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Abstract

We analyze feature learning in infinite-width neural networks trained with gradient
flow through a self-consistent dynamical field theory. We construct a collection
of deterministic dynamical order parameters which are inner-product kernels for
hidden unit activations and gradients in each layer at pairs of time points, providing
a reduced description of network activity through training. These kernel order
parameters collectively define the hidden layer activation distribution, the evolution
of the neural tangent kernel, and consequently output predictions. We show that the
field theory derivation recovers the recursive stochastic process of infinite-width
feature learning networks obtained from Yang & Hu with Tensor Programs [1].
For deep linear networks, these kernels satisfy a set of algebraic matrix equations.
For nonlinear networks, we provide an alternating sampling procedure to self-
consistently solve for the kernel order parameters. We provide comparisons of the
self-consistent solution to various approximation schemes including the static NTK
approximation, gradient independence assumption, and leading order perturbation
theory, showing that each of these approximations can break down in regimes
where general self-consistent solutions still provide an accurate description. Lastly,
we provide experiments in more realistic settings which demonstrate that the loss
and kernel dynamics of CNNs at fixed feature learning strength is preserved across
different widths on a CIFAR classification task.

1 Introduction

Deep learning has emerged as a successful paradigm for solving challenging machine learning and
computational problems across a variety of domains [2, 3]. However, theoretical understanding
of the training and generalization of modern deep learning methods lags behind current practice.
Ideally, a theory of deep learning would be analytically tractable, efficiently computable, capable
of predicting network performance and internal features that the network learns, and interpretable
through a reduced description involving desirably initialization-independent quantities.

Several recent theoretical advances have fruitfully considered the idealization of wide neural networks,
where the number of hidden units in each layer is taken to be large. Under certain parameterization,
Bayesian neural networks and gradient descent trained networks converge to gaussian processes
(NNGPs) [4–6] and neural tangent kernel (NTK) machines [7–9] in their respective infinite-width
limits. These limits provide both analytic tractability as well as detailed training and generalization
analysis [10–17]. However, in this limit, with these parameterizations, data representations are fixed
and do not adapt to data, termed the lazy regime of NN training, to contrast it from the rich regime

where NNs significantly alter their internal features while fitting the data [18, 19]. The fact that the
representation of data is fixed renders these kernel-based theories incapable of explaining feature
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learning, an ingredient which is crucial to the success of deep learning in practice [20, 21]. Thus,
alternative theories capable of modeling feature learning dynamics are needed.

Recently developed alternative parameterizations such as the mean field [22] and the µP [1] param-
eterizations allow feature learning in infinite-width NNs trained with gradient descent. Using the
Tensor Programs framework, Yang & Hu identified a stochastic process that describes the evolution
of preactivation features in infinite-width µP NNs [1]. In this work, we study an equivalent parame-
terization to µP with self-consistent dynamical mean field theory (DMFT) and recover the stochastic
process description of infinite NNs using this alternative technique. In the same large width scaling,
we include a scalar parameter �0 that allows smooth interpolation between lazy and rich behavior
[18]. We provide a new computational procedure to sample this stochastic process and demonstrate
its predictive power for wide NNs.

Our novel contributions in this paper are the following:

1. We develop a path integral formulation of gradient flow dynamics in infinite-width networks in the
feature learning regime. Our parameterization includes a scalar parameter �0 to allow interpolation
between rich and lazy regimes and comparison to perturbative methods.

2. Using a stationary action argument, we identify a set of saddle point equations that the kernels
satisfy at infinite-width, relating the stochastic processes that define hidden activation evolution to
the kernels and vice versa. We show that our saddle point equations recover at �0 = 1, from an
alternative method, the same stochastic process obtained previously with Tensor Programs [1].

3. We develop a polynomial-time numerical procedure to solve the saddle point equations for deep
networks. In numerical experiments, we demonstrate that solutions to these self-consistency
equations are predictive of network training at a variety of feature learning strengths, widths
and depths. We provide comparisons of our theory to various approximate methods, such as
perturbation theory.

1.1 Related Works

A natural extension to the lazy NTK/NNGP limit that allows the study of feature learning is to calculate
finite width corrections to the infinite-width limit. Finite width corrections to Bayesian inference in
wide networks have been obtained with various perturbative [23–29] and self-consistent techniques
[30–33]. In the gradient descent based setting, leading order corrections to the NTK dynamics have
been analyzed to study finite width effects [34–36, 27]. These methods give approximate corrections
which are accurate provided the strength of feature learning is small. In very rich feature learning
regimes, however, the leading order corrections can give incorrect predictions [37, 38].

