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Abstract

In theorem proving, the task of selecting useful premises from a large library to1

unlock the proof of a given conjecture is crucially important. This presents a2

challenge for all theorem provers, especially the ones based on language models,3

due to their relative inability to reason over huge volumes of premises in text4

form. This paper introduces Thor, a framework integrating language models and5

automated theorem provers to overcome this difficulty. In Thor, a class of methods6

called hammers that leverage the power of automated theorem provers are used for7

premise selection, while all other tasks are designated to language models. Thor8

increases a language model’s success rate on the PISA dataset from 39% to 57%,9

while solving 8.2% of problems neither language models nor automated theorem10

provers are able to solve on their own. Furthermore, with a significantly smaller11

computational budget, Thor can achieve a success rate on the MiniF2F dataset that12

is on par with the best existing methods. Thor can be instantiated for the majority13

of popular interactive theorem provers via a straightforward protocol we provide.14

1 Introduction15

In theorem proving, premise selection is the task of identifying useful facts from a large library16

that enable finding the proof of a given conjecture. It is essential for the discovery of many proofs,17

and Automated Reasoning in Large Theories (ARLT) depends on having apt methods for premise18

selection [Kühlwein et al., 2012, Sutcliffe et al., 2007]. A group of proof methods have been developed19

inside interactive theorem provers (ITPs) to deal with this task. They use external automated theorem20

provers (ATPs) to reach the remaining goals, inspect the proofs produced, and pick out the premises21

involved in them. Such systems are called hammers [Blanchette et al., 2016]. Hammers are available22

in many ITPs [Paulson, 2010, Kaliszyk and Urban, 2015, Gauthier and Kaliszyk, 2015, Czajka and23

Kaliszyk, 2018] and are immensely popular within the theorem proving community.24

Language models have had some successful applications in the area of formal theorem proving [Polu25

and Sutskever, 2020, Han et al., 2021, Jiang et al., 2021, Polu et al., 2022]. However, we observe that26

language-model-based reasoning systems are inept at premise selection. The difficulty of premise27

selection for language models is that they cannot effectively reason over thousands of available facts28

and their definitions in plain text form. In subsection 2.2, we elaborate on the scale of the problems29

language models need to deal with for premise selection and provide empirical evidence for this30

difficulty. Seeing that hammers are very good at finding relevant facts, we propose in our framework31

to offload the premise selection task to them from language models. The resulting system is Thor, a32

framework that organically integrates language models and ATPs via the use of hammers.33

The methodology of Thor is simple and can be deployed in any hammer-enabled ITP: we first use34

the hammer method to attempt to prove every proof state in the training problems, and mark the35

successful application steps. Then we train the language model on the training problems, predicting a36
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special token (e.g., <hammer>) if the hammer can be applied at the state. When doing evaluation, if37

the language model emits the special token, we invoke the hammer method. This methodology incurs38

very little extra computation compared to standard language model training while capitalising on the39

potential of a hybrid neuro-symbolic model.40

To demonstrate the usefulness of Thor, we instantiate it with a language-model-based reasoning41

system for the ITP Isabelle and Sledgehammer [Paulson, 2010], Isabelle’s implementation of the42

hammer method. We then investigate the performance of the instantiated Thor system on two datasets,43

PISA [Jiang et al., 2021] and MiniF2F [Zheng et al., 2022]. On PISA we dramatically improve the44

success rate of a language-model-based reasoning system from 39.0% to 57.0% and solve 8.2% of45

problems that cannot be solved by either language models or Sledgehammer alone. On MiniF2F, Polu46

et al. [2022] used expert iteration to improve on a language model and achieved the state-of-the-art47

1-pass success rate of 29.6%. With much less computation, Thor increases this rate to 29.9%, slightly48

exceeding the previous result. It is worth noting that Thor and expert iteration can be used in tandem.49

In this paper, we demonstrate that finding suitable sub-systems for premise selection can benefit50

the performance of the overall reasoning system. Given Thor’s strong performance, computational51

efficiency, and applicability to many ITPs, we believe it should become a strong baseline as often as52

possible when language models are used for theorem proving.53

Contributions54

1. We created Thor, a theorem proving framework which integrates language models and55

automated theorem provers via using hammers.56

2. We raised the state-of-the-art success rate of language-model-based reasoning systems on57

PISA from 39.0% to 57.0%. Thor proved 8.2% theorems which cannot be proved by either58

language models or Sledgehammer.59

3. We improved the state-of-the-art success rate on MiniF2F from 29.6% to 29.9%, matching60

the language models trained with expert iteration, but with far less computation.61

