
Supplementary Materials

A Proof of Theorem 1

We define K = |A|, i.e., the cardinality of the action space. We next summarize frequently used
notations in the following list.
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For consistency of notation, in some generic cases, we write sh ∼ (P, π) for all h for the entire
episode. But for such cases, s1 should still be understood as a fixed state and independent of transition
model P and policy π. For example in ζ

(n,t)
1 as defined above, the expectation is taken with respect

to a1 ∼ U(A) and fixed state s1. Furthermore, U(π1
t , ..., π

n−1
t ) denotes uniform mixture of previous

n− 1 exploration policies π1
t , ..., π

n−1
t .

Proof Overview: The proof of Theorem 1 consists of three main steps, a final sample complexity
step, and several supporting lemmas. Step 1: We develop a new upper bound on model estimation
error for each task, which captures the advantage of joint MLE model estimation over single-task
learning, as shown in Proposition 1. Step 2: We establish the PCV as an uncertainty measure that
captures the difference between the estimated and ground truth models. This justifies using such
a PCV as a guidance for further exploration, as shown in Proposition 2. Step 3: We show that
the summation of the PCVs over all iterations is sublinear with respect to the total number Nu of
iterations, as shown in Proposition 3, which further implies polynomial efficiency of REFUEL in
learning the models. Complexity characterization: Combining the three steps together with a
contradiction argument yields the final sample complexity.

We provide details for the three main steps in Appendix A.1-Appendix A.3, the complexity character-
ization in Appendix A.4, and the supporting lemmas in Appendix A.5.

A.1 Step 1: A new upper bound on model estimation error.

We develop a new upper bound on model estimation error for each task, which captures the advantage
of joint MLE model estimation over single-task learning, as shown in Proposition 1.
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Proposition 1. For any n ∈ [Nu], task t, policy πt and reward rt, for all h ≥ 2, we have
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where (i) follows from Jensen’s inequality, and (ii) follows from importance sampling.

Then for h ≥ 2, we derive the following bound:
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where (i) follows from Lemma 6 and because |f (n,t)
h (sh, ah)| ≤ 1, the first term inside the square

root follows from the definition of U (n,t)

h−1,ϕ̂(n,t)
, the third term inside the square root follows from

importance sampling and (ii) follows from Lemma 3.

The proof is completed by noting that |f (n,t)
h (sh, ah)| ≤ 1.

The following corollary is a direct application of Proposition 1.

Corollary 1 (Bounded difference of value functions). For n ∈ [N ], any task t, policy πt and reward
rt, we have∣∣∣V πt
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Proof. For task t, we have∣∣∣V πt
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where (i) follows from Lemma 15, (ii) follows from the fact that V πt

P (∗,t),rt
≤ 1, and (iii) follows

from Proposition 1.

A.2 Step 2: PCV as a new uncertainty metric

In Proposition 1 and Corollary 1, we provide upper bounds on both the total variation distance
between the learned model and the true model, and the difference of value functions under any policy
with arbitrary rewards. For each single task, such upper bounds measure the uncertainty of model
estimation and guide exploration in the next iteration. In multitask RL, although these upper bounds
also hold for each individual source task under any policy and reward even with tighter terms α(n,t)

h ,
the RHS of Equation (19) cannot be used to guide exploration for each task t individually as in
single-task RL because ζ

(n,t)
h in α

(n,t)
h as a joint MLE Guarantee is unknown individually for each

task t.

This motivate us to jointly consider all the explorations of all source tasks. As we establish below in
Proposition 2 that our defined new notion of PCV used in Algorithm 1 is a known upper bound for
both the summation of the difference of value function and the summation of total variation distance
over T tasks, and can therefore serve as an uncertainty quantifier to guide exploration.

Proposition 2 (PCV as uncertainty metric). Given any δ ∈
(
0, |Ψ|−min{T, K

d2
}
)

, for any n, policy
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where the last inequality follows because Bn ≤ B = 2
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Following from Corollary 1, we take the summation over all source tasks and obtain
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where in (i), we apply Cauchy-Schwarz inequality for both terms and use the fact that
∑T

t=1 ζ
(n,t)
h ≤

ζn (see Lemma 3), (ii) follows from Equation (20), (iii) follows from Equation (21), and (iv) follows
from Corollary 2 in Appendix A.5.

Similarly, following from Proposition 1, we take the summation over all source tasks and obtain:

T∑
t=1

H∑
h=1

E
sh∼(P̂ (n,t),πt)
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[
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(n,t)
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A.3 Step 3: Sublinear accumulation of PCV

Recall that the exploration policy is derived by an oracle:

πn
1 , . . . , π

n
T = argmax

π1,...,πT

PCV
(
P̂ (n,t), b̂

(n,t)
h , πt;T

)
(22)

In this step, we show that the summation of exploration-driven reward function PCV over n, t, h is
sublinear with respect to the total number Nu of iterations, as given in Proposition 3, which further
implies polynomial efficiency of REFUEL in learning the models.

Proposition 3. Given any δ ∈
(
0, |Ψ|−min{T, K

d2
}
)

, set λn = O(d log(|Φ|nTH/δ)). Then with

probability 1− δ, under exploration policy {πn
t }n∈[Nu] for each task t, the summation of PCVs over
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n is sublinear with respect to the number Nu of iteration rounds:
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√
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Klog2 (|Φ||Ψ|TNuH/δ) +

√
d2 log2(NuTH|Φ|/δ)

)
. (23)

Proof. We proceed the bound as follows:
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︸ ︷︷ ︸
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where (i) follows from the fact that for any vector x, y ∈ RT , ∥x+ y∥2 ≤ ∥x∥2 + ∥y∥2. We remark

here that term (a) is in fact
∑Nu

n=1 PCV
(
P (∗,t), b̂

(n,t)
h , πn

t ;T
)

, in this proposition, we develop an
inequality to bound the difference of PCVs under different transitions.

In the sequel, we first upper-bound the terms (a) and (b), and then combine the upper bounds with
Equation (24) as our final step to obtain the desired result.

I) Bound term (a).

Denote the trace operator as tr(·). We first obtain

nK E
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1
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2α

2
n
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1
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where (i) follows from Corollary 2 and (ii) follows from the following derivation:

n E
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=tr
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⊤
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−1


≤ tr(Id).

Following from Lemma 6, for h ≥ 2, we have

E
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where the last inequality follows from Equation (25).

Furthermore, for h = 1, we have

E
s1∼(P (∗,t),πn

t )

a1∼πn
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√
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(Û

(n,t)

1,ϕ̂(n,t)
)−1

α2
n

]
(iv)

≤

√
Kβ2
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2
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nβ2
1
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where (i) follows from the fact that the initial state s1 is fixed, (ii) follows from Cauchy Schwarz
inequality and Jensen’s inequality, (iii) follows from importance sampling, and (iv) follows from a
step similar to Equation (25).

Substituting Equation (26) and Equation (27) into the term (a), we obtain
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h−1(sh−1,ah−1)∥
(W

(n,t)
h−1,ϕ∗ )−1

√
Kdβ2

2α2
n

β2
1

+λndB2

]
2

+

√
TKβ2

2α
2
nd

nβ2
1

}
(i)

≤ β2
β1

√Kα2
Nu

d+λNudB2
∑Nu

n=1

∑H−1
h=2

√√√√√∑T
t=1 E sh∼(P (∗,t),πn

t )

ah∼πn
t

[
∥ϕ∗

h−1(sh−1,ah−1)∥2

(W
(n,t)
h−1,ϕ∗ )−1

]

+2
√
NuTKα2

Nu
d
}

(ii)

≤ β2
β1

√Kα2
Nu

d+λNudB2
∑H−1

h=2

√√√√√Nu
∑T

t=1

∑Nu
n=1 E sh∼(P (∗,t),πn

t )

ah∼πn
t

[
∥ϕ∗

h−1(sh−1,ah−1)∥2

(W
(n,t)
h−1,ϕ∗ )−1

]

+2
√
NuTKα2

Nu
d
}

(iii)

≤ β2

β1

√Kα2
Nu

d+ λNu
dB2

H−1∑
h=2

√√√√Nu

T∑
t=1

d log

(
1 +

Nu

dλ1

)
+ 2
√
NuTKα2

Nu
d


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≤ 2β2

β1

√
Kα2

Nu
d+ λNu

dB2H

√
NuTd log

(
1 +

Nu

dλ1

)
, (28)

where (i) follows from the fact that β2

β1
≥ 1 (see Corollary 2), αNu ≥ αNu−1 ≥ . . . ≥ α1 and∑Nu

n=1 1/
√
n ≤ 1 +

∫ Nu

1
1/
√
xdx ≤ 2

√
Nu, (ii) follows from Cauchy-Schwarz inequality, and

(iii) follows from Lemma 17.

II) Bound term (b).

We proceed the derivation as follows:√√√√√√ T∑
t=1

 E
sh∼(P (∗,t),πn

t )

ah∼πn
t

[
b̂
(n,t)
h (sh, ah)

]
− E

sh∼(P̂ (n,t),πn
t )

ah∼πn
t

[
b̂
(n,t)
h (sh, ah)

]
2

(i)

≤

√√√√√√ T∑
t=1


h∑

h′=1

B E
s
h′∼(P (∗,t),πn

t )

a
h′∼πn

t

[
f
(n,t)
h′ (sh′ , ah′)

]
2

(ii)

≤

√√√√√√B2

T∑
t=1

h

h∑
h′=1

 E
s
h′∼(P (∗,t),πn

t )

a
h′∼πn

t

[
f
(n,t)
h′ (sh′ , ah′)

]
2

≤ B

√√√√√√ T∑
t=1

H


H∑

h′=2

 E
s
h′∼(P (∗,t),πn

t )

a
h′∼πn

t

[
f
(n,t)
h′ (sh′ , ah′)

]
2

+

[
E

a1∼πn
t

f
(n,t)
1 (s1, a1)

]2
(iii)

≤ B

√√√√√√∑T
t=1H

∑H
h′=2

E s
h′−1

∼(P (∗,t),πn
t )

a
h′−1

∼πn
t

[∥∥∥ϕ∗
h′−1

(sh′−1,ah′−1)
∥∥∥
(U

(n,t)

h′−1,ϕ∗ )−1

√
nKζ

(n,t)
h +λnd

]
2

+KHTζn

≤ B

√√√√√√H

H−1∑
h=1

T∑
t=1

 E
sh∼(P (∗,t),πn

t )

ah∼πn
t

[
∥ϕ∗

h(sh, ah)∥(U(n,t)

h,ϕ∗ )−1

]
2

(nKζ
(n,t)
h + λnd) +KHTζn,

(29)

where (i) follows from Lemma 15 with a sparse reward rh′(·, ·) = b̂
(n,t)
h′ (·, ·)1{h′ = h}, where 1{·}

is the indicator function, (ii) follows because (
∑h

h′=1 xh′)2 ≤ h(
∑h

h′=1 x
2
h′), and (iii) follows from

Lemma 6, importance sampling and because ζ
(n,t)
1 ≤ ζn (see Lemma 3).

