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Abstract

Knowledge distillation (KD) can effectively compress neural networks by training
a smaller network (student) to simulate the behavior of a larger one (teacher).
A counter-intuitive observation is that a more expansive teacher does not make
a better student, but the reasons for this phenomenon remain unclear. In this
paper, we demonstrate that this is directly attributed to the presence of undistillable
classes: when trained with distillation, the teacher’s knowledge of some classes
is incomprehensible to the student model. We observe that while KD improves
the overall accuracy, it is at the cost of the model becoming inaccurate in these
undistillable classes. After establishing their widespread existence in state-of-
the-art distillation methods, we illustrate their correlation with the capacity gap
between teacher and student models. Finally, we present a simple “Teach Less
Learn More” (TLLM) framework to identify and discard the undistillable classes
during training. We validate the effectiveness of our approach on multiple datasets
with varying network architectures. In all settings, our proposed method is able to
exceed the performance of competitive state-of-the-art techniques.

1 Introduction

More accurate machine learning models often demand more computation and memory at test time,
making them difficult to deploy on computational-constraint devices. Knowledge distillation (KD)
alleviates this burden by transferring the knowledge from an expensive teacher model to a cheap
student model to improve the performance of this more efficient network. Over the past several
years, we have witnessed a huge success in knowledge distillation and a surge of related literature on
designing better distillation techniques.

An intuitive thought of knowledge distillation is that better teachers are supposed to make better
students since a larger model can learn more visually meaningful and task-related information, and a
student model can presumably benefit from learning with more informative knowledge. However,
recent works show that such intuition is incorrect. In fact, prior works found that students distilled
from a bigger teacher, one with more parameters and higher accuracy, can perform worse than the
same students distilled from a smaller teacher [23, 9, 36, 25, 33]. The situation is getting more severe
when training on a large-scale, challenging dataset such as ImageNet [5]. More surprisingly, the model
with the same architecture [49] or even a model with lower performance [18, 46, 50] can be used as a
teacher network to perform knowledge distillation, which plays a role of regularization [32, 24, 52].
Indeed, a large body of researches [55, 35, 53, 17, 34] devoted to solving this problem, but few
minimal efforts have been put into understanding this phenomenon.
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In this paper, we propose a new data-centric perspective on the phenomenon of “larger teacher, worse
student”. In contrast to the previous works, we cast the inefficacy of large teachers as a fundamental
consequence of the class-dependent bias in KD. Specifically, we claim that:

The undistillable classes are a direct result of the inefficacy of large teachers in distillation.

Recall that prior works attribute the failure of large teachers in KD to the capacity mismatch between
the teacher and student model. In other words, the student model cannot learn the teacher’s knowledge
due to their insufficient expressive power. Indeed, we find that their claim is true for some classes
that posses bad distillability. We posit that these classes cause seemingly mismatched capacity over
all samples in the dataset.

The empirical study supports our hypothesis. For samples from the undistillable classes, the feature
representation similarity between the teacher and student model is extremely low compared to
the regular classes. Furthermore, perhaps less surprisingly, the distilled model could obtain lower
accuracy on these undistillable classes than their vanilla-trained counterpart. To further corroborate
our theory, we show that the number of undistillable classes increases when the capacity gap between
the two models increases.

After verifying our hypothesis, a natural question would be raised: to what extent do these undistillable
classes exist? When discussing the property of knowledge distillation, previous literature typically
evaluates vanilla knowledge distillation [14]. However, considering the evolution of distillation
techniques over the past several years, we believe it is necessary to expand our study. To this end, we
investigate the existence of the undistillable classes over three standard datasets (CIFAR100 [21],
ImageNet1K [6], CUB-200 [42]) with more than 20 modern distillation techniques. We also include
the evaluation of advanced architectures, i.e., vision transformer [39]. Our study shows that the
undistillable classes generally exist, usually taking over from 10% to 50% of the total classes,
depending on the distillation methods, datasets, and teacher-student pairs.