2 Background62

2.1 Automated and Interactive Theorem Proving63

Mechanising theorem proving has been a grand challenge of artificial intelligence since the late64

1950s [Gelernter, 1959]. A group of systems which we call automated theorem provers attempt to65

use automated procedures to determine the validity of conjectures (e.g., the DPLL algorithm [Davis66

et al., 1962] for SAT problems [Tarski, 1969]). Popular examples of ATPs include E, SPASS, Z3,67

CVC4, and Vampire. Although SAT is known to be NP-complete [Cook, 1971], modern ATPs can68

often solve problems with millions of symbols [Ohrimenko et al., 2009] and are useful practically.69

ATPs are often based on fragments of first-order logic, which limits the type of theorems they can70

express. Hence, projects such as the formalisation of complicated mathematical results [Gonthier71

et al., 2008, Avigad et al., 2007, Gonthier et al., 2013, Scholze, 2021] and operating system kernel72

verification [Klein et al., 2009] are done in interactive theorem provers, often based on higher-order73

logic or dependent type theory. ITPs and ATPs have very different objectives: ITPs aim at making it74

easy to formalise a diverse set of problems in numerous mathematical domains in a sound manner;75

while ATPs focus on improving the efficiency and performance on very well-defined problems like76

SAT solving. Prominent ITPs include Isabelle, Mizar, HOL Light, HOL4, Lean, and Coq. Theorem77

proving in ITPs can be modelled as a sequential decision process: initially a theorem gets declared78

and the proof state contains some goals; at each step, the user produces a proof step that79

applies to and transforms the proof state; when all the goals have been discharged, the theorem is80

considered proven. Large libraries of mathematical knowledge such as the Archive of Formal Proofs181

and the Mizar Mathematical Library2 have been built around these ITPs. Because of the size of these82

mathematical libraries, to find useful premises in them is a difficult problem. In the next subsections83

we illustrate how two different approaches deal with premise selection.84

1https://www.isa-afp.org
2http://mizar.org/library/

2
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(a) The proof sketch produced by the human
user. The sledgehammer command indi-
cates that the human invokes the Sledgeham-
mer method at that point.

(b) The proof accepted by Isabelle. The steps containing
assume, obtain, have, show are from the original hu-
man proof sketch. The steps containing metis, smt,
fastforce, blast, auto, fastforce are completed by
Sledgehammer.

Figure 1: A proof of
√
2 /∈ Q, adapted from the original by Li et al. [2021] with consent.

2.2 Language Models for Theorem Proving85

Language models that automate theorem proving mostly follow the approach of the GPT-f86

model [Polu and Sutskever, 2020]: pre-trained causal language models are used to predict a proof87

step that can be applied, given the current proof state and some optional context. Concretely,88

a language model can take as input and output, two sequences of the following form:89

INPUT: <SOS> <CTXT> $(context) <PRF_STT> $(proof state) <PRF_STP>
OUTPUT: $(proof step) <EOS>

At test time, the reasoning system receives the text representation of the current proof state,90

samples a proof step from the language model, applies it to the ITP, and repeats until the proof91

is finished or a computational budget has been reached. A best-first strategy is often used for proof92

search: a queue of search nodes is maintained with the priority being the accumulated log likelihood93

of the generated proof steps.94

Language models treat all input and output information as text and they are usually limited to be a few95

thousands of characters long. To do premise selection well, the language model has to either memorise96

all the relevant premises during training, or be prompted with available premises in evaluation. It97

is difficult to do the former because a mathematical corpus can have too many facts for a language98

model to remember. For example, the Archive of Formal Proofs has more than 200,000 theorems,99

plus the numerous definitions and their derivations to serve as premises. The latter is no easier100

because there may be too many premises to fit into the input. For instance, if we use the textual101

representation of 300 available premises (a usual number used for premise selection with symbolic102

tools) and their definitions as the context in the input-output format above, the input length can103

well exceed 10,000 characters and the limit of standard language models. We observe that empirically104