We further substitute Equation (29) into the term (b) and obtain

∑Nu
n=1

∑H−1
h=1 B

√√√√√√H
∑H−1

h=1

∑T
t=1

E sh∼(P (∗,t),πn
t )

ah∼πn
t

[
∥ϕ∗

h(sh,ah)∥
(U

(n,t)
h,ϕ∗ )−1

]
2

(nKζ
(n,t)
h +λnd)+KHTζn

(i)

≤
∑H−1

h=1 B

√√√√√√NuH(NuKζNu+λNud)
∑Nu

n=1

∑H−1
h=1

∑T
t=1

E sh∼(P (∗,t),πn
t )

ah∼πn
t

[
∥ϕ∗

h(sh,ah)∥
(U

(n,t)
h,ϕ∗ )−1

]
2

+

H−1∑
h=1

B

√√√√KHTNu

Nu∑
n=1

ζn

(ii)

≤
∑H−1

h=1 B

√√√√NuH(NuKζNu+λNud)K
∑H−1

h=1

∑T
t=1

∑Nu
n=1 E sh∼(P (∗,t),πn

t )

ah∼U(A)

[
∥ϕ∗

h(sh,ah)∥2

(U
(n,t)
h,ϕ∗ )−1

]

+
√

NuKHTHBNuζNu

21



(iii)

≤ HB

√
NuH2T (NuKζNu

+ λNu
d)Kd log

(
1 +

Nu

dλ1

)
+
√
NuKHTHBNuζNu

, (30)

where (i) follows from Cauchy-Schwarz inequality, and because
√
x+ y ≤

√
x+

√
y for x, y ≥ 0,

and nKζ
(n,t)
h + λnd ≤ nKζn + λnd, where the latter bound is increasing in n, (ii) follows because∑Nu

n=1 ζn ≤ log2
(
2|Φ||Ψ|TNuH/δ

)
≤ N2

uζ
2
Nu

, and (iii) follows from Lemma 17 and importance
sampling.

III) Final step.

We substitute Equation (28) and Equation (30) into Equation (24), and have
Nu∑
n=1

{
PCV

(
P̂ (n,t), b̂

(n,t)
h , πn

t ;T
)
+
√
KTζn

}
≤
√
NuKHTHBNuζNu +

2β2

β1

√
Kα2

Nu
d+ λNudB

2H

√
NuTd log

(
1 +

Nu

dλ1

)

+B

√
NuH4T (NuKζNu + λNud)Kd log

(
1 +

Nu

dλ1

)
. (31)

Then, we substitute the definitions of ζNu
, αNu

and λNu
into Equation (31) and simplify the

expression by taking only dominating terms as follows:
Nu∑
n=1

{
PCV

(
P̂ (n,t), b̂

(n,t)
h , πn

t ;T
)
+
√
KTζn

}
≤ 2
√
NuKHTHBlog

(
2|Φ||Ψ|TNuH/δ

)
+

2β2
β1

√
Kd(4K log(2|Φ||Ψ|TNuH/δ)+d2T log(2NuTH|Φ|/δ))+d2 log(2NuTH|Φ|/δ)B2H

√
NuTd log

(
1+ Nu

dλ1

)

+B

√
NuH4T (2Klog (2|Φ||Ψ|TNuH/δ) + d2 log(2NuTH|Φ|/δ))Kd log

(
1 +

Nu

dλ1

)
≤ 4β2

β1
H

√
NuTd

(√
K2d log2(|Φ||Ψ|TNuH/δ)+

√
Kd3T log2(2NuTH|Φ|/δ)+

√
d2B2 log2(NuTH|Φ|/δ)

)
+ 6BH2

√
NuTKd

(√
Klog2 (|Φ||Ψ|TNuH/δ) +

√
d2 log2(NuTH|Φ|/δ)

)
.

A.4 Complexity characterization: Proof of Theorem 1

Next, equipped with Propositions 1 to 3 and Corollary 1 , we are able to derive the sample complexity
bound of Algorithm 1.

We prove Theorem 1 by contradiction. First for any n and policy πt, we have
T∑

t=1

E
sh∼(P (∗,t),πt)

ah∼πt

[
f
(n,t)
h (sh, ah)

]

=

T∑
t=1

 E
sh∼(P̂ (n,t),πt)

ah∼πt

[
f
(n,t)
h (sh, ah)

]
− E

sh∼(P (∗,t),πt)
ah∼πt

[
f
(n,t)
h (sh, ah)

]
+

T∑
t=1

E
sh∼(P̂ (n,t),πt)

ah∼πt

[
f
(n,t)
h (sh, ah)

]
(i)

≤ 2
{
PCV

(
P̂ (n,t), b̂

(n,t)
h , πt;T

)
+
√

KTζn

}
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(ii)

≤ 2
{
PCV

(
P̂ (n,t), b̂

(n,t)
h , πn

t ;T
)
+
√
KTζn

}
, (32)

where (i) follows from Proposition 2 and (ii) follows from the definition of {πn
t }t∈[T ] (see Equa-

tion (22)).

If for any n ∈ [Nu], Tϵu < 2
{
PCV

(
P̂ (n,t), b̂

(n,t)
h , πn

t ;T
)
+
√
KTζn

}
, which is exactly the

termination criteria in Algorithm 1, then

NuTϵu

<

Nu∑
n=1

2
{
PCV

(
P̂ (n,t), b̂

(n,t)
h , πn

t ;T
)
+
√
KTζn

}
≤ 4β2

β1
H

√
NuTd

(√
K2d log2(|Φ||Ψ|TNuH/δ)+

√
Kd3T log2(2NuTH|Φ|/δ)+

√
d2B2 log2(NuTH|Φ|/δ)

)
+ 6BH2

√
NuTKd

(√
Klog2 (|Φ||Ψ|TNuH/δ) +

√
d2 log2(NuTH|Φ|/δ)

)
, (33)

where the last inequality follows from Proposition 3 and Equation (32).

Note that we assume δ is small enough satisfying δ ≤ |Ψ|−
min{T,K}

d2 . If

Nu >
400β2

2H
2Td2K2 log2

(
400β2

2H
2d2K2|Φ|H/(β2

1δ
2ϵ2u)

)
Tβ2

1ϵ
2
u

,

then by the fact that ∀c ≥ e2, n ≥ 1, α ∈ R+, n ≥ 4c log2(αc) ⇒ n ≥ c log2(αn), we have

4β2

β1
H
√
NuTd

√
K2d log2 (|Φ||Ψ|TNuH/δ) ≤ ϵuTNu

5
,

which is exactly the first term in Equation (33). Similarly, we are able to upper bound each of the
other four terms by ϵuNu

5 in Equation (33) with the iteration number Nu being at most:

Õ

(
H2d2K2

Tϵ2u
+

(
H2d4K +H4dK2 +H4d3K

)
ϵ2u

+
H4K3

dTϵ2u

)
.

Combining the above bound with Equation (33), we have

NuTϵu < 5× NuTϵu
5

= NuTϵu,

which leads to a contradiction and shows that Algorithm 1 is able to terminate at a certain iteration
nu and output desired models with the number HNu of trajectories being at most:

Õ

(
H3d2K2

Tϵ2u
+

(
H3d4K +H5dK2 +H5d3K

)
ϵ2u

+
H5K3

dTϵ2u

)
.

Furthermore, let π∗
t be the optimal policy under Mt given reward the rt. And form Algorithm 1, the

algorithm terminates at iteration nu and outputs P̂ (t) for t ∈ [T ]. Then we have
T∑

t=1

V ∗
P (∗,t),rt − V π̂t

P (∗,t),rt

=

T∑
t=1

V ∗
P (∗,t),rt − V

π∗
t

P̂ (t),rt
+ V

π∗
t

P̂ (t),rt
− V π̂t

P̂ (t),rt
+ V π̂t

P̂ (t),rt
− V π̂t

P (∗,t),rt

(i)

≤
H−1∑
h=1

√√√√√ T∑
t=1

E
sh∼(P̂ (t),π∗

t )

ah∼π∗
t

[
b̂
(nu,t)
h (sh, ah)

]2
+
√
KTζnu

+

H−1∑
h=1

√√√√√ T∑
t=1

E
sh∼(P̂ (t),π̂t)

ah∼π̂t

[
b̂
(nu,t)
h (sh, ah)

]2
+
√
KTζnu
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≤ 2
{
PCV

(
P̂ (t), b̂

(nu,t)
h , πnu

t ;T
)
+
√
KTζnu

}
(ii)

≤ Tϵu,

where (i) follows from the definition of {π∗
t }t∈[T ] and Proposition 2, and (ii) follows from the

termination criteria of Algorithm 1.

A.5 Supporting Lemmas

Recall U (n,t)
h,ϕ = nEsh∼(P∗,Πn

t ),ah∼U(A)

[
ϕ(sh, ah)(ϕ(sh, ah))

⊤]+ λnI . Then U
(n,t)

h,ϕ̂(n)
is the coun-

terpart of Û (n,t)
h in expectation. The following lemma provides the concentration of the bonus term.

See Lemma 39 in Zanette et al. (2020) for the version of fixed ϕ and Lemma 11 in Uehara et al.
(2022).
Lemma 2. (Concentration of the bonus term). Fix δ ∈ (0, 1), and set λn = Θ(d log(2nTH|Φ|/δ))
for any n. With probability at least 1− δ/2, we have that ∀n ∈ N+, h ∈ [H], t ∈ [T ], ϕ̂ ∈ Φ,

β1

∥∥∥ϕ̂(n)
h (s, a)

∥∥∥
(U

(n,t)

h,ϕ̂
)−1

≤
∥∥∥ϕ̂(n)

h (s, a)
∥∥∥
(Û

(n,t)
h )−1

≤ β2

∥∥∥ϕ̂(n)
h (s, a)

∥∥∥
(U

(n,t)

h,ϕ̂
)−1

.

Since b̂
(n,t)
h (sh, ah) = min

{
α̃n

∥∥∥ϕ̂(n)
h (s, a)

∥∥∥
(Û

(n,t)
h )−1

, B

}
. Setting α̃n = αn

β1
and applying

Lemma 2, we can immediately obtain the following corollary.
Corollary 2. Fix δ ∈ (0, 1), under the same setting of Lemma 2, with probability at least 1− δ/2,
we have that ∀n ∈ N+, h ∈ [H], ϕ ∈ Φ,

min

{
αn

∥∥∥ϕ̂(n)
h (sh, ah)

∥∥∥
(U

(n,t)

h,ϕ̂
)−1

, B

}
≤ b̂

(n,t)
h (sh, ah) ≤

β2

β1
αn

∥∥∥ϕ̂(n)
h (sh, ah)

∥∥∥
(U

(n,t)

h,ϕ̂
)−1

.

Recall that f (n,t)
h (s, a) = ∥P̂ (n,t)

h (·|s, a)− P
(∗,t)
h (·|s, a)∥TV represents the estimation error of task

t in terms of the total variation distance in the n-th iteration at step h, given state s and action a in
Algorithm 1. Inspired by the proof of Theorem 21 in Agarwal et al. (2020), We show that if we
uniformly choose the exploration policies for each task, the summation of the estimation error can be
bounded with high probability.
Lemma 3 (Multitask MLE guarantee). Given δ ∈ (0, 1), consider the transition kernels learned from
line 8 and 10 in Algorithm 1, we have the following inequality holds for any n, h ≥ 2 with probability
at least 1− δ/2:

T∑
t=1

E
sh−1∼(P (∗,t),Πn

t )

ah−1,ah∼U(A)

sh∼P (∗,t)(·|sh−1,ah−1)

[
f
(n,t)
h (sh, ah)

2
]
≤ ζn, where ζn :=

2 log
(
2|Φ||Ψ|TnH/δ

)
n

. (34)

In addition, for h = 1,
T∑

t=1

E
a1∼U(A)

[
f
(n,t)
1 (s1, a1)

2
]
≤ ζn.