To resolve this issue, we present a novel distillation framework called “Teach Less, Learn More”
distillation (TLLM). It is motivated by the successful teaching strategy in pedagogy[37], where
teachers are encouraged to do less rote learning and provide more spaces for students to explore and
discover their talents. Our methodology is conceptually similar: we aim to identify the undistillable
classes and remove them entirely during distillation, allowing the student model to explore the
representations of these classes with their own capacity. Specifically, we record the per-class teaching
curve (distillation losses) and calculate its change over a moving window of K epochs. If the teaching
curve for some particular classes is stagnated or upward, we consider the knowledge transfer process
for these classes is no longer necessary. Then, we remove these classes in distillation (if it is an output-
based KD, we replace them with the label smoothing technique to compensate for the regularization
effect). Our approach, despite its simplicity, is proven to be effective in preventing the adverse effect
brought by the undistillable classes and improving the overall accuracy.

Overall, we emphasize our contributions are the following: 1) we analytically show that the undistill-
able classes are the cause of inefficacy of the large teacher model; 2) we demonstrate that the accuracy
of these undistillable classes drops after distillation, and our extensive experiments showing this is a
general phenomenon, irrespective of distillation methods, datasets, or teacher-student pairs; 3) we
propose a simple yet effective framework to identify and discard undistillable classes and illustrate
the effectiveness our approach with extensive experiments.

2 On the Undistillable Classes in Knowledge Distillation

2.1 Formal Definition

In this section, we formally define the undistillable classes. Considering an multi-class predictor
F : Rd → Rk as student and another predictor G : Rd → Rk as teacher. Giving a traing dataset
S = {(xi, yi)

n
i=1} ∼ Pn for distribution P over a set of instance X and label Y = [L] = [1, 2, . . . , L].

In the standard training, the goal is to approximate the risk R(f ;S) of functional class f ∈ F via the
empirical risk R̂(f ;S) = 1

N

∑
n l(y , f(x)), for any bounded loss. For knowledge distillation, we can

rewrite the distilled risk as R̃(f ;S) = 1
N

∑
n l(g(x), f(x)), where the functional class g ∈ G.

The conventional setting consider all classes equally. Without loss of generality, we will consider the
S = Sr

⋃
Su ∼ Pn, where we split the data over distribution P into two categories, each category
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Figure 1: The representation agreement measured by CKA between teacher model and student model.
For student network, the samples from undistillable classes clearly fail to match the representation
from teacher model.

contains non-overlapping instances Su = {(xi, y
u
i )

n
i=1},Yu = [L] = {Ln+1, Ln+2, · · · , L}, Sr =

S \ Suand | · |c be a appropriate distillability measurement. In our context, we define the distillability
function | · |c as the difference in performance between the distilled student model with the train-
from-scratch counterpart under certain evaluation metrics. Let E(·) be an evaluation metric that
measures the performance of a particular multi-class predictor on S. Then, formally, we define
| · |c = E(Fkd)−E(Fvanilla). Finally, we define that Su are a set of samples from the undistillable
classes in distillation iff |f ;Su|c ≪ |f ;Sr|c.

2.2 Mismatched Representation for Undistillable Classes

The previous section formally defines the undistillable classes as classes with bad distillability. In
this section, we develop a criterion to measure the distillability of a class quantitatively. Recall
that the student is typically encouraged to mimic the behavior of the teacher model. Therefore, a
converged student should impeccably match the teacher’s behavior in an ideal setting. It implies
that their feature representations should be the same as the teachers’, given the same input on both
models. As a result, we harness the similarity of feature representations between teacher and student
to reflect the level of distillability of the student model. Inspired by Zhu et al. [55], we use the
Center Kernel Alignment (CKA) [20] to calculate the representation similarity between two neural
networks. To create a typical case of capacity mismatch, we follow the previous works [5] to use
a ResNet56 as our pre-trained teacher model and a modified ResNet24 as the student model (see
Appendix for details). We perform standard feature knowledge distillation [31] on stage four, which
contains nine consecutive convolutional blocks. We choose to compare the network representation at
convergence. For the CKA score figure, we primarily focus the score on the diagonal, which indicates
the representation similarity of the convolutional layer at the same position in the network. In order
to compare the representation similarity of samples from different types of classes, we deliberately
choose 12 test samples from distinct classes. Note that we use samples from the test set to ensure that
the observed behavior is not due to ad-hoc memorization.