1.9% of the steps involving premise selection generated by the language model manage to advance105

the proof, while the number is 28.2% for steps having no premises. Hence, a good mechanism for106

premise selection could bring crucial benefits.107

2.3 Hammers108

Blanchette et al. [2016] define hammers as methods that “automate reasoning over large libraries109

developed with formal proof assistants (ITPs)”. Consider, for example, Sledgehammer (designed110

for Isabelle) which is the original and the most popular implementation of hammers. Figure 1111

presents a proof of
√
2 /∈ Q in Isabelle. The beauty of using Sledgehammer with Isabelle is that112

despite the complicated-looking proof, humans only need to sketch the proof in Figure 1a and let113

Sledgehammer find all the necessary premises to complete every single proof step. The final accepted114

proof is presented in Figure 1b. The Sledgehammer proof steps use the internal proof methods115
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metis, meson, smt, auto, simp, fastforce and blast. Conveniently, this tells us which116

steps in the corpus are generated by Sledgehammer. Note that a human user might also use the proof117

methods auto, simp, fastforce and blast as these do not contain additional premises. Only118

the methods metis, meson, smt are exclusive to Sledgehammer.119

We now describe how Sledgehammer performs premise selection: Sledgehammer makes it possible120

to leverage the advancement of ATP research while using ITPs, and can thus be seen as a bridge121

between the two [Paulson, 2010]. When invoked, Sledgehammer translates the current goal together122

with hundreds of possibly relevant premises into a format (e.g., SMT-LIB, TPTP) that external123

ATPs can understand [Meng and Paulson, 2008]. The ATPs are then executed to solve the current124

goal. Note that Isabelle follows a kernel philosophy (i.e., only a handful of axioms and inference125

rules are trusted), and external ATPs are used skeptically—should a proof be found by the ATPs,126

Sledgehammer picks out the useful premises, and reconstructs the proof within the Isabelle kernel127

(e.g., using the primitive inference rules). Here, external ATPs serve as relevance filters of premises128

rather than trusted oracles. Hammers implemented in other ITPs are largely similar.129

3 Thor130

In this section we introduce Thor, a framework integrating language models and automated theorem131

provers via the use of hammers. Thor is motivated by the difficulty for language models to do premise132

selection and the excellent performance of hammers for it: we should be able to drastically improve133

automation in theorem proving if we can take the best from both worlds.134

Below we provide the protocol of adopting Thor for a hammer-enabled ITP. We first provide Thor’s135

training data preprocessing procedure in Algorithm 1, and then look at a concrete example to136

demonstrate its use.

Algorithm 1 Thor’s training data preprocessing algorithm.

Require: Proof state s, hammer method h
INPUT = s.input
if h(s)→ success then ▷ Hammer can be applied to the proof state

OUTPUT = <hammer> <EOS>
else ▷ Hammer fails at the proof state

OUTPUT = s.output
end if
return (INPUT, OUTPUT)

137

Now consider the situation in the proof of
√
2 /∈ Q (Figure 1) after the step then have "even a":138

without Thor, it should produce the following datapoint139

INPUT: <SOS> <CTXT> $(context) <PRF_STT> $(proof state) <PRF_STP>
OUTPUT: by (smt (z3) even_power oddE) <EOS>

With Thor’s preprocessing, we apply the hammer method to the proof state and find out that it can be140

done successfully. Hence, we keep the input the same and change the output to:141

OUTPUT: <hammer> <EOS>142

If the hammer method cannot be applied, we leave the datapoint unchanged. We iterate over every143

datapoint in the training data and apply this preprocessing algorithm.144

We hypothesise that being exposed to training data in this format, the language model is capable of145

learning a heuristic for when the hammer can be successfully invoked. At evaluation time, whenever146

the language model outputs the sequence <hammer> <EOS>, instead of applying it directly to the147

ITP, we call the hammer method. This effectively makes the hammer an invokable method for the148

language model. This protocol is straightforward to implement for hammer-enabled ITPs.149

The only extra cost of deploying Thor is in the data preprocessing step. Multiplying the hammer150

time limit by the average number of problems submitted to the Archive of Formal Proofs in one year,151

we estimate that 7400 CPU hours per year are needed to preprocess one of the largest proof corpora152
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available. This is a modest cost since the process only needs to be done once per dataset and the results153

can be shared. Better still, for some ITPs, the hammer method leaves a trace, greatly reducing the time154

needed to figure out which steps can be solved by hammers. For the ITP Coq, all steps containing155

the keyword sauto are generated by CoqHammer [Czajka and Kaliszyk, 2018]. For Isabelle, all156

steps containing the keywords metis, meson, smt are generated by Sledgehammer (described157

in Section 2.3). With these traces, deploying Thor on ITPs like Coq or Isabelle incurs little extra158

computational cost compared to training a standard language model.159

4 Experiment160

Our experiments are intended to answer the following research questions:161

1. Can Thor prove theorems that cannot be proved by language models or automated theorem162

provers individually? Does Thor improve premise selection for language models?163