Another approach to study feature learning is to alter NN parameterization in gradient-based learning
to allow significant feature evolution even at infinite-width, the mean field limit [22, 39]. Works on
mean field NNs have yielded formal loss convergence results [40, 41] and shown equivalences of
gradient flow dynamics to a partial differential equation (PDE) [42–44].

Our results are most closely related to a set of recent works which studied infinite-width NNs trained
with gradient descent (GD) using the Tensor Programs (TP) framework [1]. We show that our discrete
time field theory at unit feature learning strength �0 = 1 recovers the stochastic process which was
derived from TP. The stochastic process derived from TP has provided insights into practical issues in
NN training such as hyper-parameter search [45]. Computing the exact infinite-width limit of GD has
exponential time requirements [1], which we show can be circumvented with an alternating sampling
procedure. A projected variant of GD training has provided an infinite-width theory that could be
scaled to realistic datasets like CIFAR-10 [46]. Inspired by Chizat and Bach’s work on mechanisms
of lazy and rich training [18], our theory interpolates between lazy and rich behavior in the mean
field limit for varying �0 and allows comparison of DMFT to perturbative analysis near small �0.
Further, our derivation of a DMFT action allows the possibility of pursuing finite width effects.

Our theory is inspired by self-consistent dynamical mean field theory (DMFT) from statistical physics
[47–53]. This framework has been utilized in the theory of random recurrent networks [54–59],
tensor PCA [60, 61], phase retrieval [62], and high-dimensional linear classifiers [63–66], but has yet
to be developed for deep feature learning. By developing a self-consistent DMFT of deep NNs, we
gain insight into how features evolve in the rich regime of network training, while retaining many
pleasant analytic properties of the infinite-width limit.
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2 Problem Setup and Definitions

Our theory applies to infinite-width networks, both fully-connected and convolutional. For notational
ease we will relegate convolutional results to later sections. For input xµ 2 RD, we define the hidden
pre-activation vectors h` 2 RN for layers ` 2 {1, ..., L} as

fµ =
1

�
p
N

w
L · �(hL

µ) , h
`+1
µ =

1p
N

W
`�(h`

µ) , h
1
µ =

1p
D
W

0
xµ, (1)

where ✓ = Vec{W 0, ...,wL} are the trainable parameters of the network and � is a twice differ-
entiable activation function. Inspired by previous works on the mechanisms of lazy gradient based
training, the parameter � will control the laziness or richness of the training dynamics [18, 19, 1, 42].
Each of the trainable parameters are initialized as Gaussian random variables with unit variance W `

ij ⇠
N (0, 1). They evolve under gradient flow d

dt✓ = ��2r✓L. The choice of learning rate �2 causes
d
dtL|t=0 to be independent of �. To characterize the evolution of weights, we introduce backpropaga-
tion variables g`

µ = �
p
N @fµ

@h`
µ
= �̇(h`

µ)� z
`
µ, where z`

µ = 1p
N
W

`>
g
`+1
µ is the pre-gradient signal.

The relevant dynamical objects to characterize feature learning are feature and gradient kernels for
each hidden layer ` 2 {1, ..., L}, defined as

�`
µ↵(t, s) =

1

N
�(h`

µ(t)) · �(h`
↵(s)) , G`

µ↵(t, s) =
1

N
g
`
µ(t) · g`

↵(s). (2)

From the kernels {�`, G`}L`=1, we can compute the Neural Tangent Kernel KNTK
µ↵ (t, s) = r✓fµ(t) ·

r✓f↵(s) =
PL

`=0 G
`+1
µ↵ (t, s)�`

µ↵(t, s), [7] and the dynamics of the network function fµ

d

dt
fµ(t) =

PX

↵=1

KNTK
µ↵ (t, t)�↵(t) , �µ(t) = � @

@fµ
L|fµ(t), (3)

where we define base cases GL+1
µ↵ (t, s) = 1,�0

µ↵(t, s) = Kx
µ↵ = 1

Dxµ · x↵. In prior work, �`, G`

were termed forward and backward kernels and were theoretically computed at initialization and
empirically measured through training [67]. Our DMFT will provide exact formulas for these kernels
throughout the full dynamics of feature learning. We note that the above formula holds for any
data point µ which may or may not be in the set of P training examples. The above expressions
demonstrate that knowledge of the temporal trajectory of the NTK on the t = s diagonal gives the
temporal trajectory of the network predictions fµ(t).