In the middle of Figure 1, the feature similarity between teacher and student on each corresponding
layer is presented. We can observe that the CKA scores for most layers are less than 0.6, and for
some layers are even less than 0.5. These results indicate that despite the student indeed learning
to match the teacher’s representations, their features are far from perfect alignment. Notably, the
representation similarity score is calculated based on the average score over a batch. Therefore, we
decouple the matrices and check the CKA score for each sample individually. On the left side and
right side of Figure 1, we give the CKA matrices at the last three layers for 12 samples. Each side
contains six samples. We notice a clear trend: the CKA scores for samples from the left side are
obviously much lower than those on the right side, indicating that the mismatched representations
are not uniformly distributed over all samples. Therefore, we name the classes on the left side as
undistillable classes. Our observation contradicts the conclusion from the prior work, which attributes
the mismatched capacity as a general issue for all data [55, 5, 23]. We later show that at the left top
of Figure 4, the accuracy for the undistillable classes drops after training with KD compared to their
train-from-scratch counterpart.
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Figure 2: The ∆PA versus ∆Acc for three teacher-student pairs on CIFAR100. The Pearson’s r is
higher than 0.65 for all figures.

2.3 Bad Distillability hurts Accuracy

As aforementioned, a model would contain some classes with bad distillability. But what is the
consequence of distilling knowledge to these classes? In this section, we show that the quality of KD
(i.e., accuracy) is highly correlated to their distillability. Here we record the difference in accuracy
between the vanilla trained model (training without distillation) and the model trained with knowledge
distillation. Particularly, we adopt per-class accuracy:

∆ACCm = ACCm
vanilla −ACCm

kd (1)

where m ∈ Y. The motivation behind this metric is straightforward: if the ∆ACCm > 0, then for
mth class, the effect of KD is positive; otherwise, the KD hurts the student’s performance on mth

class. To demonstrate the correlation between per-class accuracy and per-class distillability, a naive
approach is to compare the ∆ACC with the CKA scores, as shown in the previous section. However,
CKA measures per-layer feature representation similarity; simply averaging over the total number of
layers may be inaccurate, not to mention that the teacher model usually contains more layers than
students. Therefore, we present a new metric based on average prediction agreement:

PA :=
1

n

n∑
i=1

1 argmax σ(zt,i) = argmax σ(zs,i) (2)

where σ(zt) =
exp(zi)∑
j exp(zi)

and σ(zs) =
exp(zs)∑
j exp(zs)

is the output of softmax function for teacher model
and student model, respectively. Equation 2 is inspired by the fact that if the feature representations
between two models are exactly the same, these two models ought to produce the same top-1 label.
Similar to ∆Acc, here we focus on the difference in prediction agreement ∆PA between two models;
one is trained from scratch, and another is trained with distillation:

∆PAm := PAm
vanilla − PAm

kd (3)

Specifically, we put these two metrics in a scatter plot chart for three varying teacher-student pairs
on CIFAR100. Figure 2 reveals that for most of the classes with ∆ACC ≤ 0, its corresponding
∆PA ≤ 0 as well, indicating that if the student become disagrees with the teacher’s prediction,
the teacher’s supervision can hurt student’s performance on this particular class. In addition, we
can observe that the level of disagreement is linearly correlated to the level of performance change:
when measured with the Pearson’s r, it obtained over 0.65 with a p-value less than 0.0005 on all
three teacher-student combination, showing a statistically significant linear correlation between these
two metrics. In conclusion, for any class in the student model, if it is undistillable, it certainly has
∆ACCm < 0.