2. Does explicitly learning how to select premises hurt the performance of language models?164

3. How important are the context information and the diversity of sequence generation?165

4. How does Thor compare with other methods at improving language models for theorem166

proving?167

To answer these questions, we create an instance of Thor for the ITP Isabelle. We choose Isabelle for168

two reasons: (1) Isabelle’s Sledgehammer is one of the most mature hammer methods among major169

ITPs, and may thus showcase Thor’s full potential; and (2) Isabelle’s Archive of Formal Proofs is one170

of the world’s largest formal mathematical libraries, suitable for data-hungry methods like language171

models. We make explicit the details of our experimental setup next.172

4.1 Experimental Setup173

Machine specification For pre-training, fine-tuning, and evaluation, we use a TPUVM with 8 cores174

from Google Cloud Platform. The Isabelle process has access to up to 32 CPU cores. We estimate175

that reproducing all the experiments in this paper requires a total of 1160 TPU hours.176

Language model architecture We use a decoder-only transformer [Vaswani et al., 2017] language177

model, adapting the setup, codebase, and hyperparameters from [Wang and Komatsuzaki, 2021]. The178

language model has 700M non-embedding parameters, with 24 layers, 24 attention heads, a hidden179

dimension of 1536, and a GPT-2 [Radford et al., 2019] tokenizer with a vocabulary size of 50400.180

Rotary positional embeddings [Su et al., 2021] are used. The model is pre-trained on the GitHub +181

arXiv subsets of The Pile [Gao et al., 2021], with a context length of 2048. We use a global batch size182

of 32 sequences which amounts to 65536 tokens. For the first 3,000 steps, the learning rate linearly183

increases from 0 to 0.0002, and then it follows a cosine schedule with a final value of 1.2 × 10−5184

for 197,000 steps. We use a weight decay rate of 0.05 and no dropout for pre-training. Pre-training185

takes ≈ 150 TPU hours. For fine-tuning, we use the procedure described in Section 3 to prepare the186

PISA dataset. We use the most recent proof step as the context in each datapoint. The same187

learning rate scheduling strategy is used, with a peak learning rate of 3× 10−4 after 10,000 steps and188

a final learning rate of 3 × 10−5 after a further 90,000 steps. We use a dropout rate of 0.15 and a189

weight decay rate of 0.1. The global batch size is 256 sequences, or 524, 288 tokens. We early-stop190

fine-tuning and take the checkpoint at 11,000 steps for evaluation as the validation loss reaches a191

minimum then. Fine-tuning takes ≈ 50 TPU hours.192

Sledgehammer configuration To set up Sledgehammer, we mostly follow the default Isabelle2021193

configuration. An important default parameter is that the Sledgehammer timeout limit is 30s. Our194

configuration uses the on-machine versions of the five default ATPs (E, SPASS, Vampire, Z3, and195

CVC4) to prevent performance deviation caused by network issues.196

Proof search To sample from the language model, we use temperature sampling with the tempera-197

ture parameter T = 1.2. To search for the proof of a theorem, we use the best-first search strategy198

described in [Polu and Sutskever, 2020]. The queue is ordered by the accumulated log likelihoods of199

the generated proof steps, with a maximum length of 32. Each proof step has a timeout limit200
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Table 1: Proof success rates on PISA/test
Method Success rate (%)

LISA [Jiang et al., 2021] 33.2

Sledgehammer 25.7
Language model 39.0
Language model ∪ Sledgehammer 48.8

Thor 57.0

of 10s. The search is terminated if and only if one of the following scenarios happens: (1) a valid201

proof has been found for the theorem; (2) the language model is queried 300 times; (3) a wallclock202

timeout of 500s has been reached; (4) the queue is empty but the theorem is not proved. Empirically,203

it takes ≈ 60 TPU hours to evaluate 1, 000 problems.204

Our language model setup is different from Language models of ISAbelle proofs [Jiang et al., 2021,205

LISA] in three aspects: (1) our language model has 700M instead of 163M non-embedding parameters206