Following prior works on infinite-width networks [22, 1, 40, 19], we study the mean field limit

N, � ! 1 , �0 =
�p
N

= ON (1) (4)

As we demonstrate in the Appendix D and N, this is the only N -scaling which allows feature learning
as N ! 1. The �0 = 0 limit recovers the static NTK limit [7]. We discuss other scalings and
parameterizations in Appendix N, relating our work to the µP -parameterization and TP analysis of
[1], showing they have identical feature dynamics in the infinite-width limit. We also analyze the
effect of different hidden layer widths and initialization variances in the Appendix D.8. We focus on
equal widths and NTK parameterization (as in eq. (1)) in the main text to reduce complexity.

3 Self-consistent DMFT

Next, we derive our self-consistent DMFT in a limit where t, P = ON (1). Our goal is to build
a description of training dynamics purely based on representations, and independent of weights.
Studying feature learning at infinite-width enjoys several analytical properties:

• The kernel order parameters �`, G` concentrate over random initializations but are dynamical,
allowing flexible adaptation of features to the task structure.

• In each layer `, each neuron’s preactivation h`
i and pregradient z`i become i.i.d. draws from a

distribution characterized by a set of order parameters {�`, G`, A`, B`}.
• The kernels are defined as self-consistent averages (denoted by hi) over this distribution of neurons

in each layer �`
µ↵(t, s) =

⌦
�(h`

µ(t))�(h
`
↵(s))

↵
and G`

µ↵(t, s) =
⌦
g`µ(t)g

`
↵(s)

↵
.

The next section derives these facts from a path-integral formulation of gradient flow dynamics.
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3.1 Path Integral Construction

Gradient flow after a random initialization of weights defines a high dimensional stochastic process
over initalizations for variables {h, g}. Therefore, we will utilize DMFT formalism to obtain a re-
duced description of network activity during training. For a simplified derivation of the DMFT for the
two-layer (L = 1) case, see D.2. Generally, we separate the contribution on each forward/backward
pass between the initial condition and gradient updates to weight matrix W

`, defining new stochastic
variables �`, ⇠` 2 RN as

�
`+1
µ (t) =

1p
N

W
`(0)�(h`

µ(t)) , ⇠
`
µ(t) =

1p
N

W
`(0)>g`+1

µ (t). (5)

We let Z represent the moment generating functional (MGF) for these stochastic fields

Z[{j`,v`}] =
*
exp

0

@
X

`,µ

Z 1

0
dt

⇥
j
`
µ(t) · �`

µ(t) + v
`
µ(t) · ⇠`µ(t)

⇤
1

A
+

{W 0(0),...wL(0)}

,

which requires, by construction the normalization condition Z[{0,0}] = 1. We enforce our definition
of �, ⇠ using an integral representation of the delta-function. Thus for each sample µ 2 [P ] and each
time t 2 R+, we multiply Z by

1 =

Z

RN

Z

RN

d�`+1
µ (t)d�̂`+1

µ (t)

(2⇡)N
exp

✓
i�̂`+1

µ (t) ·

�

`+1
µ (t)� 1p

N
W

`(0)�(h`
µ(t))

�◆
, (6)

for � and the respective expression for ⇠. After making such substitutions, we perform integration
over initial Gaussian weight matrices to arrive at an integral expression for Z, which we derive in the
appendix D.4. We show that Z can be described by set of order-parameters {�`, �̂`, G`, Ĝ`, A`, B`}

Z[{j`,v`}] /
Z Y

`µ↵ts

d�`
µ↵(t, s)d�̂

`
µ↵(t, s)dG

`
µ↵(t, s)dĜ

`
µ↵(t, s)dA

`
µ↵(t, s)dB

`
µ↵(t, s) (7)

⇥ exp
⇣
NS[{�, �̂, G, Ĝ, A,B, j, v}]

⌘
,

S =
X

`µ↵

Z 1

0
dt

Z 1

0
ds

h
�`

µ↵(t, s)�̂
`
µ↵(t, s) +G`

µ↵(t, s)Ĝ
`
µ↵(t, s)�A`

µ↵(t, s)B
`
µ↵(t, s)

i

+ lnZ[{�, �̂, G, Ĝ, A,B, j, v}], (8)
where S is the DMFT action and Z is a single-site MGF, which defines the distribution of fields
{�`, ⇠`} over the neural population in each layer. The kernels A and B are related to the correlations
between feedforward and feedback signals in the network. We provide a detailed formula for Z in
the Appendix D.4 and show that it factorizes over different layers Z =

QL
`=1 Z`.