2.4 The Larger the Capacity Gap, the More the Undistillable Classes

Now, we redirect our attention to the correlation between the level of capacity gap and the presence
of the undistillable classes. We propose to leverage multiple teacher networks with varying capacity
to distilled a single, low-capacity student. Specifically, we select the ResNet20 as our student model,
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Figure 3: Left: Per-class ACC and per-class ∆ACC for three teacher-student pairs in CIFAR100.
Right: Proportion of Undistillable Classes distilling ResNet20 with three teacher models.

and pick ResNet44, ResNet56, and ResNet110 as three individual teacher model. For each set of
experiments, we adopt one teacher model from the above to train a student model via vanilla KD [14].
This procedure mirrors that of mismatched capacity experiments in Cho et al. [5], except that our goal
is to investigate the relationship of per-class accuracy with the capacity gap. As shown in Figure 3,
we observe a clear relation between increase of the number undistillable classes, as increase in the
capacity gap between models. Specifically, the number of total undistillable classes for the smallest
student model (ResNet44) is almost tripled compare to the largest largest model (ResNet101).

2.5 On the Existence of the Undistillable Classes

The knowledge distillation is well-known for its “free” gain over compact models on average on
an i.i.d test set. Modern distillation techniques only focus on improving the overall accuracy of the
student model, with an intuition that the distillation is beneficial for all classes. Indeed, the overall
accuracy is paramount, but the per-class accuracy is also important in many cases. Nevertheless, the
distillation method inevitably brings class-dependent bias into the student model. As briefly shown
in Figure 4, the distilled student model shows obvious class-dependent bias on all datasets. It is
also worth noting that the accuracy drops dramatically for some undistillable classes. For instance,
on ImageNet1K, there are 127 classes that lose over 4% accuracy compared to their vanilla trained
counterpart, and more than nine classes lose over 10% on the test set.

In recent years, the techniques of distillation have evolved dramatically, i.e., feature-based distillation
and self-supervision-based distillation [38]. Therefore, to ensure the undistillable classes are not
a unique byproduct of the vanilla KD, we extend our experiments to include 26 state-of-the-art
distillation frameworks, each of them evaluated by five different teacher-student pairs on CIFAR100.
We categorize them into two groups (output-based KD and feature-based KD). Table 1 give a list of all
methods that we used for evaluation. We only present the results for 13 of them due to limited space;
the complete analysis and more evaluation of ImageNet-1K can be found in Appendix. Figure 5
shows the number of undistillable classes. It is surprising to show that all of them contain undistillable
classes. For instance, the Resnet32x4:Resnet8x4 with vanilla KD has 52 undistillable classes, more
the half of the total classes. Despite so many undistillable classes, all distillation methods improve
the vanilla student model, some by a large margin. Such a phenomenon indicates that the effect of
knowledge distillation is non-uniform at the class level. Moreover, the proportion of the undistillable
classes is taking over from 10% to 50% over the total number of classes. Therefore, it is critical and
necessary to control and reduce the number of undistillable classes in the student network.

5



Table 1: A summary of all distillation methods that we used for evaluation in Section 2.5
Method KD [14] FitNet [31] AT [47] SP [41] CC [29] VID [1] RKD [27] PKT [28] AB [13] FT [19] FSP [45] NST [16] CRD [38]
Pub Arxiv’14 ICLR’15 Arxiv’16 ICCV’19 ICCV’19 CVPR’19 CVPR’19 ECCV’18 AAAI’19 Neurips18 CVPR’17 Arxiv’18 ICLR’19
Output ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

Feature ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓

Method SSKD [43] PAD [51] WSKD [54] LST [33] OH [12] TA [23] ESKD [5] SCKD [55] KR [3] SFTN [26] CID [7] FKD [11] DKD [53]
Pub ECCV’20 ECCV’20 ICLR’20 ICLR’20 ICCV’19 AAAI’20 ICCV’19 ICCV’21 ICCV’21 Neurips’21 Neurips’21 ICLR’22 CVPR’22
Output ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

Feature ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗

Figure 4: The per-class ∆ACC of knowledge distillation on three datasets (CI-
FAR100 [21]/ImageNet1K [6]/CUB-200 [42]) with vanilla KD [14]. We only show the
first 500 class in ImageNet1K and the first 100 classes in CUB-200. The dashed line denotes the
improvement of average accuracy using KD.