(2) the most recent proof step is included in the language model prompt (3) a higher sampling207

temperature (1.2 instead of 1.0) is used.208

4.2 Datasets and Environment209

We use two datasets. The first is the PISA dataset [Jiang et al., 2021], which includes the Isabelle/HOL210

repository3 under a BSD-style license and the Archive of Formal Proofs version 2021-10-224, whose211

various entries are under open-source licenses as described on its official page. PISA contains the core212

higher-order logic library of Isabelle, as well as a diverse library of proofs formalised with Isabelle,213

mostly concerning mathematics or verification of software and hardware. The PISA dataset contains214

2.49 million datapoints in total. The proof states have an average length of 369 characters and215

the proof steps have an average length of 33 characters. All of the Isabelle/HOL theorems go216

into the training set as they are considered foundational and might be used by all other repositories.217

We make a 95%/1%/4% split of theorems from the AFP for the training/validation/test sets. We218

randomly select 3,000 theorems from the test set (PISA/test) for the evaluation of model performance.219

The second is the Isabelle fraction of the MiniF2F dataset [Zheng et al., 2022] under an Apache license.220

The dataset contains 488 high school mathematics competition problems split into a validation set221

and a test set, each with 244 problems. These problems have been formalised in Lean, Metamath,222

and Isabelle to provide a benchmark of the same problems in different ITP languages. This allows us223

to contrast different approaches developed for different ITPs. Since we do not use the validation set224

for model selection, we do not actually distinguish between the two sets. Hence, we mainly compare225

with previous work on the test set as the final result.226

We use the codebase by Jiang et al. [2021], under a BSD 3-clause license, to interact with the Isabelle227

server and prove theorems from both datasets.228

4.3 Thor Against an Ensemble of a Language Model and Sledgehammer229

Because Thor has both a language model and Sledgehammer at its disposal, we wish to investigate230

how it fares against a simple ensemble of the two. We set out to evaluate the performance of Thor,231

as well as a language model of the same configuration, and Sledgehammer with a 120s timeout on232

PISA/test. It takes ≈ 50 TPU hours to evaluate Thor for 1000 problems. The proof success rates233

on PISA/test are presented in the second column of Table 1. We can see that the language model234

alone and Sledgehammer alone can prove 39.0% and 25.7% of the problems respectively. When we235

take the union of the problems they manage to solve individually, we get a 48.8% success rate. Thor236

manages to prove 57.0% of the problems. This implies that for 8.2% of the problems, Thor uses both237

the language model and Sledgehammer to complete the proofs, and it’s not possible to achieve this238

3https://isabelle.in.tum.de/website-Isabelle2021/dist/library/HOL/index.html
4https://www.isa-afp.org/release/afp-2021-10-22.tar.gz
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(a) The number of premises in successful proofs
found by the language model and Thor.

0 5 10 15
#Premises in ground truth proofs

0

200

400

600

Pr
oo

f c
ou

nt

Language model
Thor

(b) The number of premises in ground truth proofs
for problems solved by the language model and Thor.

Figure 2: Comparison of the number of premises in problems the language model and Thor can solve.

Table 2: Proof success rates on PISA/test
Variants of Thor Success rate (%)

Base, sampling temperature T = 1.2 57.0

Learning how to select premises 55.4
No proof context 53.6
Sampling temperature T = 1.0 55.7

with only the language model or only Sledgehammer. We perform 4 case studies on problems that239

only Thor can solve in Appendix A.240

Thor’s motivation is to solve the premise selection problem for language models. To confirm that Thor241

helps premise selection, we collect the proofs generated by the language model and Thor respectively242

and count the number of premises in them. The results are presented in Figure 2a: we can see that243

for proofs requiring 0 or 1 premises, Thor and the language model perform similarly. But for proofs244

requiring more premises, Thor performs much more robustly, finding several times more proofs than245

the language model. We also count the number of premises in the ground truth proofs (written by246

humans) for theorems the language model and Thor can prove. The results are presented in Figure 2b:247

we see that whatever the number of premises the ground truth uses, Thor outperforms the language248

model in finding proofs, and the more premises the ground truth proof has, the more obvious is the249

effect. We conclude that Thor is indeed more capable of premise selection than language models.250