Furthermore, define

ζ
(n,t)
h = E

sh−1∼(P (∗,t),Πn
t )

ah−1,ah∼U(A)

sh∼P (∗,t)(·|sh−1,ah−1)

[
f
(n,t)
h (sh, ah)

2
]
, h ≥ 2, (35)

ζ
(n,t)
1 = E

s1∼(P (∗,t),πt)

a1∼U(A)

[
f
(n,t)
1 (s1, a1)

2
]
. (36)

We have

ζ
(n,t)
h ≤

T∑
t=1

ζ
(n,t)
h ≤ ζn =

2 log
(
2|Φ||Ψ|TnH/δ

)
n

. (37)
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Proof of Lemma 3. Consider a sequential conditional probability estimation setting with an instance
space X and a target space Y where the conditional density is given by p(y|x) = f∗(x, y). We are
given a dataset D := {(xi, yi)}ni=1 , where xi ∼ Di = Di(x1:i−1, y1:i−1) and yi ∼ p(·|xi). Let D′

denote a tangent sequence {(x′
i, y

′
i)}ni=1 where x′

i ∼ Di(x1:i−1, y1:i−1) and y′i ∼ p(·|x′
i). Further,

we consider a function class F : (X × Y) → R and assume that the reachability condition f∗ ∈ F
holds.

We first introduce two useful lemmas from Agarwal et al. (2020).

Lemma 4 (Lemma 25 of Agarwal et al. (2020)). For any two conditional probability densities f1, f2
and any distribution D ∈ △(X ), we have

Ex∼D∥f1(x, ·)− f2(x, ·)∥2TV ≤ −2 logEx∼D,y∼f2(·|x)

[
exp

(
−1

2
log(f2(x, y)/f1(x, y))

)]
Lemma 5 (Lemma 24 of Agarwal et al. (2020)). Let D ba a dataset of n samples and D′ be
corresponding tangent sequence. Let L(f,D) =

∑n
i=1 l(f, (xi, yi)) be any function that decomposes

additively across examples where l is any function, and let f̂(D) be any estimator taking as input
random variable D and with range F . Then

ED

[
exp

(
L(f̂(D), D)− logED′

[
exp(L(f̂(D), D′))

]
− log |F|

)]
≤ 1.

Suppose f̂(D) is learned from the following maximum likelihood problem:

f̂(D) := argmaxf∈F
∑

(xi,yi)∈D

log f(xi, yi). (38)

Combining Chernoff method and Lemma 5, we obtain an exponential tail bound, i.e., with probability
at least 1− δ,

− logED′

[
exp(L(f̂(D), D′))

]
≤ −L(f̂(D), D) + log |F|+ log(1/δ). (39)

To proceed, we let L(f,D) =
∑n

i=1 −
1
2 log(f

∗(xi, yi)/f(xi, yi)) where D is a dataset
{(xi, yi)}ni=1(and D′ = {(x′

i, y
′
i)}ni=1 is tangent sequence). In multitask RL setting, let x =

{(st, at)}Tt=1, y = {(s′)t}Tt=1 and f(x, y) =
∏T

t=1 P
t[(s′)t|st, at]. Then, dataset D can be de-

composed into D =
⋃T

t=1 D
t where Dt = {sti, ati, (s′)ti}ni=1. Similarly D′ =

⋃T
t=1(D

′)t, and
Dt

i := Dt
i(s

t
1:i−1, a

t
1:i−1, (s

′)t1:i−1). Hence, the cardinality |F| = |Φ||Ψ|T in the multitask setting.

Then, the RHS of Equation (39) can be bounded as

RHS of Equation (39) =
n∑

i=1

1

2
log(f∗(xi, yi)/f̂(xi, yi)) + log |F|+ log(1/δ)

≤ log |F|+ log(1/δ) = log
(
|Φ||Ψ|T /δ

)
, (40)

where the inequality follows because f̂ is MLE and from the assumption of reachability, and the last
equality follows because |F| = |Φ||Ψ|T .

Next, the LHS of Equation (39) can be bounded as

LHS of Equation (39)
(i)
= − logED′

[
exp

(
n∑

i=1

−1

2
log

(
f∗(x′

i, y
′
i)

f̂(x′
i, y

′
i)

))∣∣∣∣D
]

(ii)
= − logED′

[
exp

(
n∑

i=1

−1

2
log

(
T∏

t=1

P (∗,t)[(s′)ti|sti, ati]
P̂ (n,t)[(s′)ti|sti, ati]

))∣∣∣∣D
]

(iii)
= −

T∑
t=1

logE(D′)t

[
exp

(
n∑

i=1

−1

2
log

(
P (∗,t)[(s′)ti|sti, ati]
P̂ (n,t)[(s′)ti|sti, ati]

))∣∣∣∣D
]

(iv)
= −

T∑
t=1

n∑
i=1

logEDt
i

[
exp

(
−1

2
log

(
P (∗,t)[(s′)ti|sti, ati]
P̂ (n,t)[(s′)ti|sti, ati]

))]
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(v)

≥
T∑

t=1

1

2

n∑
i=1

E(s,a)∼Dt
i

∥∥∥P̂ (n,t)(·|s, a)− P (∗,t)(·|s, a)
∥∥∥2
TV

(vi)
=

n

2

T∑
t=1

E
sh−1∼(P (∗,t),Πn

t )

ah−1,ah∼U(A)

sh∼P (∗,t)(·|sh−1,ah−1)

[
f
(n,t)
h (sh, ah)

2
]
, (41)

where (i) follows from the above definition of L(f,D), (ii) follows from the above definition of
f(x, y), (iii) follows because the data of T tasks are independent conditional on D, (iv) follows
because P̂ (n,t) is independent of the dataset (D′)t and from the definition of D′, (v) follows from
Lemma 4, and (vi) follows because the data collected in i-th iteration uses policy πt

i−1 followed by
two steps of uniform random actions and from the definition of Πt

n.

Combining Equations (39) to (41), we have

n

2

T∑
t=1

E
sh−1∼(P (∗,t),Πn

t )

ah−1,ah∼U(A)

sh∼P (∗,t)(·|sh−1,ah−1)

[
f
(n,t)
h (sh, ah)

2
]
≤ log

(
|Φ||Ψ|T /δ

)
. (42)

We substitute δ with δ/2nH to ensure Equation (42) holds for any h ∈ [H] and n with probability at
least 1− δ/2, which finishes the proof.

We next introduce a one-step back lemma, which extends the one-step back inequality for infinite-
horizon stationary MDP in Uehara et al. (2022); Agarwal et al. (2020) to non-stationary transition
kernels with finite horizon. The lemma shows that for any function g ∈ S ×A → R, policy π and
transition kernel P , we can upper bound the expectation E sh∼(P,π)

ah∼π

[g(sh,ah)] by the product of two

terms. The first term represents the convergence guarantee of g(sh, ah) following other policies,
which is E sh∼(P∗,Π)

ah∼U(A)

[g2(sh,ah)]. The second term can be described as the distribution shift coefficient

E sh−1∼(P,π)
ah−1∼π

[
∥ϕh−1(sh−1,ah−1)∥(Uh−1,ϕ)−1

]
, which measures the difference caused by distribution shift

from π and other policies.
Lemma 6 (One-step back inequality for non-stationary finite-horizon MDP). For each task t, let
P ∈ {P̂ (n,t), P (∗,t)} with embeddings ϕ and µ be a generic MDP model, and U t

h,ϕ = λI +

nEsh,ah∼(P (∗,t),Π)[ϕϕ
⊤] ∈ {U (n,t)

h,ϕ ,W
(n,t)
h,ϕ } be the covariance matrix following a generic policy

Π under the true environment P (∗,t). Note that ϕ ∈ {ϕ̂(n), ϕ∗} corresponds to P . Further, let
f t(sh, ah) be the total variation between P (∗,t) and P at time step h. Take any g ∈ S × A → R
such that ∥g∥∞ ≤ Bg , i.e., sups,a |g(s, a)| ≤ Bg . Then, ∀h ≥ 2,∀policy π,

E
sh∼(P,π)

ah∼π

[g(sh, ah)] ≤ E
sh−1∼(P,π)

ah−1∼π

[
∥ϕh−1(sh−1, ah−1)∥(Ut

h−1,ϕ)
−1 ×

√
nK E sh∼(P (∗,t),Π)

ah∼U(A)

[g2(sh,ah)]+λdB2
g+nB2

g E sh−1∼(P (∗,t),Π)

ah−1∼Π

[ft(sh−1,ah−1)2]

.

Proof. First, we have

E
sh∼(P,π)

ah∼π

[g(sh, ah)]

= E
sh−1∼(P,π)

ah−1∼π

[∫
sh

∑
ah

g(sh, ah)π(ah|sh)⟨ϕh−1(sh−1, ah−1), µh−1(sh)⟩dsh

]

≤ E
sh−1∼(P,π)

ah−1∼π

∥ϕh−1(sh−1, ah−1)∥(Ut
h−1,ϕ)

−1

∥∥∥∥∥
∫ ∑

ah

g(sh, ah)π(ah|sh)µh−1(sh)dsh

∥∥∥∥∥
Ut

h−1,ϕ

 ,
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where the inequality follows from Cauchy’s inequality. We further develop the following bound:∥∥∥∥∥
∫ ∑

ah

g(sh, ah)π(ah|sh)µh−1(sh)dsh

∥∥∥∥∥
2

Ut
h−1,ϕ

(i)

≤ n E
sh−1∼(P (∗,t),Π)

ah−1∼Π

(∫
sh

∑
ah

g(sh, ah)π(ah|sh)µ(sh)⊤ϕ(sh−1, ah−1)dsh

)2
+ λdB2

g

≤ n E
sh−1∼(P (∗,t),Π)

ah−1∼Π

 E
sh∼P (·|sh−1,ah−1)

ah∼π

[
g(sh, ah)

2
]+ λdB2

g

(ii)

≤ n E
sh−1∼(P (∗,t),Π)

ah−1∼Π

 E
sh∼P (∗,t)

ah∼π

[
g(sh, ah)

2
]+ λdB2

g + nB2
g E

sh−1∼(P (∗,t),Π)

ah−1∼Π

[
f t(sh−1, ah−1)

2
]

(iii)

≤ nK E
sh∼(P (∗,t),Π)

ah∼U(A)

[
g(sh, ah)

2
]
+ λdB2

g + nB2
g E

sh−1∼(P (∗,t),Π)

ah−1∼Π

[
f t(sh−1, ah−1)

2
]
,

where (i) follows from the assumption ∥g∥∞ ≤ Bg, (ii) follows because f(sh, ah) is the total
variation between P ∗ and P at time step h, and (iii) follows from importance sampling. This finishes
the proof.

B Proof of Lemma 1

Lemma 1 serves a central role for bridging the upstream and downstream learning, which shows that
the feature ϕ̂ learned in upstream is a ξdown-approximate feature map and can approximate the true
feature in the new task.

Proof of Lemma 1. Under Assumptions 2 to 4, for any t ∈ [T ], we have

max
s∈S,a∈A

∥P 1
h (·|s, a)− P 2

h (·|s, a)∥TV

(i)

≤ CR E
(sh,ah)∼U(S,A)

∥P 1
h (·|sh, ah)− P 2

h (·|s2, a2)∥TV

(ii)

≤ CRυ

κu
E

sh∼(P (∗,t),π0
t )

ah∼U(A)

[∥∥P 1
h (·|s, a)− P 2

h (·|s, a)
∥∥
TV

]
, (43)

where (i) follows from Assumption 4 and (ii) follows Assumption 2 and Assumption 3.