3 Teach Less, Learn More (TLLM): Identifying and Discarding the
Undistillable Classes

We have stressed the adverse effect and characterized the properties of the undistillable classes from
the previous section. To this end, we give a simple framework, named “Teach Less, Learn More”
distillation (TLLM), which analogy to a successful teaching principal in the pedagogy, to build better
KD algorithms. Our idea is conceptually similar to the TLLM in the pedagogy, where the student
is encouraged to have more autonomy and devise their own solutions to problems. In practice, the
student model is supervised by both teacher’s knowledge and the ground truth labels. Training with
the model’s task-oriented objectives is critical to the eventual performance [14], and provably to
correct the wrong gradient directions that are brought by the teacher’s mistaken knowledge [18].
Therefore, what we do is simple: identify the undistillable classes and then remove them from the
distillation process. As a result, the student can learn these classes directly from the ground truth
labels without interference.

The critical challenge of TLLM is how to find the undistillable classes during training. A naive yet
computational expansive approach is first to train the model to convergence with distillation and then
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retrain it by manually eliminating the undistillable classes according to the performance on the test
set. Instead, we propose to monitor the teaching curves (distillation losses) and set up a criterion to
find the undistillable classes during training that are more computationally efficient.

Specifically, we pay attention to the per-class teaching curve, i.e., teaching curve l(ym, f(x)) on
mth class, instead of the averaged distillation loss over the entire datasets. The teaching curve is
calculated on the validation set. Then, we set a moving window over K epochs, which is started at
Sth epoch and end at (S +K)

th epoch. During the distillation process, we record and update the
per-class teaching curve [lS(ym, f(x)), lS+K(ym, f(x))]. If lS(ym, f(x)) − lS+K(ym, f(x)) ≤ η,
0 ≤ η, meaning that the loss is moving upward in the K epochs moving window. Figure 3 gives an
example of the teaching curve for an undistillable class. After training with approximately 50 epochs,
the loss for this particular class suddenly jumps. Therefore, our method can capture such behavior,
then identify and remove these undistillable classes during training. It is worth noting that these
classes remain in the task-oriented objective for the student, making sure that the student can still
learn from these data. Our approach is very efficient since the extra computational cost is linearly
correlated with the number of classes, usually not a big number.

4 Experiment

4.1 Main Results

In this section, we evaluate our proposed method on CIFAR100 [21] and ImageNet [6] under various
distillation settings. We refer reader to the Appendix for the implementation details.

CIFAR100. As aforementioned, our approach is orthogonal to other distillation techniques.
Therefore, we investigate the performance of TLLM when combined with other methods. We report
the experimental results on CIFAR100, which average over five trials. Specifically, we compare six
distillation methods, and for each of them, we add our method to theirs. As shown in Table 2, our
method consistently improve the overall accuracy for baseline. For instance, we improve the vanilla
KD [14] by 2.54%. The performance gain mostly comes from the increased accuracy on undistillable
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Table 2: Experimental results on CIFAR100 with CNN architectures. We observe that our approach
improves overall accuracy and significantly reduces the number of undistillable classes.

T-S Pair ResNet32x4/ResNet8x4 (%) ResNet50/MobileNetV2 (%) ResNet32x4/ShuffleNetV1 (%)
Method Vanilla TLLM ∆ Vanilla TLLM ∆ Vanilla TLLM ∆

Teacher 79.42 - - 79.34 - - 79.42 - -
Student 72.50 - - 64.60 - - 70.50 - -

KD [14] 73.08 75.53 +2.54 67.28 69.54 +2.26 74.07 76.67 +2.60
FitNet [31] 73.50 75.52 +2.02 63.06 66.33 +3.27 73.59 75.82 +2.23

AT [47] 73.44 75.21 +1.77 58.58 61.70 +3.12 71.73 75.10 +3.37
OH [12] 74.98 76.82 +1.84 67.69 69.21 +1.52 77.43 79.05 +1.62
KR [3] 75.63 76.84 +1.21 69.89 71.84 +1.95 77.14 78.87 +1.73

SFTN [26] 76.64 77.83 +1.19 70.01 70.94 +0.93 79.58 80.04 +0.46

classes. Later, we will show that our approach also reduces the number of undistillable classes. It
is also surprising to find that some methods that were once inferior to other approaches, i.e., the
accuracy of OH [12] is 0.65% lower than KR [3] on ResNet32x4/ResNet8x4, obtain higher accuracy
after applying TLLM, showing that many “outdated” algorithms have the potential to be quality
methods. Moreover, our approach is practical for both output-based (i.e., KD [14])and feature-based
distillation [31, 3, 47] algorithms.