3.2 Deriving the DMFT Equations from the Path Integral Saddle Point

As N ! 1, the moment-generating function Z is exponentially dominated by the saddle point of S.
The equations that define this saddle point also define our DMFT. We thus identify the kernels that
render S locally stationary (�S = 0). The most important equations are those which define {�`, G`}

�S

��̂`
µ↵(t, s)

= �`
µ↵(t, s) +

1

Z
�Z

��̂`
µ↵(t, s)

= �`
µ↵(t, s)�

⌦
�(h`

µ(t))�(h
`
↵(s))

↵
= 0,

�S

�Ĝ`
µ↵(t, s)

= G`
µ↵(t, s) +

1

Z
�Z

�Ĝ`
µ↵(t, s)

= G`
µ↵(t, s)�

⌦
g`µ(t)g

`
↵(s)

↵
= 0, (9)

where hi denotes an average over the stochastic process induced by Z , which is defined below
{u`

µ(t)}µ2[P ],t2R+
⇠ GP(0,�`�1) , {r`µ(t)}µ2[P ],t2R+

⇠ GP(0,G`+1),

h`
µ(t) = u`

µ(t) + �0

Z t

0
ds

PX

↵=1

⇥
A`�1

µ↵ (t, s) +�↵(s)�
`�1
µ↵ (t, s)

⇤
z`↵(s)�̇(h

`
↵(s)),

z`µ(t) = r`µ(t) + �0

Z t

0
ds

PX

↵=1

⇥
B`

µ↵(t, s) +�↵(s)G
`+1
µ↵ (t, s)

⇤
�(h`

↵(s)), (10)
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where we define base cases �0
µ↵(t, s) = Kx

µ↵ and GL+1
µ↵ (t, s) = 1, A0 = BL = 0. We

see that the fields {h`, z`}, which represent the single site preactivations and pre-gradients,
are implicit functionals of the mean-zero Gaussian processes {u`, r`} which have covariances⌦
u`
µ(t)u

`
↵(s)

↵
= �`�1

µ↵ (t, s) and
⌦
r`µ(t)r

`
↵(s)

↵
= G`+1

µ↵ (t, s). The other saddle point equations give

A`
µ↵(t, s) = ��1

0

⌧
��(h`

µ(t))

�r`↵(s)

�
, B`

µ↵(t, s) = ��1
0

⌧
�g`+1

µ (t)

�u`+1
↵ (s)

�
which arise due to coupling between

the feedforward and feedback signals. We note that, in the lazy limit �0 ! 0, the fields approach
Gaussian processes h` ! u`, z` ! r`. Lastly, the final saddle point equations �S

��` = 0, �S
�G` = 0

imply that �̂` = Ĝ` = 0. The full set of equations that define the DMFT are given in D.7.

This theory is easily extended to more general architectures such as networks with varying widths by
layer (App. D.8), trainable bias parameter (App. H), multiple (but ON (1)) output channels (App.
I), convolutional architectures (App. G), networks trained with weight decay (App. J), Langevin
sampling (App. K) and momentum (App. L), discrete time training (App. M). In Appendix N, we
discuss parameterizations which give equivalent feature and predictor dynamics and show our derived
stochastic process is equivalent to the µP scheme of Yang & Hu [1].

4 Solving the Self-Consistent DMFT

The saddle point equations obtained from the field theory discussed in the previous section must be
solved self-consistently. By this we mean that, given knowledge of the kernels, we can characterize the
distribution of {h`, z`}, and given the distribution of {h`, z`}, we can compute the kernels [68, 64].
In the Appendix B, we provide Algorithm 1, a numerical procedure based on this idea to efficiently
solve for the kernels with an alternating Monte-Carlo strategy. The output of the algorithm are the
dynamical kernels �`

µ↵(t, s), G
`
µ↵(t, s), A

`
µ↵(t, s), B

`
µ↵(t, s), from which any network observable

can be computed as we discuss in Appendix D. We provide an example of the solution to the
saddle point equations compared to training a finite NN in Figure 1. We plot �`, G` at the end of
training and the sample-trace of these kernels through time. Additionally, we compare the kernels of
finite width N network to the DMFT predicted kernels using a cosine-similarity alignment metric
A(�DMFT ,�NN ) = Tr �DMFT�NN

|�DMFT ||�NN | . Additional examples are in Appendix Figures 6 and Figure 7.