4.4 The Effect of Learning How to Select Premises251

The procedure we described in Section 3 ensures that the language model learns when to do premise252

selection, but not how to do it, by replacing the premise selection steps with <hammer>. Here we253

investigate the effect of making the language model learn both when and how. An easy way to achieve254

this is to create a variant of Thor: (i) at training time, use the original data; (ii) at evaluation time,255

when the language model outputs a sequence containing any of the Sledgehammer keywords, invoke256

Sledgehammer. This further simplifies data preparation and explicitly subjects the language model to257

perform premise selection. To investigate the effect of this alternative approach, we evaluate a system258

trained in this way on PISA/test and present its success rate in Table 2. We can see that it achieves a259

success rate of 55.4% on PISA/test, 1.6% lower than the base version of Thor, which suggests that260

explicitly learning how to do premise selection marginally decreases its success rate. This result is261

expected: since finding how to do premise selection is entrusted to the hammer method, the language262

model should focus on learning when to invoke the hammer for optimal performance. Making the263

language model learn an irrelevant additional task only hurts Thor’s performance.264

4.5 The Effect of the Proof Context265

Our language model setup differs from that of LISA [Jiang et al., 2021] in that we use the most266

recent proof step as the context in the input data, as introduced in Section 3. This is based on267

the intuition that the most recent proof step information is beneficial for the language model’s268
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Table 3: Proof success rates on MiniF2F.
Method Valid (%) Test (%)

PACT [Han et al., 2021] 23.9 24.6
Expert iteration [Polu et al., 2022] 33.6 29.6

Sledgehammer 9.9 10.4
Language model 25.0 24.2
Language model ∪ Sledgehammer 27.1 27.5

Thor 28.3 29.9

reasoning ability. In this subsection we perform an ablation study to confirm the effect of this269

context on Thor. Here a variant of Thor is trained without the context information and evaluated270

on PISA/test. The results are in Table 2. We observe that this variant manages to prove 53.6% of271

theorems on PISA/test, 3.4% fewer than the base version of Thor. The drop in success rate indicates272

that the context information we use is crucial for the optimal performance of Thor.273

4.6 The Effect of the Sequence Sampling Diversity274

Our language model setup differs from LISA [Jiang et al., 2021] also in the sampling temperature.275

Previous works on language models for theorem proving often use a temperature T = 1.0 [Polu and276

Sutskever, 2020, Jiang et al., 2021] for sampling output sequences, while we use T = 1.2. A higher277

temperature in the sampling procedure means that the generated sequences are more diverse (having278

a higher entropy). Here we perform an ablation study on the diversity of Thor-generated sequences.279

We evaluate Thor with sampling temperature T = 1.0 on PISA/test and the success rate is in Table 2.280

We can see that the success rate with sampling temperature T = 1.0 is 55.7%, 1.3% lower than with281

T = 1.2. This suggests a more diverse sampling strategy can improve Thor’s performance, and that282

the optimal diversity in language model samples varies for different systems.283

4.7 Comparing Thor with Expert Iteration284

There exist other methods for improving language models for theorem proving like value function285

training [Polu and Sutskever, 2020], proof artifact co-training [Han et al., 2021, PACT], and expert286

iteration [Polu et al., 2022]. We wish to compare Thor with them. However, these methods operate in287

ITPs other than Isabelle and are thus hard to compare with directly. Thankfully, Polu et al. [2022]288

used expert iteration [Silver et al., 2017] to improve PACT [Han et al., 2021] and to achieve the289

state-of-the-art result on MiniF2F, a dataset containing multiple ITP formalisations of the same290

problems. Hence, we can fairly contrast expert iteration with Thor. We should emphasise that Thor291

and expert iteration are not incompatible methods: one can use Thor together with expert iteration.292

We start by evaluating Thor, a language model with the same configuration, and Sledgehammer on293

MiniF2F. The results are presented in Table 3. We also include the success rates of the language294

model that Polu et al. [2022] used (PACT), as well as the language model after expert iteration in the295

same table. The success rates on the validation set are also included, but we use the rates on the test296

set as the final results, as the valid set can be used for model selection. We can see that the language297

model is able to prove 24.2% of the problems on MiniF2F, similar to PACT’s 24.6%. Thor increases298

the success rate of the language model by 5.7% to 29.9%, while expert iteration increases the success299

rate of PACT by 5.0% to 29.6%. Hence, the improvement in proof success rate brought upon the300

language model by Thor is comparable to that by expert iteration.301

An important factor in choosing a suitable method is its cost. Expert iteration requires manually302

creating a set of “curriculum” problems, evaluating the language model on them, and training the303

language model on a growing training set for one epoch every iteration. We estimate that to perform304

expert iteration at the same scale as Polu et al. [2022] for Isabelle, it would cost 100 human hours305

to formalise 300 maths problems, and 500 TPU hours to evaluate and fine-tune the language model306

for 8 expert iterations. Thor, on the other hand, incurs little extra computational cost compared with307

training a standard language model. We conclude that while requiring a much smaller computational308

budget, Thor can improve language models’ success rates to a similar degree as expert iteration.309
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5 Related Work310