Then, ∀(s, a) ∈ S ×A, h ∈ [H], we have

T∑
t=1

∥P̂ (t)
h (·|s, a)− P

(∗,t)
h (·|s, a)∥TV ≤

T∑
t=1

max
s∈S,a∈A

∥P̂ (t)
h (·|s, a)− P

(∗,t)
h (·|s, a)∥TV

(i)

≤ CRυ

κu

T∑
t=1

E
sh∼(P (∗,t),π0

t )

ah∼U(A)

[∥∥∥P̂ (t)
h (·|s, a)− P

(∗,t)
h (·|s, a)

∥∥∥
TV

]
(ii)

≤ CRTυϵu
κu

, (44)

where (i) follows from Equation (43), and (ii) follows from Theorem 1.

Define µ̂∗(·) =
∑T

t=1 ctµ̂
(t)(·), then we have∥∥∥P (∗,T+1)

h (·|s, a)−
〈
ϕ̂h(s, a), µ̂

∗
h(·)
〉∥∥∥

TV
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=

∥∥∥∥∥P (∗,T+1)
h (·|s, a)−

〈
ϕ̂h(s, a),

T∑
t=1

ctµ̂
(t)
h (·)

〉∥∥∥∥∥
TV

≤

∥∥∥∥∥P (∗,T+1)
h (·|s, a)−

T∑
t=1

ctP̂
(t)
h (·|s, a)

∥∥∥∥∥
TV

≤

∥∥∥∥∥P (∗,T+1)
h (·|s, a)−

T∑
t=1

ctP
(∗,t)
h (·|s, a)

∥∥∥∥∥
TV

+

T∑
t=1

ct

∥∥∥P (∗,t)
h (·|s, a)− P̂

(t)
h (·|s, a)

∥∥∥
TV

(i)

≤ ξ +
CLCRTυϵu

κu
,

where (i) follows from Assumption 5, Equation (44) and the fact that ct ∈ [0, CL].

Furthermore, by normalization for any g : S → [0, 1], we obtain∥∥∥∥∫ µ̂∗
h(s)g(s)ds

∥∥∥∥
2

≤
T∑

t=1

ct

∥∥∥∥∫ µ̂(t)(s)g(s)ds

∥∥∥∥
2

≤ CL

√
d.

C Algorithm 2 and Proof of Theorem 2

Algorithm 2 DOFRL (Downstream OFfline RL)

1: Input: Feature ϕ̂, dataset Ddown = {(sτh, aτh, rτh, sτh+1)}
Noff ,H
τ,h=1 , parameters λ, β, ξdown.

2: Initialization: V̂H+1 = 0.
3: for h = H,H − 1, . . . , 1 do
4: ŵh=Λ−1

h

∑Noff

τ=1 ϕ̂h(s
τ
h, a

τ
h)V̂h+1(s

τ
h+1) where Λh=

∑Noff

τ=1 ϕ̂h(s
τ
h, a

τ
h)ϕ̂h(s

τ
h, a

τ
h)

⊤+λId.
5: Q̂h(·, ·)=min{rh(·, ·)+ϕ̂h(·, ·)⊤ŵ−Γh(·, ·),1}+, where Γh(·, ·)= ξdown+β[ϕ̂h(·, ·)⊤Λ−1

h ϕ̂h(·, ·)]1/2.

6: V̂h(·) = Q̂h(·, π̂h(·)), where π̂h(·) = argmaxπh
Q̂h(·, π̂h(·)).

7: Output: {π̂h}Hh=1.

Recall ξdown = ξ + CLCRTvϵu
κu

and for any h ∈ [H], we define

P
(∗,T+1)
h (·|s, a) = ⟨ϕ∗

h(s, a), µ
(∗,T+1)
h (·)⟩,

Ph(·|s, a) = ⟨ϕ̂h(s, a), µ̂
∗
h(·)⟩.

Given a reward function r, for any function f : S 7→ R and h ∈ [H], we define the transition
operators and their corresponding Bellman operators as

(P
(∗,T+1)
h f)(s, a)=

∫
s′
⟨ϕ∗

h(s, a), µ
(∗,T+1)
h (s′)⟩f(s′)ds′,

(Bhf)(s, a) =rh(s, a)+(P
(∗,T+1)
h f)(s, a),

(Phf)(s, a) =

∫
s′
ϕ̂h(s, a)µ̂

∗
h(s

′)f(s′)ds′,

(Bhf)(s, a) = rh(s, a) + (Phf)(s, a).

We further denote (B̂hV̂h+1)(s, a) = rh(s, a) + ϕ̂h(s, a)
⊤ŵh, h ∈ [H].

We remark here throughout this section, the expectation is taken with respect to the transition kernel
of the target task, i.e., P (∗,T+1).

Proof Overview: The proof of Theorem 2 consists of two main steps and a final suboptimality
gap characterization. Step 1: We decompose the suboptimality gap into the summation of the
uncertainty metric of each step in Lemma 8. We note that the reward function rh here is from a
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general class, not necessarily a linear function. Step 2: We provide an upper bound on the Bellman
update error as shown in Lemma 10, where our main technical contribution lies in capturing the
impact of the misspecification of the representation taken from upstream estimation on such an error.
Suboptimality gap characterization: Based on the first two steps, we select uncertainty metric
Γh and obtain an instance-dependent suboptimality gap, which we further bound under the feature
coverage assumption.

We provide details for the two main steps and the suboptimality gap characterization in Appendix C.1-
Appendix C.3.

C.1 Suboptimality Decomposition

In this step, we decompose the suboptimality gap into the summation of the uncertainty metric of
each step in Lemma 8. We note that the reward function r here is from a general class, not necessarily
a linear function. To this end, we first provide the following lemma.

Lemma 7. If |(BhV̂h+1 − B̂hV̂h+1)(s, a)| ≤ Γh(s, a) for all (h, s, a) ∈ [H]× S ×A, then it holds
that (BhV̂h+1)(s, a) ≤ 1, ∀(h, s, a) ∈ [H]× S ×A.

Proof. It suffices to show

(BhV̂h+1)(s, a) ≤ max
ah+1,...,aH

E

[
H∑

h′=h

rh′(sh′ , ah′)

∣∣∣∣∣sh = s, ah = a

]
.

We prove it by induction. For h′ = H , since V̂H+1 = 0, we have

(BH V̂H+1)(s, a) = rH(s, a) + (P
(∗,T+1)
H V̂H+1)(s, a) = rH(s, a).

Suppose for h′ = h+ 1, h ∈ [H − 1], we have

(Bh+1V̂h+2)(s, a) ≤ max
ah+2,...,aH

E

[
H∑

h′=h+1

rh′(sh′ , ah′)

∣∣∣∣∣sh+1 = s, ah+1 = a

]
,

which is bounded in [0, 1] since rh ≥ 0, ∀h, and for any trajectory it holds that
∑H

h=1 rh ≤ 1.

Further note that

Q̂h+1(s, a) = min{rh+1(s, a) + ŵ⊤
h+1ϕ̂h+1(s, a)− Γh+1(s, a), 1}+

(i)

≤ min{(Bh+1V̂h+2)(s, a), 1}+

(ii)

≤ max{0, (Bh+1V̂h+2)(s, a)}
(iii)

≤ max
ah+2,...,aH

E

[
H∑

h′=h+1

rh′(sh′ , ah′)

∣∣∣∣∣sh+1 = s, ah+1 = a

]
,

where (i) follows from the assumption |(BhV̂h+1− B̂hV̂h+1)(s, a)| ≤ Γh(s, a), (ii) follows because
(Bh+1V̂h+2)(s, a) ≤ 1 by the induction hypothesis, and (iii) follows from the fact that rh ≥ 0, ∀h.

Therefore, for h′ = h, we have

(BhV̂h+1)(s, a) = rh(s, a) + (P
(∗,T+1)
h V̂h+1)(s, a)

= rh(s, a) +

∫
s′
P

(∗,T+1)
h (s′|s, a)V̂h+1(s

′)ds′

≤ rh(s, a) +

∫
s′
P

(∗,T+1)
h (s′|s, a)max

a′
Q̂h+1(s

′, a′)ds′

≤ rh(s, a) +

∫
s′
ds′P

(∗,T+1)
h (s′|s, a) max

a′,ah+2,...,aH

E

[
H∑

h′=h+1

rh′(sh′ , ah′)

∣∣∣∣∣sh+1 = s′, ah+1 = a′

]

29



≤ rh(s, a) +

∫
s′
ds′P

(∗,T+1)
h (s′|s, a) max

ah+1,ah+2,...,aH

E

[
H∑

h′=h+1

rh′(sh′ , ah′)

∣∣∣∣∣sh+1 = s′

]

≤ max
ah+1,...,aH

E

[
H∑

h′=h

rh′(sh′ , ah′)

∣∣∣∣∣sh = s, ah = a

]
.

By backward induction from H to 1, the proof is complete.

We denote the Bellman update error as ζh(s, a) = (BhV̂h+1)(s, a)− Q̂h(s, a). The following lemma
shows that it is sufficient to bound the pessimistic penalty.
Lemma 8. Suppose with probability at least 1 − δ, for all (h, s, a) ∈ [H] × S × A, it holds that
|(BhV̂h+1−B̂hV̂h+1)(s, a)| ≤ Γh(s, a). {π̂h}Hh=1 is the output of Algorithm 2. Then with probability
at least 1 − δ, for any (h, s, a) ∈ [H] × S × A, we have 0 ≤ ζh(s, a) ≤ 2Γh(s, a). Moreover, it
holds that for any policy π, with probability at least 1− δ,

V π
P (∗,T+1),r(s)− V π̂

P (∗,T+1),r(s) ≤ 2

H∑
h=1

Eπ[Γh(sh, ah)|s1 = s].

Proof. First, we show that ζh(s, a) ≥ 0. Recall

Q̂h(·, ·)=min{rh(·, ·)+ϕ̂h(·, ·)ŵh−Γh(·, ·), 1}+.

If rh(s, a) + ϕ̂h(s, a)
⊤ŵh − Γh(s, a) ≤ 0, then Q̂h(s, a) = 0, which implies that ζh(s, a) =

(BhV̂h+1)(s, a)− Q̂h(s, a) = (BhV̂h+1)(s, a) ≥ 0.

If rh(s, a) + ϕ̂h(s, a)
⊤ŵh − Γh(s, a) > 0, then Q̂h ≤ rh(s, a) + ϕ̂h(s, a)

⊤ŵh − Γh(s, a) =

(B̂hV̂h+1)(s, a)− Γh(s, a), which implies that

ζh(s, a) = (BhV̂h+1)(s, a)− Q̂h(s, a) ≥ (BhV̂h+1)(s, a)− (B̂hV̂h+1)(s, a) + Γh(s, a) ≥ 0.