Figure 6: Teaching curve for regular class and
undistillable class.

ImageNet. ImageNet is a large-scale classifica-
tion dataset that contains 1.28 million images for
training and 50k images for validation. Unlike
conventional papers that only report the perfor-
mance of CNN models, we also consider vision
transformer (ViT), an advanced network archi-
tecture that has drawn increasing attention lately.

For CNN-based architectures, we evaluate two
teacher-student pairs: 1) ResNet32 as a pre-
trained teacher and ResNet18 as a student model,
a widely adopted setting follows CRD [38],
2) ResNet50 as a pretrained teacher, and Mo-
bileNetV1 as a student model, a less conven-
tional setting that some papers have used. The
experimental results are reported in Table 7. Our

TLLM, which is built based on KR [10], achieves a considerable improvement over its baseline. It is
also worth mentioning that the performance of TLLM outperforms other state-of-the-art distillation
methods.

For ViT architectures, we evaluate two types of teacher-student pairs: 1) the RegNetY [30] and
ViT-Tiny/ViT-Small [8] pairs are the popular setting in DeiT [39] which apply a CNN model as a
teacher network to distill a vision transformer, 2) the CaiT-S23 [40] and ViT-Tiny pairs adopt an
advanced ViT model as a teacher, whose performance is slightly inferior to RegNetY. We compare
with DeiT [39], a benchmark that uses teachers’ hard labels as dark knowledge to supervise the student
network. We notice that in Table 4, we achieve higher accuracy than DeiT on all teacher-student pairs.
Particularly, when the capacity gap between teacher and student is large, i.e., RegNetY/ViT-Tiny and
CaiT-S24/ViT-Small, the improvement in the validation set is more notable.

4.2 Ablation Study

Number of the Undistillable classes. Our method specifically identified the undistillable classes and
then discarded them during distillation. Therefore, we conduct experiments to check whether our
approach reduces the number of undistillable classes. In the Appendix, we show that our proposed
TLLM significantly reduces the number of undistillable classes in the student models, allowing
balanced performance improvement.
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Table 3: Experimental results on ImageNet1K with CNN architectures.
Teacher Baseline Distillation Framework (%)

ResNet32 ResNet18 KD [14] AT [47] OFD [12] CRD [38] SRRL [44] KR [3] SFTN [26] CID [12] DKD [53] TLLM
73.3 69.8 70.7 70.7 71.2 71.2 71.7 71.6 71.1 71.9 71.7 72.6

ResNet50 MobileNetV1 KD AT OFD CRD SRRL KR SFTN CID DKD TLLM
76.2 68.9 70.5 69.6 71.3 71.4 71.7 72.6 71.5 72.3 72.1 73.2

Table 4: Experimental results on ImageNet1K with vision transformer architectures.

T-S Pair RegNetY/ViT-Tiny (%) RegNetY/ViT-Small (%) CaiT-S24/ViT-Tiny (%) CaiT-S24/ViT-Small (%)
Method Vanilla TLLM Vanilla TLLM Vanilla TLLM Vanilla TLLM
Teacher 82.9 - 82.7 - 82.7 - 82.7 -
Student 72.2 - 79.9 - 72.2 - 79.9 -

KD/DeiT [39] 74.5 76.3+1.8 81.2 81.9+0.7 74.4 76.1+1.7 81.3 82.0+0.7

Does TLLM allow larger teacher to make better student? Our approach is motivated to
resolve the “larger teacher, worse student problem”; thus, it is natural to verify whether our approach
can solve this issue. In the Appendix, we show that our approach allows the larger teacher to distill
students with higher accuracy.