Language models were first applied to automate theorem proving by Polu and Sutskever [2020].311

Since then, there have been a few works [Han et al., 2021, Jiang et al., 2021, Polu et al., 2022]312

aiming to enhance the ability of language-model-based reasoning systems, or to enable these systems313

for interactive theorem provers that were not supported before. All of these works used the same314

framework laid down by Polu and Sutskever [2020], namely to iteratively sample from a language315

model and directly apply the output to the ITP. Thor, to the best of our knowledge, is the first system316

to explicitly hybridise language models and symbolic reasoning tools (ATPs) for theorem proving.317

Instead of relying on language models entirely, Thor uses hammers, a well-established tool, to solve318

premise selection.319

With the growing bodies of formal mathematical libraries, premise selection has become one of the320

most crucial tasks of theorem proving. The hammer method is one of the many ways that premise321

selection can be done. We have described how the Isabelle implementation of the hammer method322

selects premises in Section 2. HOL(y)Hammer [Kaliszyk and Urban, 2015] and CoqHammer [Czajka323

and Kaliszyk, 2018] implement the hammer method for HOL Light and Coq respectively, making it324

possible for Thor to be instantiated for them. Apart from hammers, SInE [Hoder and Voronkov, 2011]325

and SRASS [Sutcliffe and Puzis, 2007] are both symbolic methods that take on the task of premise326

selection by ranking the available premises according to their relevance to the current conjecture,327

measured by syntactic and semantic distances respectively. MaLARea [Urban, 2007] pioneered328

having machine learning components in premise selection systems and its later version MaLARea329

SG1 [Urban et al., 2008] combines machine learning and formal semantics for premise selection. A330

few approaches [Irving et al., 2016, Wang et al., 2017, Kaliszyk et al., 2017] use deep learning in the331

premise selection task. All these diverse methods may have quantitative or qualitative merits over the332

hammer approach, and thus have the potential to be integrated as the premise selection component333

for future versions of Thor.334

6 Discussion335

In this paper we introduced a simple approach to overcome language models’ weakness in premise336

selection for theorem proving: we created Thor, a framework that integrates language models and337

automated theorem provers via the hammer proof method. We presented a straightforward protocol338

for deploying Thor on any hammer-enabled ITP. The instance of Thor with Isabelle dramatically339

increased the number of automatically proved theorems, suggesting that language models’ deficiency340

at premise selection can be effectively compensated by utilising ATPs. Furthermore, approaches like341

expert iteration [Polu et al., 2022] or proof artifact co-training [Han et al., 2021] have no contradictions342

and can be easily incorporated with Thor. Compared with these methods, Thor has the additional343

advantage of being computationally efficient.344

One limitation of Thor is that it only admits automated theorem provers that directly generate valid345

proof steps in the ITP via the use of the hammer. In Section 5, we pointed out that there are other346

premise selection tools with approaches different from the hammer method that the current version of347

Thor cannot use. Also, there exist methods which assist premise selection but do not directly generate348

the proof steps. An example of this is SErAPIS [Stathopoulos et al., 2020], which performs semantic349

search over the Isabelle mathematical library with the help of Wikipedia. Thor cannot use this class of350

methods either. We leave to future work the task of broadening the options for the premise selection351

tool that Thor uses. Here we only tested Thor on the ITP Isabelle due to the computational costs of352

experiments. Therefore another future direction is to instantiate Thor with other ITPs and see whether353

improvements brought by Thor are as significant for other ITPs as we show them here for Isabelle.354

Thor demonstrates how a difficult problem for language models can be solved by borrowing tools355

from another research domain. We are encouraged by its success and think that more problems like356

premise selection can be identified and solved similarly. With its strong performance, computational357

efficiency, and convenient deployment, Thor gives scope to tool hybridisation, which shows promise358

to be impactful in the field of automated reasoning, and artificial intelligence in general.359
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A Appendix533

