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A Pseudo-code for DCA training

Algorithm 1 depicts the pseudocode for training a layerwise DCA model.

Algorithm 1: Layerwise DCA training

Inputs :Dataset D, neural network f with n sets of parameters Θ = (θ11:n, . . . , θ
L
1:n), with θli the

i-th parameter instance of layer l.

1 def sampleDCAProposal(Θ):
2 Draw random indices i1, . . . , iL ∈ [1 : n];
3 return θ̂ = (θ1i1 , . . . , θ

L
iL

);

4 repeat
5 foreach minibatch B ∈ D do
6 θ̂ ← sampleDCAProposal(Θ);
7 loss← feedForward(f, θ̂, B);
8 ∆θ̂ ← loss.backward();
9 Θ← updateDCAParameters(Θ,∆θ̂);

10 end
11 until end of training;

B Additional experimental results

B.1 In-domain results on SVHN dataset

Table 1 summarizes the results of in-domain image classification on SVHN dataset.

Table 1: In-domain image classification results on SVHN. Similar to the case of CIFAR-10, modelwise
DCA has the best predictive performance and uncertainty estimation, while trunkwise DCA has
slightly better results w.r.t. deep ensemble while producing a richer set of model proposals.

Accuracy ↑ NLL ↓ ECE ↓ Brier ↓
Standard 0.9590± 0.0012 0.1786± 0.0038 0.0176± 0.0011 0.0654± 0.0016

MC dropout 0.9644± 0.0005 0.1353± 0.0017 0.0053± 0.0006 0.0547± 0.0006
SWAG 0.9631± 0.0010 0.1431± 0.0013 0.0061± 0.0004 0.0568± 0.0009

Deep ensemble 0.9694± 0.0002 0.1257± 0.0003 0.0086± 0.0007 0.0487± 0.0001
Trunk. DCA 0.9698± 0.0009 0.1212± 0.0036 0.0061± 0.0005 0.0474± 0.0013
Model. DCA 0.9713± 0.0005 0.1128± 0.0014 0.0055± 0.0005 0.0452± 0.0007
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B.2 Additional plots for distributional shift experiment

Figure 1 reports Brier scores and ECEs of the distributional shift experiments on CIFAR-10-C.
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Figure 1: Expected calibration errors and Brier scores of image classification on CIFAR-10-C with
various degrees of corruption severities. Modelwsie DCA again has the best overall performance.
Here trunkwise DCA has worse results compared to deep ensemble according to these metrics. This
is contrary to the conclusion based on negative log-likelihood.

B.3 Additional quantitative results for out-of-distribution experiment

Table 2: FPR95, detection error, AUPR-in, AUPR-out, and AUROC of out-of-distribution detection
task using models trained on CIFAR-10 to distinguish between CIFAR-10 (in-domain) and SVHN
(OOD) test data. Modelwise DCA consistently yields the best results. All values are in percentage.

FPR@95% ↓ Detection error ↓ AUROC ↑ AUPR-In ↑ AUPR-Out ↑
Standard 18.0± 2.2 16.7± 1.6 89.0± 1.5 84.8± 2.2 93.2± 1.0

MC dropout 23.9± 3.0 19.1± 2.2 85.9± 2.0 82.1± 2.6 90.9± 1.2
SWAG 14.3± 2.6 13.4± 1.4 92.1± 1.5 89.3± 1.7 95.1± 1.1

Deep ensemble 14.0± 1.8 12.8± 0.9 92.5± 0.9 90.0± 1.0 95.4± 0.6
Trunk. DCA 11.5± 2.1 12.2± 0.8 93.0± 1.0 90.5± 1.0 95.7± 0.7
Model. DCA 10.8± 2.2 11.1± 0.6 93.4± 0.9 91.5± 0.8 95.7± 0.7

Table 2 provides quantitative metrics for the OOD detection task using CIFAR-10 as the in-domain
dataset and SVHN as the OOD outliers. The following metrics are reported:

False positive rate at 95% true positive rate (FPR@95%) A threshold metric which reports the
false positive rate at the threshold where the true positive rate is 95%;

Detection error The minimum of average values of false positive rate and false negative rate
evaluated at different decision boundaries d: mind∈[0,1](FPR|d + FNR|d)/2;

Area under the receiver operating characteristic curve (AUROC) This metric reports the area
under the receiver operating characteristic (ROC) curve;

Area under the precision–recall curve (AUPR-in / AUPR-out) This metric measures the area un-
der the precision–recall (AUPR) curve, AUPR-in reports the AUPR where the in-domain
data are taken as positive samples, whereas AUPR-out instead treats OOD data as positive
samples and in-domain data as negative ones.
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B.4 Additional results for ablation study on consistency enforcing loss

Table 3 displays additional results for channelwise, layerwise and blockwise DCA variants.

Table 3: Comparison of DCA training using negative log-likelihood (NLL) loss and consistency
enforcing loss (CEL) for channelwise DCA, layerwise DCA, and blockwise DCA models.

Accuracy NLL ECE

Channelwise DCA (NLL) 0.9336± 0.0007 0.2190± 0.0030 0.0204± 0.0013
Channelwise DCA (CEL) 0.9324± 0.0014 0.2198± 0.0061 0.0233± 0.0011
Layerwise DCA (NLL) 0.9342± 0.0012 0.2264± 0.0088 0.0228± 0.0015
Layerwise DCA (CEL) 0.9339± 0.0018 0.2190± 0.0089 0.0223± 0.0015
Blockwise DCA (NLL) 0.9375± 0.0004 0.2079± 0.0061 0.0161± 0.0017
Blockwise DCA (CEL) 0.9357± 0.0018 0.2089± 0.0031 0.0200± 0.0023

C Performance of individual DCA model proposals

To further analyze the effect of the consistency enforcing loss for DCA models, we inspect the
predictions of the individual model copies from modelwise DCAs training with and without the
consistency enforcing loss. The results are reported in Table 4.