We next show that ζh(s, a) ≤ 2Γh(s, a). Note that

rh(s, a) + ϕ̂h(s, a)
⊤ŵh − Γh(s, a)

(i)
= (B̂hV̂h+1)(s, a)− Γh(s, a)

(ii)

≤ (BhV̂h+1)(s, a)
(iii)

≤ 1,

where (i) follows from the definition of (B̂hV̂h+1)(s, a), (ii) follows because |(BhV̂h+1 −
B̂hV̂h+1)(s, a)| ≤ Γh(s, a), and (iii) follows from Lemma 7. Therefore,

Q̂h(s, a) = min{rh(s, a) + ϕ̂h(s, a)
⊤ŵh − Γh(s, a), 1}+

= max{rh(s, a) + ϕ̂h(s, a)
⊤ŵh − Γh(s, a), 0}

≥ rh(s, a) + ϕ̂h(s, a)
⊤ŵh − Γh(s, a)

= (B̂hV̂h+1)(s, a)− Γh(s, a).

By the definition of ζh, we have

ζh(s, a) = (BhV̂h+1)(s, a)− Q̂h(s, a)

≤ (BhV̂h+1)(s, a)− (B̂hV̂h+1)(s, a) + Γh(s, a)

≤ 2Γh(s, a).

Then we obtain
V π
P (∗,T+1),r(s)− V π̂

P (∗,T+1),r(s)

(i)

≤
H∑

h=1

Eπ[ζh(sh, ah)|s1 = s]−
H∑

h=1

Eπ̂[ζh(sh, ah)|s1 = s] (45)

(ii)

≤ 2

H∑
h=1

Eπ[Γh(sh, ah)|s1 = s],

where (i) follows from Lemma 16 and definition of π̂, and (ii) follows because with probability at
least 1− δ, for all (h, s, a)× [H]× S ×A, 0 ≤ ζh(s, a) ≤ 2Γh(s, a) holds.
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C.2 Bounding Bellman update error |(BhV̂h+1 − B̂hV̂h+1)(s, a)|

In this step, we provide an upper bound on the Bellman update error as shown in Lemma 10, where
the main effort lies in analyzing the impact of the misspecification of the representation taken from
upstream estimation. To this end, we first introduce a concentration lemma that upper-bounds the
stochastic noise in regression.
Lemma 9. Under the setting of Theorem 2, if we choose λ = 1, β(δ) =

cβ

(
d
√

ι(δ) +
√
dNoffξdown +

√
p logNoff

)
where ι(δ) = log (2pdHNoffξdown/δ), there exists

an absolute constant C̃ such that with probability at least 1− δ, it holds that for all h ∈ [H].∥∥∥∥∥
Noff∑
τ=1

ϕ̂h(s
τ
h, a

τ
h)
[
(P

(∗,T+1)
h V̂h+1)(s

τ
h, a

τ
h)− V̂h+1(s

τ
h+1)

]∥∥∥∥∥
Λ−1

h

≤ C̃
[
d
√
ι+
√
p logNoff

]
.

Proof. Note that our reward functions here are selected from a general function class R, not neces-
sarily linear with respect to the feature function ϕ̂. The value function V̂h+1 has the form of

V (·) := min

{
max
a∈A

wTϕ(·, a) + r(·, a) + β
√

ϕ(·, a)⊤Λ−1ϕ(·, a), 1
}

(46)

for some w ∈ Rd, r ∈ R and positive definite matrix Λ ⪰ λId. Let V be the function class of V (·) and
Nε be the ε-covering number of V with respect to the distance dist(V, V ′) = sups |V (s)− V ′(s)|.

Note that for any h ∈ [H], v ∈ Rd, we have

∣∣v⊤ŵh

∣∣ = ∣∣∣∣∣v⊤Λ−1
h

Noff∑
τ=1

ϕ̂h(s
τ
h, a

τ
h)V̂h+1(s

τ
h+1)

∣∣∣∣∣
≤

Noff∑
τ=1

∣∣∣v⊤Λ−1
h ϕ̂h(s

τ
h, a

τ
h)
∣∣∣

≤

√√√√[Noff∑
τ=1

∥v∥2Λ−1
h

][
Noff∑
τ=1

∥∥∥ϕ̂h(sτh, a
τ
h)
∥∥∥2
Λ−1

h

]
≤ ∥v∥2

√
dNoff/λ,

where the second inequality follows from Cauchy-Schwarz inequality and the last inequality follows
from the fact that ∥v∥Λ−1

h
=
∥∥Λ−1

h

∥∥1/2
op

· ∥v∥2 ≤
√

1/λ ∥v∥2, where ∥·∥op is the matrix operator
norm and

Noff∑
τ=1

∥∥∥ϕ̂h(s
τ
h, a

τ
h)
∥∥∥2
Λ−1

h

= tr

(
Λ−1
h

Noff∑
τ=1

(
ϕ̂h(s

τ
h, a

τ
h)ϕ̂h(s

τ
h, a

τ
h)

⊤
))

≤ tr(Id) = d. (47)

Thus ∥ŵh∥2 = maxv:∥v∥2=1

∣∣v⊤wn
h

∣∣ ≤√dNoff/λ.

Then using Lemma D.3, Lemma D.4 in Jin et al. (2020) and Lemma 18, we have for any fixed ε > 0
that with probability at least 1− δ, for all h ∈ [H]:∥∥∥∥∥

Noff∑
τ=1

ϕ̂h(s
τ
h, a

τ
h)
[
V̂h+1(s

τ
h+1)− (P

(∗,T+1)
h V̂h+1)(s

τ
h, a

τ
h)
]∥∥∥∥∥

2

Λ−1
h

≤ 4

[
d

2
log

(
Noff + λ

λ

)
+ log

HNε

δ

]
+

8N2
offε

2

λ

≤ 4

[
d

2
log

(
Noff + λ

λ

)
+ d log

(
1 +

6
√
dNoff

ε
√
λ

)
+ d2 log

(
1 + 18

d1/2β2

ε2λ

)
+ logNR(

ε

3
) + log

H

δ

]
+

8N2
offε

2

λ
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(i)

≤ 4

[
d

2
log

(
Noff + λ

λ

)
+ d log

(
1 +

6
√
dNoff

ε
√
λ

)
+ d2 log

(
1 + 18

d1/2β2

ε2λ

)
+p log

(
3

ε

)
+ log

H

δ

]
+

8N2
offε

2

λ
, (48)

where (i) follows from Assumption 5.

We select the ε-covering number parameters as R =
√
dNoff/λ, B = β (see Lemma 18). Further-

more, we choose λ = 1, β(δ) = cβ

(
d
√

ι(δ) +
√
dNoffξdown +

√
p logNoff

)
, ε = d/Noff where

ι(δ) = log (2pdNoffHmax{ξdown, 1}/δ). Then Equation (48) can be bounded by

d log (1 +Noff) + d log
(
1 + d−1/2N

3/2
off

)
+ p log(

3Noff

d
) + log

H

δ

+ d2 log(1 + d−3/2N2
off [β(δ)]

2)

<∼ d log (Noff) + d log
(
d−1/2N

3/2
off

)
+ p log(

3Noff

d
) + log

H

δ

+ d2 log
(
d1/2ιN3

offξ
2
downp

2
)

<∼ d2ι+ p logNoff ,

where the notation f(x) <∼ g(x) denotes that there exists a universal positive constant c (independent

of x) such that f(x) ≤ cg(x).

Therefore,∥∥∥∥∥
Noff∑
τ=1

ϕ̂h(s
τ
h, a

τ
h)
[
V̂h+1(s

τ
h+1)− (P

(∗,T+1)
h V̂h+1)(s

τ
h, a

τ
h)
]∥∥∥∥∥

Λ−1
h

<∼ d
√
ι+
√
p logNoff ,

where we use
√
x+ y ≤

√
x+

√
y for all x, y ≥ 0.

The following lemma provides our main result which upper-bounds the Bellman update error
|(BhV̂h+1 − B̂hV̂h+1)(s, a)|.
Lemma 10. Under the setting of Theorem 2, fix δ ∈ (0, 1). If we choose λ = 1, β(δ) =

cβ

(
d
√

ι(δ) +
√
dNoffξdown +

√
p logNoff

)
, where ι(δ) = log (2pdHNoffξdown/δ), then with

probability at least 1− δ, the following bound holds:∣∣∣(BhV̂h+1 − B̂hV̂h+1)(s, a)
∣∣∣ ≤ β(δ)

∥∥∥ϕ̂h(s, a)
∥∥∥
Λ−1

h

+ ξdown. (49)

Proof of Lemma 10. For h ∈ [H], define ŵ∗
h =

∫
s′
µ̂∗(s′)V̂h+1(s

′)ds′. It is easy to verify that
ϕ̂h(s, a)

⊤ŵ∗
h = (PhV̂h+1)(s, a) and (BhV̂h+1)(s, a) = rh(s, a) + ϕ̂h(s, a)

⊤ŵ∗
h. Then we have∣∣∣(BhV̂h+1 − B̂hV̂h+1)(s, a)

∣∣∣
=
∣∣∣(BhV̂h+1 − BhV̂h+1 + BhV̂h+1 − B̂hV̂h+1)(s, a)

∣∣∣
≤
∣∣∣(P (∗,T+1)

h V̂h+1)(s, a)− (PhV̂h+1)(s, a)
∣∣∣+ ∣∣∣ϕ̂h(s, a)

⊤(ŵ∗
h − ŵh)

∣∣∣
≤ ξdown +

∣∣∣ϕ̂h(s, a)
⊤(ŵ∗

h − ŵh)
∣∣∣ , (50)

where the last inequality follows because
∣∣∣V̂h+1(s)

∣∣∣ ≤ 1 for all s ∈ S and from Lemma 1.

Recall that ŵh = Λ−1
h

(∑Noff

τ=1 ϕ̂h(s
τ
h, a

τ
h)V̂h+1(s

τ
h+1)

)
, where Λh =∑Noff

τ=1 ϕ̂(sh, ah)ϕ̂h(sh, ah)
⊤ + λId. Then the second term in Equation (50) can be further

decomposed as

ϕ̂h(s, a)
⊤(ŵ∗

h − ŵh)
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= ϕ̂h(s, a)
⊤Λ−1

h

{(
Noff∑
τ=1

ϕ̂(sh, ah)ϕ̂h(sh, ah)
⊤+λId

)
ŵ∗

h−

(
Noff∑
τ=1

ϕ̂h(s
τ
h, a

τ
h)V̂h+1(s

τ
h+1)

)}

= λϕ̂h(s, a)
⊤Λ−1

h ŵ∗
h︸ ︷︷ ︸

(I)

+ϕ̂h(s, a)
⊤Λ−1

h

{
Noff∑
τ=1

ϕ̂h(s
τ
h, a

τ
h)
[
(P

(∗,T+1)
h V̂h+1)(s

τ
h, a

τ
h)−V̂h+1(s

τ
h+1)

]}
︸ ︷︷ ︸

(II)

+ ϕ̂h(s, a)
⊤Λ−1

h

{
Noff∑
τ=1

ϕ̂h(s
τ
h, a

τ
h)
[
(PhV̂h+1 − P

(∗,T+1)
h V̂h+1)(s

τ
h, a

τ
h)
]}

︸ ︷︷ ︸
(III)

. (51)

We next bound the three terms in the above equation individually.

Term (I) is upper-bounded as

|(I)| ≤ λ ∥wh∥Λ−1
h

·
∥∥∥ϕ̂h(s, a)

∥∥∥
Λ−1

h

≤
√
dλ
∥∥∥ϕ̂h(s, a)

∥∥∥
Λ−1

h

, (52)

where the first inequality follows from Cauchy-Schwarz inequality and the second inequality follows
from the fact that ∥wh∥Λ−1

h
=
∥∥Λ−1

h

∥∥1/2
op

· ∥wh∥2 ≤
√
d/λ.

