . . , xdG

) ∈ Rd be a set which is adversarially
G-shattered by HΨ, and let f : S → Y be a function that witnesses the shattering. For every
(i, j) ∈ [dG] × [k], define zi,j = Ψ(xi, f(xi)) − Ψ(xi, j). Denote Z = {zi,j |(i, j) ∈ [dG] × [k]}.
We now show that there exists a injective mapping from subsets of S to Wdk

f |Z , where Wdk is the
class of halfspace classifiers over Rdk.

For each T ⊂ S, by the definition of adversarial G-shattering, ∃hT ∈ HΨ such that

∀x ∈ T, ∀x′ ∈ U(x), hT (x
′) = f(x), and ∀x ∈ S\T, ∃x′ ∈ U(x), hT (x

′) ̸= f(x). (4)

Let wT ∈ Rdk be the vector defines hT , 4 implies

∀x ∈ T, ∀x′ ∈ U(x),∀j ∈ [k], ⟨wT ,Ψ(x′, f(x))⟩ ≥ ⟨wT ,Ψ(x′, j)⟩,

and
∀x ∈ S\T, ∃x′ ∈ U(x),∃j ∈ [k], ⟨wT ,Ψ(x′, f(x))⟩ < ⟨wT ,Ψ(x′, j)⟩. (5)

It can be easily derived from 5 that ∀i ∈ IS\T ,∃j ∈ [k],∃z′ ∈ V(zi,j) s.t. ⟨wT , z
′⟩ < 0, where V is

the p-norm ball in Rdk with radius r. And from 5 we can assume w.l.o.g that ∀i ∈ IT ,∀j ∈ [k],∀z′ ∈
V(zi,j), ⟨wT , z

′⟩ ≥ 0. This is because if there exists some z′ ∈ V(z) s.t. ⟨wT , z
′⟩ < 0, notice that

z′ = V(c′)+zi,j for some bounded c′, we can replace xi by some x′
i without destroying the adversarial

G-shattering (see the trick used in proof of Theorem 7), to ensure ⟨wT ,Ψ(x′
i, f(xi))−Ψ(x′

i, j)⟩ >
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⟨wT , c⟩,∀c ∈ V(0). Consequently, for every T ∈ S we obtain a label pattern PT : [dG] × [k] →
{0, 1} :

PT (zi,j) = 1( min
z′∈V(zi,j)

⟨wT , z
′⟩ ≥ 0).

It satisfies that ∀i ∈ IT , j ∈ [k], PS(i, j) = 1 and ∀i ∈ IS\T ,∃j ∈ [k], PT (i, j) = 0, which implies
PT ̸= PT ′ for T ̸= T ′. And by definition PT is connected with a unique element in Wdk

f |Z , which
completes the proof of our claim.

Note that the AG-dimension of halfspace classifier class with respect to U coincides with the definition
of adversarial VC-dimension in [14]. Thus it satisfies that dUG(Wdk) = dk + 1 by Theorem 2 in [14].
Consequently, we have

|2S | = 2dG ≤
∣∣∣Wdk

f |Z
∣∣∣ ≤ ∣∣∣W̃dk|Z

∣∣∣ (i)

≤
(

e|Z|
dUG(Wdk)

)dU
G(Wdk)

≤ (kdG)
dk+1,

where we have used Lemma 3 in step (i). We conclude that dG ≤ O(dk ln dk).

6 AG-dimension and AN-dimension are not equivalent

In previous sections, we have shown that the finiteness of the AN-dimension is a necessary condition
for robust learnability, and the finiteness of the AG-dimension is a sufficient condition for robust
learnability. Furthermore, we analyze these definitions on the linear multiclass predictor class,
finding that the AG-dimension (AN-dimension) matches the order of the graph dimension (Natarajan
dimension) for this class. The following question therefore naturally arises: are these two quantities
equivalent? In [12], it is proven that for every hypotheses class H ⊂ YX ,

dN (H) ≤ dG(H) ≤ 4.67 log2(k)dN (H). (6)
That is, in standard learning setting, if k ≤ ∞ then the definition of the Natarajan dimension and the
graph dimension are indeed equivalent, hence both the Natarajan dimension and graph dimension
can characterize the standard learnability of a hypothesis class. However, in the adversarial setting
(U ̸= I), the generalized definitions derived above cannot bound each other. To show this, we claim
that finite AN-dimension is not sufficient for robust learnability.
Theorem 9. There exist H,U such that dUN (H) = 0 but H is not robustly PAC learnable under U ,
i.e. mag

H,U (ϵ, δ) = ∞.

Proof. Let U be the 2-norm ball: U(x) = {z ∈ X : ∥z − x∥2 ≤ r} for all x ∈ X and some r > 0.
We construct H as follow. Pick a sequence {xi}∞i=1 ⊂ X such that for any i ̸= j,U(xi)∩U(xj) = ∅.
Let f : X → Y be a function satisfying: there exists zi ∈ U(xi)\xi such that f(zi) ̸= f(xi) for each
i ∈ N. For each sequence b = {bi}∞i=1 ⊂ {0, 1}, define hb : X → Y :

hb(x) =


f(xi), x ∈ U(xi)\zi, i ∈ N,
f(xi), x = zi and bi = 1,

f(zi), x = zi and bi = 0,

1, otherwise.

Let H = {hb : b is a sequence in {0, 1}}. Using the same approach employed in the proof of Lemma
1, for any learning rule A : ∪∞

n=0(X × Y)n → H, there exists a distribution D over X × Y such
that there exists a function f∗ ∈ H with RU (f

∗;D) = 0, and with probability of at least 1/7 over
the choice of S ∼ Dm we have that RU (A(S);D) ≥ 1/8, by considering the distribution family D
containing distributions that are uniform over 2m points in {(x1, f(x1)), . . . , (x3m, f(x3m))}. We
complete the proof by noting that dUN (H) = 0, since there is no single r-ball that is adversarially
N-shattered by H.

7 Conclusion

In this work, we construct the concepts of AG-dimension and AN-dimension to upper bound and
lower bound the sample complexity of robust multiclass learning, respectively. We further analyze the
AG/AN-dimension of linear multiclass predictors and prove that AG-dimension and AN-dimension
are not equivalent in general. However, establishing a complexity measure that characterizes robust
learnability still remains an open question.
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