4.1 Deep Linear Networks: Closed Form Self-Consistent Equations

Deep linear networks (�(h) = h) are of theoretical interest since they are simpler to analyze than
nonlinear networks but preserve non-trivial training dynamics and feature learning [69–73, 25, 32, 23].
In a deep linear network, we can simplify our saddle point equations to algebraic formulas that close
in terms of the kernels H`

µ↵(t, s) =
⌦
h`
µ(t)h

`
↵(s)

↵
, G`(t, s) =

⌦
g`(t)g`(s)

↵
[1]. This is a significant

simplification since it allows solution of the saddle point equations without a sampling procedure.

To describe the result, we first introduce a vectorization notation h
` = Vec{h`

µ(t)}µ2[P ],t2R+
. Like-

wise we convert kernels H
` = Mat{H`

µ↵(t, s)}µ,↵2[P ],t,s2R+
into matrices. The inner product

under this vectorization is defined as a · b =
R1
0 dt

PP
µ=1 aµ(t)bµ(t). In a practical computa-

tional implementation, the theory would be evaluated on a grid of T time points with discrete time
gradient descent, so these kernels H

` 2 RPT⇥PT would indeed be matrices of the appropriate
size. The fields h

`, g` are linear functionals of independent Gaussian processes u
`, r`, giving

(I � �2
0C

`
D

`)h` = u
` + �0C`

r
` , (I � �2

0D
`
C

`)g` = r
` + �0D`

u
`. The matrices C` and D

`

are causal integral operators which depend on {A`�1,H`�1} and {B`,G`+1} respectively which
we define in Appendix F. The saddle point equations which define the kernels are

H
` =

⌦
h
`
h
`>↵ = (I� �2

0C
`
D

`)�1[H`�1 + �2
0C

`
G

`+1
C

`>]
⇥
(I� �2

0C
`
D

`)�1
⇤>

G
` =

⌦
g
`
g
`>↵ =

�
I� �2

0D
`
C

`
��1 ⇥

G
`+1 + �2

0D
`
H

`�1
D

`>⇤
h�
I� �2

0D
`
C

`
��1

i>
. (11)

Examples of the predictions obtained by solving these systems of equations are provided in Figure 2.
We see that these DMFT equations describe kernel evolution for networks of a variety of depths and
that the change in each layer’s kernel increases with the depth of the network.

Unlike many prior results [69–72], our DMFT does not require any restrictions on the structure
of the input data but hold for any K

x,y. However, for whitened data K
x = I we show in
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(a) Lazy vs Rich Loss Dynamics (b) Initial Preactivation Density (c) Final Preactivation Density

(d) Final �` Kernels �0 = 1 (e) �` Dynamics �0 = 1.0 (f) �` Convergence to DMFT

(g) Final G` kernels �0 = 1.0 (h) G
` Dynamics �0 = 1.0 (i) G

` Convergence to DMFT

Figure 1: Neural network feature learning dynamics is captured by self-consistent dynamical mean
field theory (DMFT). (a) Training loss curves on a subsample of P = 10 CIFAR-10 training points
in a depth 4 (L = 3, N = 2500) tanh network (�(h) = tanh(h)) trained with MSE. Increasing �0
accelerates training. (b)-(c) The distribution of preactivations at the beginning and end of training
matches predictions of the DMFT. (d) The final �` (at t = 100) kernel order parameters match the
finite width network. (e) The temporal dynamics of the sample-traced kernels

P
µ �

`
µµ(t, s) matches

experiment and reveals rich dynamics across layers. (f) The alignment A(�`
DMFT ,�

`
NN ), defined

as cosine similarity, of the kernel �`
µ↵(t, s) predicted by theory (DMFT) and width N networks for

different N but fixed �0 = �/
p
N . Errorbars show standard deviation computed over 10 repeats.