Term (II) is upper-bounded as

|((II))|≤
∥∥∥ϕ̂h(s, a)

∥∥∥
Λ−1

h

∥∥∥∥∥
τ∑

τ=1

ϕ̂h(s
τ
h, a

τ
h)
[
(P

(∗,T+1)
h V̂h+1)(s

τ
h, a

τ
h)− V̂h+1(s

τ
h+1)

]∥∥∥∥∥
Λ−1

h

≤C̃
[
d
√
ι+
√
p logNoff

] ∥∥∥ϕ̂h(s, a)
∥∥∥
Λ−1

h

, (53)

where the first inequality follows from Cauchy-Schwarz inequality and the second inequality follows
from Lemma 9.

Term (III) is upper-bounded as

|(III)| ≤

∣∣∣∣∣ϕ̂h(s, a)
⊤Λ−1

h

(
Noff∑
τ=1

ϕ̂h(s
τ
h, a

τ
h)

)∣∣∣∣∣ · ξdown

(i)

≤
Noff∑
τ=1

∣∣∣ϕ̂h(s, a)
⊤Λ−1

h ϕ̂h(s
τ
h, a

τ
h)
∣∣∣ · ξdown

(ii)

≤

√√√√(Noff∑
τ=1

∥∥∥ϕ̂h(s, a)
∥∥∥2
Λ−1

h

)√√√√(Noff∑
τ=1

∥∥∥ϕ̂h(sτh, a
τ
h)
∥∥∥2
Λ−1

h

)
· ξdown

(iii)

≤ ξdown ·
√
dNoff

∥∥∥ϕ̂h(s, a)
∥∥∥
Λ−1

h

, (54)

where (i) follows because
∣∣∣V̂h+1(s)

∣∣∣ ≤ 1 for all s ∈ S and from Lemma 1, (ii) follows from
Cauchy-Schwarz inequality, and (iii) follows from Equation (47).

Choosing λ = 1, β(δ) = cβ

(
d
√
ι(δ) +

√
dNoffξdown +

√
p logNoff

)
, where ι(δ) =

log (2pdHNoff max{ξdown, 1}/δ), and combining Equations (50) to (54), we conclude that with
probability at least 1− δ, for any (s, a, h) ∈ S ×A× [H], the following bound holds:∣∣∣(BhV̂h+1 − B̂hV̂h+1)(s, a)

∣∣∣ ≤ β(δ)
∥∥∥ϕ̂h(s, a)

∥∥∥
Λ−1

h

+ ξdown. (55)
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C.3 Suboptimality gap characterization: proof of Theorem 2

Based on the previous lemmas, we establish the suboptimality gap.

In Lemma 8, let Γh = β
∥∥∥ϕ̂h(s, a)

∥∥∥
Λ−1

h

+ ξdown. Then Lemma 8 implies that with probability at

least 1− δ,
V ∗
P (∗,T+1),r − V π̂

P (∗,T+1),r

≤ 2

H∑
h=1

Eπ∗ [Γh(sh, ah)|s1 = s̃1]

≤ 2Hξdown + 2β

H∑
h=1

Eπ∗

[∥∥∥ϕ̂h(sh, ah)
∥∥∥
Λ−1

h

∣∣∣∣s1 = s

]
. (56)

We next show the second part of Theorem 2, which is the suboptimality bound under the feature
coverage assumption (see Assumption 6). We first note that Appendix B.4 in Jin et al. (2021)
shows that if Noff ≥ 40/κρ · log(4dH/δ), then with probability at least 1− δ/2, for all (s, a, h) ∈
S ×A× [H], ∥∥∥ϕ̂h(s, a)

∥∥∥
Λ−1

h

≤

√
2

κρ
· 1√

Noff

.

By selecting β(δ/2) = cβ

(
d
√
ι(δ/2) +

√
dNoffξdown +

√
p logNoff

)
(see Lemma 9), with proba-

bility at least 1− δ/2, we have

V ∗
P (∗,T+1),r − V π̂

P (∗,T+1),r ≤ 2Hξdown + 2β

H∑
h=1

Eπ∗

[∥∥∥ϕ̂h(sh, ah)
∥∥∥
Λ−1

h

∣∣∣∣s1 = s

]
.

By a union bound, we have with probability at least 1− δ, the following bound holds:

V ∗
P (∗,T+1),r − V π̂

P (∗,T+1),r

≤ 2H

(
ξdown + β(δ/2) ·

√
2

κρ
· 1√

Noff

)

= O

κ−1/2
ρ Hd1/2ξdown + κ−1/2

ρ Hd

√
log (pdHNoffξdown/δ)

Noff
+ κ−1/2

ρ H

√
p logNoff

Noff

 .

D Algorithm 3 and Proof of Theorem 3

Recall ξdown = ξ + CLCRTvϵu
κu

and for any h ∈ [H], we define P
(∗,T+1)
h (·|s, a) =

⟨ϕ∗
h(s, a), µ

(∗,T+1)
h (·)⟩, Ph(·|s, a) = ⟨ϕ̂h(s, a), µ̂

∗
h(·)⟩, P̂h(·|s, a) = ⟨ϕ̂h(s, a), µ̂h(·)⟩. For any func-

tion f : S 7→ R and h ∈ [H], define

P
(∗,T+1)
h f(s, a) =

∫
s′
⟨ϕ∗

h(s, a), µ
(∗,T+1)
h (s′)⟩f(s′)ds′,

(Phf)(s, a) =

∫
s′
ϕ̂(s, a)µ̂∗(s′)f(s′)ds′,

(P̂hf)(s, a) =

∫
s′
ϕ̂(s, a)µ̂(s′)f(s′)ds′.

Throughout this section, denote πn as the greedy policy induced by {Qn
h}Hh=1, and note that

λn
h, w

n
h , Q

n
h, V

n
h are defined in Algorithm 3. We further remark that the expectation (for exam-

ple: V π
h (s)) is taken with respect to the transition kernel of the target task, i.e., P (∗,T+1).
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Algorithm 3 DONRL (Downstream ONline RL)

1: Input: Feature ϕ̂, parameters λ, βn.
2: for n = 1, . . . , N do
3: Receive the initial state sn1 = s1.
4: for h = H, . . . , 1 do
5: Λn

h =
∑n−1

τ=1 ϕ̂h(s
τ
h, a

τ
h)ϕ̂h(s

τ
h, a

τ
h)

⊤ + λId.
6: wn

h = (Λn
h)

−1∑n−1
τ=1 ϕ̂h(s

τ
h, a

τ
h)V

n
h+1(s

τ
h+1).

7: Qn
h(·, ·) = min

{
rh(·, ·) + ϕ̂h(·, ·)⊤wn

h + βn

∥∥∥ϕ̂h(·, ·)
∥∥∥
(Λn

h)
−1

, 1

}
,

V n
h (·) = maxa Q

n
h(·, a).

8: Let πn be the greedy policy induced by {Qn
h}Hh=1, i.e., πn

h(·) = argmaxa∈AQ
n
h(·, a)

9: for h = 1, . . . ,H do
10: Take action anh = πn(snh), and observe snh+1.
11: Output: π1, . . . , πn.

Proof Overview: The proof of Theorem 3 consists of two main steps and a final suboptimal-
ity gap analysis. Step 1: We bound the difference between the estimated action value function
rh(s, a) + ⟨ϕ̂h(s, a), w

n
h⟩ in Algorithm 3 and the true action value function Qπ

h(s, a) under a certain
policy π recursively as shown in Lemma 12. Step 2: We prove the estimated action value function
Qn

h in Algorithm 3 is near-optimistic with respect to the optimal true action value function over steps
as shown in Lemma 13. Our main technical contribution lies in capturing the impact of the misspeci-
fication of the representation taken from upstream learning on these two steps. Suboptimality gap
analysis: Based on the first two steps, we first decompose the value function difference recursively,
and then obtain a final suboptimality gap.

D.1 Bounding the action value function difference

Following the proof similar to that for Lemma 9, we introduce the concentration lemma for online
RL that upper-bounds the stochastic noise in regression.

Lemma 11. Fix δ ∈ (0, 1). Under the setting of Theorem 3, we choose λ = 1, βn =

cβ

(
d
√
ιn +

√
dnξdown +

√
p log n

)
, where ιn = log (2pdHnmax{ξdown, 1}/δ). Then, there ex-

ists an absolute constant C̃ such that with probability at least 1− δ/2, the following inequality holds
for any n ∈ [Non], h ∈ [H]:∥∥∥∥∥

n−1∑
τ=1

ϕ̂h(s
τ
h, a

τ
h)
[
(P

(∗,T+1)
h V n

h+1)(s
τ
h, a

τ
h)− V n

h+1(s
τ
h+1)

]∥∥∥∥∥
Λ−1

h

≤ C̃
[
d
√
ιn +

√
p log n

]
.

Lemma 12. Fix δ ∈ (0, 1). There exists a constant cβ such that for βn =

cβ

(
d
√
ιn +

√
ndξdown +

√
p log n

)
where ιn = log (2dnHξdown/δ), and for any policy π, with

probability at least 1− δ/2, we have for any s ∈ S, a ∈ A, h ∈ [H], n ∈ [Non] that:(
rh(s, a) + ⟨ϕ̂h(s, a), w

n
h⟩
)
−Qπ

h(s, a) = P
(∗,T+1)
h (V n

h+1 − V π
h+1)(s, a) + ∆k

h(s, a),

for some ∆n
h(s, a) that satisfies ∥∆k

h(s, a)∥ ≤ βn

∥∥∥ϕ̂h(s, a)
∥∥∥
(Λn

h)
−1

+ 2ξdown.

Proof. For policy π, define wπ
h =

∫
V π
h+1(s

′)µ̂∗(s′)ds′. Hence, ⟨ϕ̂h(s, a), w
π
h⟩ = PhV

π
h+1(s, a)

and ∥wπ
h∥2 ≤ CL

√
d by Lemma 1. These facts further yield that for any s ∈ S, a ∈ A, h ∈ [H]:∣∣∣Qπ

h(s, a)−
(
rh(s, a) + ⟨ϕ̂h(s, a), w

π
h⟩
)∣∣∣ = ∣∣∣P (∗,T+1)

h V π
h+1(s, a)− PhV

π
h+1(s, a)

∣∣∣ ≤ ξdown,

where the last inequality follows from Lemma 1.
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Then, we further derive(
rh(s, a) + ⟨ϕ̂h(s, a), w

n
h⟩
)
−Qπ

h(s, a)

=
(
rh(s, a) + ⟨ϕ̂h(s, a), w

n
h⟩
)
−
(
rh(s, a) + ⟨ϕ̂h(s, a), w

π
h⟩
)
+
(
rh(s, a) + ⟨ϕ̂h(s, a), w

π
h⟩
)
−Qπ

h(s, a)

≤ ⟨ϕ̂h(s, a), w
n
h⟩ − ⟨ϕ̂h(s, a), w

π
h⟩+

∣∣∣(rh(s, a) + ⟨ϕ̂h(s, a), w
π
h⟩
)
−Qπ

h(s, a)
∣∣∣ . (57)

The first term can be bounded by

⟨ϕ̂h(s, a), w
n
h⟩ − ⟨ϕ̂h(s, a), w

π
h⟩

= ϕ̂h(s, a)
⊤(Λn

h)
−1

n−1∑
τ=1

ϕ̂(sτh, a
τ
h)V

n
h+1(s

τ
h+1)− ϕ̂h(s, a)

⊤wπ
h

= ϕ̂h(s, a)
⊤(Λn

h)
−1

{
n−1∑
τ=1

ϕ̂(sτh, a
τ
h)V

n
h+1(s

τ
h+1)− λwπ

h −
n−1∑
τ=1

ϕ̂(sτh, a
τ
h)PhV

π
h+1

}

= −λϕ̂h(s, a)
⊤(Λn

h)
−1wπ

h︸ ︷︷ ︸
(I)

+ ϕ̂h(s, a)
⊤(Λn

h)
−1

{
n−1∑
τ=1

ϕ̂(sτh, a
τ
h)
[
V n
h+1(s

τ
h+1)− P

(∗,T+1)
h V n

h+1(s
τ
h, a

τ
h)
]}

︸ ︷︷ ︸
(II)

+ ϕ̂h(s, a)
⊤(Λn

h)
−1

{
n−1∑
τ=1

ϕ̂(sτh, a
τ
h)Ph

(
V n
h+1 − V π

h+1

)
(sτh, a

τ
h)

}
︸ ︷︷ ︸

(III)

+ ϕ̂h(s, a)
⊤(Λn

h)
−1

{
n−1∑
τ=1

ϕ̂(sτh, a
τ
h)
(
P

(∗,T+1)
h − Ph

)
V n
h+1(s

τ
h, a

τ
h)

}
︸ ︷︷ ︸

(IV )

.