In this section, we present some lemmas solved by Thor only.534

Case 1. The lemma cols_upt_k _insert is from the QR Decomposition entry5 in the AFP.535

lemma cols_upt_k_insert:
fixes A::"’a^’n::{mod_type}^’m::{mod_type}"
assumes k: "(Suc k)<ncols A"
shows "cols_upt_k A (Suc k) = (insert (column

(from_nat (Suc k)) A) (cols_upt_k A k))"
unfolding cols_upt_k_def
apply (auto)
apply (metis Suc_lessD from_nat_mono’ from_nat_to_nat_id k

less_Suc_eq_le less_le ncols_def to_nat_le)
by (metis from_nat_mono’ k less_imp_triv

less_or_eq_imp_le ncols_def not_less_eq order_trans)

Here, cols_upt_k A (Suc k) returns the set of columns in the matrix A up to the natural number536

k+1, while ncols A counts the number of columns in the matrix A. In short, this lemma claims that537

the set of columns (in a matrix A) up to column index k + 1 is equivalent to that of the same matrix538

up to column index k inserted with the (k + 1)th column (of A). This will subject to the condition539

that k + 1 is less than the number of columns in A. With Thor, the LM decided to unfold the goal540

with the definition of cols_upt_k, which is followed by an auto tactic to simplify the proof state. All541

remaining subgoals are then discharged by Sledgehammer.542

Case 2. The lemma size_del_max is from theWeight-Balanced Trees entry6 in the AFP.543

lemma size_del_max: "t ̸= Leaf =⇒ size t = Suc(size(snd(del_max t)))"
apply(induction t rule: del_max.induct)
apply simp
apply (clarsimp split: prod.splits)
apply (smt (z3) size_rotateR size_wbt.simps(1))
by simp

In this lemma, t is a weight-balanced tree, and the size function measures its size (as the name544

suggests) and del_max deletes the maximum node from it. Essentially, this lemma claims that when a545

weight-balanced its size will be reduced by one if we remove the largest node from it. For the proof,546

Thor intelligently performs structural induction with the induction rule del_max.induct and then547

simplifies the proof state a few times, which includes splitting products with the rule prod.splits.548

Finally, Thor concludes the remaining goals with Sledgehammer.549

Case 3. The lemma t_list_of_B_log_bound is from the AFP entry named as Priority Queues Based550

on Braun Trees.7551

lemma t_list_of_B_log_bound:
"braun t =⇒ t_list_of_B t ≤ 3 * (nlog2 (size t + 1) + 1) * size t"
apply (induction t rule: measure_induct_rule[where f=size])
apply (case_tac x)
apply simp
using braun.simps(1) t_list_of_B_braun_simps(1) apply blast
by (metis acomplete_if_braun height_acomplete order_refl

size1_size t_list_of_B_induct)

Here, size measures the size of a Braun tree; nlog2 stands for the function λx. ⌈log2(x)⌉;552

t_list_of_B is another measure of a Braun tree. Basically, this lemma describes the relation-553

ship between a normal tree size and a Braun-tree specific measure. The proof starts with an intelligent554

structural induction, progresses with case analysis, and is concluded with Sledgehammer on each of555

the remaining subgoals.556

5QR_Decomposition/Gram_Schmidt.thy
6Weight_Balanced_Trees/Weight_Balanced_Trees.thy
7Priority_Queue_Braun/Sorting_Braun.thy
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Case 4. The lemma inj_imp_Ker0 is from the AFP entry named as Matrices, Jordan Normal Forms,557

and Spectral Radius Theory.8558

lemma inj_imp_Ker0:
assumes "inj_on T (carrier V)"
shows "carrier (V.vs kerT) = {0V}"
apply (rule equalityI)
apply (rule subsetI)
apply (unfold ker_def, auto)
by (metis V.module.M.zero_closed assms f0_is_0 inj_on_contraD)

Here, T is a linear map between two vector spaces. The lemma claims that if the T is injective on the559

carrier set of the space V, the kernel of T has to be a singleton set with the zero in V. In this proof,560

Thor naturally performs a sequence of introduction steps by applying the lemma equalityI and561

subsetI, before unfolds the definition of a kernel (i.e., ker_def ) and uses auto to simplify the proof562

state. The final remaining goal is closed with Sledgehammer.563

8Jordan_Normal_Form/Missing_VectorSpace.thy
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