Around N ⇠ 500 DMFT begins to show near perfect agreement with the NN. (g)-(i) The same plots
but for the gradient kernel G`. Whereas finite width effects for �` are larger at later layers ` since
variance accumulates on the forward pass, fluctuations in G

` are large in early layers.

Appendix F.1.1, F.2 that our DMFT learning curves interpolate between NTK dynamics and the
sigmoidal trajectories of prior works [69, 70] as �0 is increased. For example, in the two layer
(L = 1) linear network with K

x = I, the dynamics of the error norm �(t) = ||�(t)|| takes the
form @

@t�(t) = �2
p
1 + �2

0(y ��(t))2�(t) where y = ||y||. These dynamics give the linear
convergence rate of the NTK if �0 ! 0 but approaches logistic dynamics of [70] as �0 ! 1. Further,
H(t) =

⌦
h
1(t)h1(t)>

↵
2 RP⇥P only grows in the yy

> direction with Hy(t) =
1
y2y

>
H(t)y =p

1 + �2
0(y ��(t))2. At the end of training H(t) ! I+ 1

y2 [
p

1 + �2
0y

2 � 1]yy>, recovering the
rank one spike which was recently obtained in the small initialization limit [74]. We show this one
dimensional system in Figure 8.

4.2 Feature Learning with L2 Regularization

As we show in Appendix J, the DMFT can be extended to networks trained with weight decay
d✓
dt = ��2r✓L � �✓. If neural network is homogenous in its parameters so that f(c✓) = cf(✓)
(examples include networks with linear, ReLU, quadratic activations), then the final network predictor
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(a) Deep Linear Loss Dynamics (b) Predicted vs Experimental Final H` Kernels

(c) L-Dependent Kernel Movement (d) L = 5 DMFT Temporal Kernels

Figure 2: Deep linear network with the full DMFT. (a) The train loss for NNs of varying L. (b) For a
L = 5, N = 1000 NN, the kernels H` at the end of training compared to DMFT theory on P = 20
datapoints. (c) The average displacement of feature kernels for different depth networks at same �0
value. For equal values of �0, deeper networks exhibit larger changes to their features, manifested in
lower alignment with their initial t = 0 kernels H . (d) The solution to the temporal components of
the G`(t, s) and

P
µ H

`
µµ(t, s) kernels obtained from the self-consistent equations.

is a kernel regressor with the final NTK limt!1 f(x, t) = k(x)>[K + �I]�1
y where K(x,x0)

is the final-NTK, [k(x)]µ = K(x,xµ) and [K]µ↵ = K(xµ,x↵). We note that the effective
regularization � increases with depth L. In NTK parameterization, weight decay in infinite width
homogenous networks gives a trivial fixed point K(x,x0) ! 0 and consequently a zero predictor
f ! 0 [75]. However, as we show in Figure 3, increasing feature learning �0 can prevent convergence
to the trivial fixed point, allowing a non-zero fixed point for K, f even at infinite width. The kernel
and function dynamics can be predicted with DMFT. The fixed point is a nontrivial function of the
hyperparameters �,, L, �0.

(a) Loss for varying �0 (b) Final � Kernels

Figure 3: Width N = 1000 ReLU networks trained with L2 regularization have nontrivial fixed
point in DMFT limit (�0 > 0). (a) Training loss dynamics for a L = 1 ReLU network with � = 1.
In �0 ! 0 limit the fixed point is trivial f = K = 0. The final loss is a decreasing function of
�0. (b) The final kernel is more aligned with target with increasing �0. Networks with homogenous
activations enjoy a representer theorem at infinite-width as we show in Appendix J.
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5 Approximation Schemes

We now compare our exact DMFT with approximations of prior works, providing an explanation of
when these approximations give accurate predictions and when they break down.

5.1 Gradient Independence Ansatz

We can study the accuracy of the ansatz A
` = B

` = 0, which is equivalent to treating the weight
matrices W `(0) and W

`(0)> which appear in forward and backward passes respectively as indepen-
dent Gaussian matrices. This assumption was utilized in prior works on signal propagation in deep
networks in the lazy regime [76–80]. A consequence of this approximation is the Gaussianity and
statistical independence of �` and ⇠` (conditional on {�`,G`}) in each layer as we show in Appendix
O. This ansatz works very well near �0 ⇡ 0 (the static kernel regime) since dh

dr ,
dz
du ⇠ O(�0) or

around initialization t ⇡ 0 but begins to fail at larger values of �0, t (Figure 4).