We next bound the above four terms individually.

For (I), we derive the following bound:

| (I) | ≤
∥∥∥ϕ̂h(s, a)

∥∥∥
(Λn

h)
−1

∥λwπ
h∥(Λn

h)
−1 ≤

√
λ ∥wπ

h∥2
∥∥∥ϕ̂h(s, a)

∥∥∥
(Λn

h)
−1

= CL

√
λd
∥∥∥ϕ̂h(s, a)

∥∥∥
(Λn

h)
−1

.

(58)

For (II), by Lemma 11, we have

| (II) |

≤
∥∥∥ϕ̂h(s, a)

∥∥∥
(Λn

h)
−1

∥∥∥∥∥
n−1∑
τ=1

ϕ̂h(s
τ
h, a

τ
h)
[
V n
h+1(s

τ
h+1)− P

(∗,T+1)
h V n

h+1(s
τ
h, a

τ
h)
]∥∥∥∥∥

(Λn
h)

−1

≤
(
C̃d

√
ιn +

√
p log n

)∥∥∥ϕ̂h(s, a)
∥∥∥
(Λn

h)
−1

.

For (III), we have

| (III) |

≤

∣∣∣∣∣ϕ̂h(s, a)
⊤(Λn

h)
−1

{
n−1∑
τ=1

ϕ̂(sτh, a
τ
h)ϕ̂(s

τ
h, a

τ
h)

⊤
∫ (

V n
h+1 − V π

h+1

)
(s′)µ̂∗

h(s
′)ds′

}∣∣∣∣∣
≤
∣∣∣∣ϕ̂h(s, a)

⊤(Λn
h)

−1 (Λn
h − λI)

∫ (
V n
h+1 − V π

h+1

)
(s′)µ̂∗

h(s
′)ds′

∣∣∣∣
=

∣∣∣∣ϕ̂h(s, a)
⊤
∫ (

V n
h+1 − V π

h+1

)
(s′)µ̂∗

h(s
′)ds′

∣∣∣∣︸ ︷︷ ︸
(a)

+

∣∣∣∣λϕ̂h(s, a)
⊤(Λn

h)
−1

∫ (
V n
h+1 − V π

h+1

)
(s′)µ̂∗

h(s
′)ds′

∣∣∣∣︸ ︷︷ ︸
(b)

.
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For term (a), we have

(a) = ϕ̂h(s, a)
⊤
∫ (

V n
h+1 − V π

h+1

)
(s′)µ̂∗

h(s
′)ds′

= Ph

(
V n
h+1 − V π

h+1

)
(s, a)

≤ P (∗,T+1)
(
V n
h+1 − V π

h+1

)
(s, a) + ξdown,

where the last inequality follows from Lemma 1.

For term (b), similarly to Equation (58), we have

(b) ≤ CL

√
λd
∥∥∥ϕ̂h(s, a)

∥∥∥
(Λn

h)
−1

.

For (IV ), we derive

| (IV ) | ≤

∣∣∣∣∣ϕ̂h(s, a)
⊤(Λn

h)
−1

{
n−1∑
τ=1

ϕ̂h(s
τ
h, a

τ
h)

}∣∣∣∣∣ ξdown

≤
n−1∑
τ=1

∣∣∣ϕ̂h(s, a)
⊤(Λn

h)
−1ϕ̂h(s

τ
h, a

τ
h)
∣∣∣ ξdown

(i)

≤

√√√√[n−1∑
τ=1

∥∥∥ϕ̂h(s, a)
∥∥∥2
(Λn

h)
−1

][
n−1∑
τ=1

∥∥∥ϕ̂h(sτh, a
τ
h)
∥∥∥2
(Λn

h)
−1

]
ξdown

(ii)

≤ ξdown

√
dn
∥∥∥ϕ̂h(s, a)

∥∥∥
(Λn

h)
−1

,

where (i) follows from Cauchy-Schwarz inequality and (ii) follows because
n−1∑
τ=1

∥∥∥ϕ̂h(s
τ
h, a

τ
h)
∥∥∥2
(Λn

h)
−1

= tr

(
(Λn

h)
−1

n−1∑
τ=1

(
ϕ̂h(s

τ
h, a

τ
h)ϕ̂h(s

τ
h, a

τ
h)

⊤
))

≤ tr(Id) = d.

Substituting the bounds on (I) , (II) , (III) , (IV ) into Equation (57), we finish the proof.

D.2 Proving optimism of value function

Lemma 13. Under the setting of Theorem 3, with probability at least 1− δ/2, for any s ∈ S, a ∈
A, h ∈ [H], n ∈ [Non], we have

Qn
h(s, a) ≥ Q∗

h(s, a)− 2(H − h+ 1)ξdown. (59)

Proof. We prove this lemma by induction. First, for step H , by Lemma 12, we have∣∣∣(rH(s, a) + ⟨ϕ̂H(s, a), wn
H⟩
)
−Qπ

H(s, a)
∣∣∣

=
∣∣∣P (∗,T+1)

H (V n
H+1 − V π

H+1)(s, a) + ∆k
H(s, a)

∣∣∣
≤ βn

∥∥∥ϕ̂H(s, a)
∥∥∥
(Λn

H)−1
+ 2ξdown.

Thus,

Qn
H(s, a) = min

{
rH(·, ·) + ⟨ϕ̂(·, ·), wn

H⟩+ βn

∥∥∥ϕ̂(·, ·)∥∥∥
(Λn

H)−1
, 1

}
≥ Q∗

H(s, a)− 2ξdown.

Suppose Equation (59) holds for step h+ 1. Then for step h, following from Lemma 12, we have:(
rh(s, a) + ⟨ϕ̂h(s, a), w

n
h⟩
)
−Q∗

h(s, a)
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= ∆n
h(s, a) + P

(∗,T+1)
h (V n

h+1 − V ∗
h+1)(s, a)

≥ −βn

∥∥∥ϕ̂h(s, a)
∥∥∥
(Λn

h)
−1

− 2ξdown − 2(H − h)ξdown

≥ −βn

∥∥∥ϕ̂h(s, a)
∥∥∥
(Λn

h)
−1

− 2(H − h+ 1)ξdown.

Therefore,

Qn
h(s, a) = min

{
rh(·, ·) + ⟨ϕ̂(·, ·), wn

h⟩+ βn

∥∥∥ϕ̂(·, ·)∥∥∥
(Λn

h)
−1

, 1

}
≥ Q∗

h(s, a)− 2(H − h+ 1)ξdown,

which finishes the proof.

D.3 Suboptimality gap: proof of Theorem 3

Before proving Theorem 3, we introduce the following lemma to decompose the value function
difference recursively.

Lemma 14. Fix δ ∈ (0, 1). Let δnh = V n
h (snh) − V πn

h (snh) and ξnh+1 = E
[
δnh+1|snh, anh

]
− δnh+1.

Then, with probability at least 1− δ/2, for h ∈ [H], n ∈ [Non]:

δnh ≤ δnh+1 + ξnh+1 + 2βn

∥∥∥ϕ̂h(s
n
h, a

n
h)
∥∥∥
(Λn

h)
−1

+ 2ξdown.

Proof. By Lemma 12, with probability at least 1− δ/2, for any s ∈ S, a ∈ A, h ∈ [H], n ∈ [Non],
we have

Qn
h(s, a)−Qπn

h (s, a)

= ∆n
h(s, a) + P

(∗,T+1)
h (V n

h+1 − V πn

h+1)(s, a)

≤ βn

∥∥∥ϕ̂h(s, a)
∥∥∥
(Λn

h)
−1

+ 2ξdown + P
(∗,T+1)
h (V n

h+1 − V πn

h+1)(s, a).

By the definition of πn in Algorithm 3, we have πn(snh) = anh = argmaxa∈AQ
n
h(sh, a). Then

Qn
h(s

n
h, a

n
h)−Qπn

h (snh, a
n
h) = V n

h (snh)− V πn

h (snh) = δnh . Thus,

δnh ≤ δnh+1 + ξnh+1 + 2βn

∥∥∥ϕ̂h(s
n
h, a

n
h)
∥∥∥
(Λn

h)
−1

+ 2ξdown.

Finally, we combine Lemmas 11 to 14 to prove Theorem 3.

Proof of Theorem 3. The regret can be bounded by

Non∑
n=1

(
V ∗
P (∗,T+1),r − V πn

P (∗,T+1),r

)
(i)

≤
Non∑
n=1

{(
V n
1 − V πn

P (∗,T+1),r

)
+ 2Hξdown

}
(ii)

≤
Non∑
n=1

{
H∑

h=1

[
ξnh + 2βn

∥∥∥ϕ̂h(s
n
h, a

n
h)
∥∥∥
(Λn

h)
−1

+ 2ξdown

]
+ 2Hξdown

}

≤
Non∑
n=1

H∑
h=1

ξnh︸ ︷︷ ︸
(I)

+2

Non∑
n=1

H∑
h=1

βn

∥∥∥ϕ̂h(s
n
h, a

n
h)
∥∥∥
(Λn

h)
−1︸ ︷︷ ︸

(II)

+4HNonξdown, (60)
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where (i) follows from Lemma 13 and (ii) follows from Lemma 14.
For term (I), note that {ξnh}

Non,H
n=1,h=1 is a martingale difference with |ξnh | ≤ 2. By Azuma–Hoeffding

inequality, with proability at least 1− δ/4, we have∣∣∣∣∣
Non∑
n=1

H∑
h=1

ξnh

∣∣∣∣∣ ≤√8NonH log(8/δ). (61)

For term (II), we derive

(II) = 2

H∑
h=1

Non∑
n=1

βn

∥∥∥ϕ̂h(s
n
h, a

n
h)
∥∥∥
(Λn

h)
−1

(i)

≤ 2

H∑
h=1

√√√√Non∑
n=1

β2
n

√√√√Non∑
n=1

∥∥∥ϕ̂h(snh, a
n
h)
∥∥∥2
(Λn

h)
−1

(ii)

≤ 2

H∑
h=1

√
2c2β (d

2ιnNon +N2
ondξ

2
down + pNon logNon)

√
2d log

(
1 +

Non

dλ

)
≤2H

√
2c2β (d

2ιnNon +N2
ondξ

2
down + pNon logNon)

√
4d logNon

(iii)

≤ 4
√
2cβ

(√
H2d3ιnNon logNon +HdNonξdown

√
logNon +H

√
dpNon logNon

)
,

(62)

where (i) follows from Cauchy-Schwarz inequality, (ii) follows from Lemma 17, and (iii) follows
because ∀x, y ≥ 0,

√
x+ y ≤

√
x+

√
y.