Table 4: Results for individual model copies from modelwise DCAs trained using negative log-
likelihood (NLL) loss and consistency enforcing loss (CEL) on CIFAR-10. Results for baseline
standard training are included for reference.

Accuracy ↑ NLL ↓ ECE ↓
Standard 0.9264± 0.0020 0.2507± 0.0078 0.0301± 0.0020

DCA individual (NLL) 0.8964± 0.0075 0.3561± 0.0229 0.0364± 0.0029
DCA individual (CEL) 0.9026± 0.0055 0.3055± 0.0161 0.0195± 0.0022

We observe that individual models trained with the consistency enforcing loss have better results
compared to the NLL case, which shows that CEL improves the training of individual components.
Compared to the baseline standard training, individual model proposals from trained DCA models
have worse classification performance, however their aggregation yields superior results both in terms
of accuracy and uncertainty estimation.

In Table 4, we also see that results from individual models trained without CEL have larger standard
deviations, which hints that the predictions might be more diverse in this case. To further confirm this,
we employ the following metrics to quantify the diversity of individual predictions [1] (assuming we
have M individual models and C output classes, KL denotes the KL-divergence, Var denotes the
variance, and for a given input x, pmc (x) denotes the predicted probability of class c from model m):

Pairwise KL divergence

Dpw(x) =
1

M(M − 1)

M∑
i=1

M∑
j=1

KL(pi(x)‖pj(x)); (1)

Classwise variance

Dvar(x) =

C∑
c=1

Var
m∈{1,...,M}

[
pmc (x)

]
; (2)

Jensen-Shannon divergence

Djs(x) =
1

M

M∑
i=1

KL
(
pi(x)

∥∥∥ 1

M

M∑
j=1

pj(x)
)
. (3)

The results are collected in Table 5 and confirm that individual models trained without CEL have
more diverse predictions.
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Table 5: Diversity metrics for individual model copies from modelwise DCAs trained using negative
log-likelihood (NLL) loss and consistency enforcing loss (CEL) on CIFAR-10. Larger values indicate
more diverse predictions. Classwise variance uses Bessel’s correction to get unbiased estimations.

Pairwise KL Classwise variance JS divergence

DCA individual (NLL) 0.0077± 0.0002 0.0011± 0.0000 0.0031± 0.0001
DCA individual (CEL) 0.0052± 0.0002 0.0007± 0.0000 0.0020± 0.0001

D Additional results using VGG and DenseNet

In previous experiments we focus on the preactivation ResNet-20 base model. Since the DCA
approach does not rely on specific choice of network architecture, we expect the conclusions to hold
for other network structures. To empirically verify this, we conduct additional in-domain experiments
on CIFAR-10 using two more architectures: VGG-16 [4] and DenseNet-40 [3]. The results are
summarized in Table 6 for the VGG backbone and in Table 7 for the DenseNet case. We see that
modelwise DCA consistently achieves the best results both in terms of accuracy and uncertainty
estimation for all tested network architectures.

Table 6: In-domain image classification results on CIFAR-10 using VGG-16 backbone.

Accuracy ↑ NLL ↓ ECE ↓ Brier ↓
Standard 0.9342± 0.0004 0.3436± 0.0105 0.0512± 0.0009 0.1147± 0.0016

MC dropout 0.9379± 0.0013 0.2474± 0.0063 0.0341± 0.0018 0.0980± 0.0025
Deep ensemble 0.9494± 0.0006 0.1862± 0.0010 0.0142± 0.0007 0.0779± 0.0010
Model. DCA 0.9509± 0.0006 0.1687± 0.0013 0.0143± 0.0005 0.0745± 0.0009

Table 7: In-domain image classification results on CIFAR-10 using DenseNet-40 backbone.

Accuracy ↑ NLL ↓ ECE ↓ Brier ↓
Standard 0.9306± 0.0033 0.2604± 0.0097 0.0353± 0.0022 0.1082± 0.0047

MC dropout 0.9284± 0.0017 0.2128± 0.0041 0.0119± 0.0010 0.1049± 0.0007
Deep ensemble 0.9477± 0.0013 0.1649± 0.0017 0.0087± 0.0005 0.0791± 0.0008
Model. DCA 0.9503± 0.0006 0.1486± 0.0011 0.0063± 0.0004 0.0735± 0.0005

E Text classification experiments

Additionally, we consider the performance of DCA for natural language processing tasks. Especially,
we address the task of text classification on the AG News dataset [5] using a Seq2seq model with
attention [2]. We adapt from an existing implementation1 and collect the results in Table 8. We
observe that modelwise DCA achieves the best accuracy when trained with the NLL loss. Using the
consistency enforcing loss, modelwise DCA achieves the best ECE.

Table 8: In-domain text classification results on AG News.

Accuracy ↑ NLL ↓ ECE ↓ Brier ↓
Standard 0.9147± 0.0018 0.2490± 0.0058 0.0157± 0.0036 0.1291± 0.0033

Deep ensemble 0.9192± 0.0017 0.2323± 0.0043 0.0098± 0.0018 0.1224± 0.0019
DCA (CEL) 0.9140± 0.0026 0.2446± 0.0065 0.0081± 0.0039 0.1285± 0.0031
DCA (NLL) 0.9213± 0.0015 0.2312± 0.0041 0.0145± 0.0022 0.1199± 0.0014

1https://github.com/AnubhavGupta3377/Text-Classification-Models-Pytorch
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