5.2 Perturbation theory in �0 at infinite-width

In the �0 ! 0 limit, we recover static kernels, giving linear dynamics identical to the NTK limit
[7]. Corrections to this lazy limit can be extracted at small but finite �0. This is conceptually similar
to recent works which consider perturbation series for the NTK in powers of 1/N [35, 27, 28]
(though not identical, see Appendix P.7 for finite N effects). We expand all observables q(�0) in
a power series in �0, giving q(�0) = q(0) + �0q(1) + �2

0q
(2) + ... and compute corrections up to

O(�2
0). We show that the O(�0) and O(�3

0) corrections to kernels vanish, giving leading order
expansions of the form � = �0 + �2

0�
2 +O(�4

0) and G = G
0 + �2

0G
2 +O(�4

0) (see Appendix
P.2). Further, we show that the NTK has relative change at leading order which scales linearly
with depth |�KNTK |/|KNTK,0| ⇠ O�0,L(L�

2
0) = ON,�,L(

�2L
N ), which is consistent with finite

width effective field theory at � = ON (1) [26–28] (Appendix P.6). Further, at the leading order
correction, all temporal dependencies are controlled by P (P + 1) functions v↵(t) =

R t
0 ds�0

↵(s)

and v↵�(t) =
R t
0 ds�0

↵(s)
R s
0 ds0�0

�(s
0), which is consistent with those derived for finite width NNs

using a truncation of the Neural Tangent Hierarchy [34, 35, 27]. To lighten notation, we focus our
main text comparison of our non-perturbative DMFT to perturbation theory in the deep linear case.
Full perturbation theory is in Appendix P.2.

Using the timescales derived in the previous section, we find that the leading order correction to the
kernels in infinite-width deep linear network have the form

KNTK
µ⌫ (t, s) = (L+ 1)Kx

µ⌫ + �2
0
L(L+ 1)

2
Kx

µ⌫

X

↵�

Kx
↵� [v↵�(t) + v�↵(s) + v↵(t)v�(s)]

+ �2
0
L(L+ 1)

2

2

4
X

↵�

Kx
µ↵K

x
⌫� [v↵�(t) + v�↵(s)] +

X

↵�

Kx
µ↵K

x
⌫�v↵(t)v�(s)

3

5+O(�4
0). (12)

We see that the relative change in the NTK |KNTK � K
NTK(0)|/|KNTK(0)| ⇠ O(�2

0L) =
O(�2L/N), so that large depth L networks exhibit more significant kernel evolution, which agrees
with other perturbative studies [35, 27, 25] as well as the non-perturbative results in Figure 2. However
at large �0 and large L, this theory begins to break down as we show in Figure 4.

The DMFT formalism can also be used to extract leading corrections to observables at large but finite
width N as we explore in P.7. When deviating from infinite width, the kernels are no longer deter-
ministic over network initializations. The key observation is that the DMFT action S defines a Gibbs
measure over the space of kernel order parameters k = Vec{�`,G`,A`,B`} with probability den-
sity 1

Z exp (NS[k]) where Z is a normalization constant. Near infinite width, any observable average
hO(k)i = 1

Z

R
dk exp (NS[k])O(k) is dominated by order parameters within a 1p

N
neighborhood

of k⇤. As a consequence, a perturbative series for hO(k)i can be obtained from simple averages
over Gaussian fluctuations in the kernels k ⇠ N (k⇤,� 1

N [r2S[k⇤]]�1) [29]. The components for
r2S[k⇤] include four point correlations of fields computed over the DMFT distribution.
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(a) Loss dynamics (b) Final H` Kernels �0 = 1.5

(c) H
` Kernel Dynamics �0 = 1.5 (d) Theory H

` vs NN with N = 1000

Figure 4: Comparison of DMFT to various approximation schemes in a L = 5 hidden layer, width
N = 1000 linear network with �0 = 1.0 and P = 100. (a) The loss for the various approximations
do not track the true trajectory induced by gradient descent in the large �0 regime. (b)-(c) The feature
kernels H`

µ↵(t, s) across each of the L = 5 hidden layers for each of the theories is compared to a
width 1000 neural network. Again, we plot the sample-traced dynamics

P
µµ H

`
µµ(t, s). (d) The

alignment of H` compared to the finite NN A(H`,H`
NN ) averaged across ` 2 {1, ..., 5} for varying

�. The predictions of all of these theories coincide in the �0 = 0 limit but begin to deviate in the
feature learning regime. Only the non-perturbative DMFT is accurate over a wide range of �0.