5 Analysis of the Undistillable Classes

This section will thoroughly analyze the undistillable classes we observed in the previous empirical
study.

5.1 Hard Classes of Student ̸= Undistillable Classes

One may wonder whether the undistillable classes can be represented by the hard classes in the
student model (classes with relatively low accuracy). This is a reasonable hypothesis since challenging
classes of student networks (trained without distillation) can be hard to gain more knowledge from
the teacher. Nevertheless, we show that undistillable classes are not the hard class in the student
model. Specifically, we consider three varying teacher-student pairs: ResNet32x4/ResNet18, WRN-
40-2/WRN-16-1, and ResNet56/ResNet20 on CIFAR100 dataset that is trained with vanilla KD [14].
We compare the test accuracy of the student model with the improvement in test accuracy with the
student model train with and without KD. Figure 7 present the results.

Figure 7: Hard classes of student model are not undistillable classes

We can observe that the correlation between students’ accuracy and the improvement of KD is almost
random, showing that the hard classes of a student are not equivalent to undistillable classes.

5.2 Hard Classes of Teacher ̸= Undistillable Classes

Another reasonable hypothesis is that the challenging classes in teacher model can be undistillable
classes because teacher model is normally imperfect. For instance, ResNet-50 can only achieve
76.2% on ImageNet dataset. Can we find undistillable classes by looking at the hard classes of the
teacher model? To answer this question, we conduct similar experiments as in the previous section.
The only difference is that we record the teacher’s test accuracy instead of recording the student’s test
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Figure 8: Hard classes of teacher model are not undistillable classes

accuracy. Also, we conduct experiments on three teacher-student pairs. Figure 8 presents the results,
which lead to the same conclusion that hard classes of teacher model are not undistillable classes.

6 Related Work

The most correlated works are the research discussing the relationship between teacher and student.
Many works observe that the performance of teacher networks does not necessarily improve the
performance of its distilled student. Cho et al. [5] is the first work to present this particular phe-
nomenon and argue that the capacity mismatch between teacher and student gives rise to this behavior.
They propose applying the early stopping technique to train the teacher, and such an early-stopped
teacher can surprisingly improve students’ accuracy. It was later proved that early-stopped teachers
improve data efficiency during distillation [18]. Mirzadeh et al. [23], inspired by BAN [9], show that
using single or multiple intermediate networks, which are larger than the student yet smaller than the
teacher, can also narrow the capacity gap. Zhu et al. [55] propose an adaptive distillation method
based on the observation that the status of the capacity gap change constantly during training. Lukas
et al. [22] find out that teachers trained with label smooth severely affect the student’s accuracy if
vanilla KD is used. Although this opinion is disputed by Shen et al. [33], following work demonstrate
that the label-smoothed model can be an effective teacher if and only if some strict rules are applied,
i.e., assign a large number to temperature term [2]. Other works see that even a bad teacher can
teach a good student because self-distillation is provably a regularization technique [52, 24, 49, 15].
Nevertheless, none of these works investigate the capacity mismatch problem from the class level.

7 Conclusion

This paper studies the “larger teacher, worse student” phenomena in knowledge distillation. Unlike
prior works, which attribute the inefficacy of large teachers as a capacity mismatch issue on samples,
we consider the presence of undistillable classes as the direct cause of mismatched capacity. Our
paper verified that these classes lower the ability of the student model to match the teacher’s feature
representation and predictive distribution, making the accuracy drops considerably in some arbitrary
classes, therefore, hurting the overall performance. We further demonstrate that the existence of
undistillable classes is universal, irrespective of distillation methods, datasets, and student-teacher
configurations. Finally, we propose a “teacher less, learn more” (TLLM) method to alleviate this
issue by targeting and removing samples from the undistillable classes. Our experiments have shown
that our TLLM can greatly eliminate the adverse effect of undistillable classes to improve the overall
performance significantly. Overall, we believe that our analysis and proposed method provides an
interesting and practical new perspective on designing distillation algorithms.
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