6 Feature Learning Dynamics is Preserved at Fixed �0

Our DMFT suggests that for networks sufficiently wide for their kernels to concentrate, the dynamics
of loss and kernels should be invariant under the rescaling N ! RN, � ! �/

p
R, which keeps �0

fixed. To evaluate how well this idea holds in a realistic deep learning problem, we trained CNNs
of varying channel counts N on two-class CIFAR classification [81]. We tracked the dynamics of
the loss and the last layer �L kernel. The results are provided in Figure 5. We see that dynamics are
largely independent of rescaling as predicted. Further, as expected, larger �0 leads to larger changes
in kernel norm and faster alignment to the target function y, as was also found in [82]. Consequently,
the higher �0 networks train more rapidly. The trend is consistent for width N = 250 and N = 500.
More details about the experiment can be found in Appendix C.2.

7 Discussion

We provided a unifying DMFT derivation of feature dynamics in infinite networks trained with
gradient based optimization. Our theory interpolates between lazy infinite-width behavior of a static
NTK in �0 ! 0 and rich feature learning. At �0 = 1, our DMFT construction agrees with the
stochastic process derived previously with the Tensor Programs framework [1]. Our saddle point
equations give self-consistency conditions which relate the stochastic fields to the kernels. These
equations are exactly solveable in deep linear networks and can be efficiently solved with a numerical
method in the nonlinear case. Comparisons with other approximation schemes show that DMFT can
be accurate at a much wider range of �0. We believe our framework could be a useful perspective for
future theoretical analyses of feature learning and generalization in wide networks.
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(a) Test MSE (b) Classification Error (c) A(�L
, yy

>) Dynamics

Figure 5: The dynamics of a depth 5 (L = 4 hidden) CNNs trained on first two classes of CIFAR (boat
vs plane) exhibit consistency for different channel counts N 2 {250, 500} for fixed �0 = �/

p
N .

(a) We plot the test loss (MSE) and (b) test classification error. Networks with higher �0 train more
rapidly. Time is measured in every 100 update steps. (c) The dynamics of the last layer feature kernel
�L, shown as alignment to the target function. As predicted by the DMFT, higher �0 corresponds to
more active kernel evolution, evidenced by larger change in the alignment.

Though our DMFT is quite general in regards to the data and architecture, the technique is not entirely
rigorous and relies on heuristic physics techniques. Our theory holds in the T, P = ON (1) and
may break down otherwise; other asymptotic regimes (such as P/N, T/ log(N) = ON (1), etc) may
exhibit phenomena relevant to deep learning practice [32, 83]. The computational requirements
of our method, while smaller than the exponential time complexity for exact solution [1], are still
significant for large PT . In Table 1, we compare the time taken for various theories to compute the
feature kernels throughout T steps of gradient descent. For a width N network, computation of each
forward pass on all P data points takes O(PN2) computations. The static NTK requires computation
of O(P 2) entries in the kernel which do not need to be recomputed. However, the DMFT requires
matrix multiplications on PT ⇥ PT matrices giving a O(P 3T 3) time scaling. Future work could
aim to improve the computational overhead of the algorithm, by considering data averaged theories
[64] or one pass SGD [1]. Alternative projected versions of gradient descent have also enabled much
better computational scaling in evaluation of the theoretical predictions [46], allowing evaluation on
full CIFAR-10.

Requirements Width-N NN Static NTK Perturbative Full DMFT
Memory for Kernels O(N2) O(P 2) O(P 4T ) O(P 2T 2)

Time for Kernels O(PN2T ) O(P 2) O(P 4T ) O(P 3T 3)
Time for Final Outputs O(PN2T ) O(P 3) O(P 4) O(P 3T 3)

Table 1: Computational requirements to compute kernel dynamics and trained network predictions on
P points in a depth N neural network on a grid of T time points trained with P data points for various
theories. DMFT is faster and less memory intensive than a width N network only if N � PT . It
is more computationally efficient to compute full DMFT kernels than leading order perturbation
theory when T ⌧

p
P . The expensive scaling with both samples and time are the cost of a full-batch

non-perturbative theory of gradient based feature learning dynamics.
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