Combining Equation (60), Equation (61) and Equation (62), we obtain
Non∑
n=1

(
V ∗
P (∗,T+1),r − V πn

P (∗,T+1),r

)
≤ 8

√
2cβ

(√
H2d3ιnNon logNon +HdNonξdown

√
logNon +H

√
dpNon logNon

)
= Õ

(
HdNonξdown +H

√
d3Non +H

√
dpNon

)
= Õ

(
HdNonξdown +H

√
dNon max{d,√p}

)
.

Dividing both sides by Non, we have

V ∗
P (∗,T+1),r − V π̃

P (∗,T+1),r ≤ Õ
(
Hdξdown +Hd1/2N−1/2

on max{d,√p}
)
. (63)

Furthermore, if the linear combination misspecification error ξ (Assumption 5) is Õ(
√
d/

√
Non),

and the number of trajectories collected in upstream is as large as

Õ

(
H3dK2TNon +

(
H3d3K +H5K2 +H5d2K

)
T 2Non +

H5K3TNon

d2

)
,

then ξdown reduces to Õ(
√
d/

√
Non) by definition and Theorem 1, and hence the second term in

Equation (63) dominates. The suboptimality gap thus becomes

Õ
(
Hd1/2N−1/2

on max{d,√p}
)
.

E Discussion of assumptions

In this section, We discuss all of our assumptions in Section 5 in greater detail. Below we elaborate
intuitively why these assumptions are useful. Formal argument of their necessity or their possible
relaxation can be an interesting future topic.
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Assumption 6 falls into the data-coverage type of assumptions typically adopted in the study of
offline RL, such as in linear MDPs (Xie et al., 2021; Yin et al., 2022; Wang et al., 2021) and the OPE
problem (Min et al., 2021). Such an assumption has been shown to be necessary to guarantee sample
efficient offline RL for tabular (Yin and Wang, 2021) and linear MDPs in Wang et al. (2021). Further,
Uehara et al. (2022) relaxed this assumption to a weaker version of the same type, but correspondingly
has a slightly weaker result in the suboptimality gap (with respect to the optimal policy only) than
those in Xie et al. (2021); Yin et al. (2022); Wang et al. (2021) (suboptimality gap with respect to any
policy). One interesting topic for future study is to relax our Assumption 6 by this weaker assumption
in Uehara et al. (2022) for our downstream learning.

Assumptions 2 to 5 are useful for establishing the connection between upstream and downstream
learning and then transferring the pre-trained representation from upstream to downstream.

Assumption 2 requires the upstream exploration to be sufficient over all states so that the pre-trained
representation in upstream is accurate for those high-frequent states in downstream MDP, even if
these states occur not often in upstream. Such a type of reachability assumption has also been used in
previous RL studies such as in Agarwal et al. (2020); Modi et al. (2021).

Assumption 3 can be simplified to only require that the state space S is compact. Then, combining
with Assumption 2, it can be shown that there exists a uniform distribution on S with the density
function f(s) = υ, where 1/υ is the measure of S . Essentially, we expect that there exist a distribution
(e.g., uniform distribution in the context) that has non-zero density on all states so that every state can
be explored well in upstream. Assumption 3 holds obviously in Tabular MDP and can hold for many
RL settings with continuous state space as long as it is compact.

Assumption 4 uses the average total variation (TV) distance to provide a bound for point-wise TV
distance, i.e., the TV distance of each state-action pair. Without Assumption 4, it can occur for source
tasks that E(s,a)∼U(s,a)[∥P ∗ − ⟨·, ·⟩∥] ≤ ξdown (see Equation (10) in Lemma 1), which is insufficient
for pre-trained representation to perform well in downstream target task due to the difference of
their transition kernels. Consequently, the straightforward exploration won’t benefit from multitask
learning. We remark that there might be other alternative assumptions that can help to achieve the
same goal as stated above.

Assumption 5 connects transition kernels between upstream source tasks and the downstream target
task. Such a type of assumption is somewhat necessary to guarantee the performance transfer, but the
exact form of the assumption may be relaxed.

F Discussion of connections to successor features (SF)

In this section, we discuss the related work on successor features (SF) and propose some interesting
topics which can be further studied.

In the framework of Successor Features (SFs) (Barreto et al., 2017), rewards are decomposed into
feature representation (same for all tasks) and linear weights (different across tasks). Barreto et al.
(2017) assumes that the transition kernel for all tasks are the same. In such a case, it can be easily
shown that the Q functions also admit a decomposition into common SFs for all tasks and varying
weights w across tasks.

Hence, the structure of Q-function naturally leads to a value-based approach to update Q-functions via
Bellman equations. On the other hand, our problem formulation (along the line of low-rank MDPs)
assumes that the transition kernels have decomposed structure of common feature for all tasks and
different linear weights across all tasks, and the reward functions may not have any structure. Such
a formulation naturally leads to a model-based approach, where the policy update is via a policy
maximization oracle.

To connect the two formulations, one can consider the following setup, where both rewards (and
hence Q-function) and transition kernels have decomposed structures. For such a setting, a combined
value-based and model-based approach can be a good design option. One possible way is to learn
the transition kernels first based on its structure, then update Q-function based on its structure, and
finally update policy greedily based on Q-function. Such a framework has already been considered
in Lehnert and Littman (2020), where the focus was on learning state representations, not on the
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design of exploration. This is certainly a quite open topic that requires formal efforts to investigate in
the future.

G Auxiliary Lemmas

In this section, we provide several lemmas that are commonly used for the analysis of MDP problems.

The following lemma (Dann et al., 2017) will be useful to measure the difference between two value
functions under two MDPs and reward functions. We define PhVh+1(sh, ah) = Es∼Ph(·|sh,ah) [V (s)]
as a shorthand notation.
Lemma 15. (Simulation lemma). Suppose P1 and P2 are two MDPs and r1, r2 are the corresponding
reward functions. Given a policy π, we have,

V π
h,P1,r1(sh)− V π

h,P2,r2(sh)

=

H∑
h′=h

E
s
h′∼(P2,π)
a
h′∼π

[
r1(sh′ , ah′)− r2(sh′ , ah′) + (P1,h′ − P2,h′)V π

h′+1,P1,r(sh′ , ah′)|sh
]

=

H∑
h′=h

E
s
h′∼(P1,π)
a
h′∼π

[
r1(sh′ , ah′)− r2(sh′ , ah′) + (P1,h′ − P2,h′)V π

h′+1,P2,r(sh′ , ah′)|sh
]
.

The following lemma is essential in bounding the suboptimality in downstream offline RL (see
Lemma 3.1 in Jin et al. (2021)).

Lemma 16. Let {π̂h}Hh=1 be the policy such that V̂h(s) = ⟨Q̂h(s, ·), π̂h(·|s)⟩A and ζh(s, a) =

(BhV̂h+1(s, a))− Q̂h(s, a). Then for any π̂ and s ∈ S, we have

V π
1 (s)− V π̂

1 (s) =

H∑
h=1

Eπ[ζh(sh, aa)|s1 = s]−
H∑

h=1

Eπ̂[ζh(sh, ah)|s1 = s]

+

H∑
h=1

Eπ[⟨Q̂h(sh, ·), πh(·|sh)− π̂(·|sh)⟩|s1 = s],

where the expectation is taken over sh, ah.

The following lemma is a standard inequality in the regret analysis for linear MDPs in reinforcement
learning (see Lemma G.2 in Agarwal et al. (2020) and Lemma 10 in Uehara et al. (2022)).
Lemma 17. (Elliptical potential lemma). Consider a sequence of d×d positive semidefinite matrices
X1, . . . , XN with tr(Xn) ≤ 1 for all n ∈ [N ]. Define M0 = λ0I and Mn = Mn−1 +Xn. Then

N∑
n=1

tr
(
XnM

−1
n−1

)
≤ 2 log det(MN )− 2 log det(M0) ≤ 2d log

(
1 +

N

dλ0

)
.

Next, we introduce some useful inequalities that help convert the finite sample error bound into the
sample complexity.
Lemma 18 (ε-Covering Number). Let V denote a class of function mapping from S to R with the
following parametric form

V (·) = min

{
max
a∈A

r(·, a) + w⊤ϕ(·, a) + α
√
ϕ(·, a)⊤Λ−1ϕ(·, a), 1

}
,

where the parameters (r, w, β,Λ) satisfy r ∈ R, ∥w∥ ≤ L, α ∈ [0, B] and Σ ⪰ λI . Assume
∥ϕ(s, a)∥ ≤ 1 for all (s, a) pairs, and let N (ε; r,R,B, λ) be the ε-covering number of V with
respect to the distance dist(V, V ′) = sups |V (s) − V ′(s)|. Further let NR(ε) be the ϵ-covering
number of function class R. Then

log |N (ϵ;R,B, λ)| ≤ d log(1 + 6R/ε) + d2 log(1 + 18d1/2B2/(ε2λ)) + logNR
(ε
3

)
where NR( ϵ3 ) is the ϵ

3 covering number with respect to the reward function class R.
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Proof. The proof is essentially the same as that in Jin et al. (2020) except that the function r(s, a) is
not necessarily linear with respect to the representation ϕ(s, a), and the function ϕ is selected from a
function class Φ.

Reparametrize the function class V by letting A = α2Λ−1, and we have

V (·) = min

{
max
a∈A

r(·, a) + w⊤ϕ(·, a) +
√
ϕ(·, a)⊤Aϕ(·, a), 1

}
,

where r ∈ R, ∥w∥ ≤ R, and ∥A∥ ≤ B2λ−1. For any two functions V1, V2 ∈ V , let them take the
above form with parameters (r1, w1, A1) and (r2, w2, A2), respectively. Since both min{·, 1} and
maxa are contractions, we have

dist(V1, V2)

≤ sup
s,a

∣∣∣∣[r1(s, a) + w⊤
1 ϕ(s, a) +

√
ϕ(s, a)⊤A1ϕ(s, a)

]
−
[
r2(s, a) + w⊤

2 ϕ(s, a) +
√
ϕ(s, a)⊤A2ϕ(s, a)

]∣∣∣∣
≤ sup

s,a
|r1(s, a)− r2(s, a)|+ sup

ϕ:∥ϕ∥≤1

∣∣∣[w⊤
1 ϕ+

√
ϕ⊤A1ϕ

]
−
[
w⊤

2 ϕ+
√
ϕ⊤A2ϕ

]∣∣∣
≤ sup

s,a
|r1(s, a)− r2(s, a)|+ sup

ϕ:∥ϕ∥≤1

∣∣(w1 − w2)
⊤ϕ
∣∣+ sup

ϕ:∥ϕ∥≤1

√
|ϕ⊤(A1 −A2)ϕ|

= sup
s,a

|r1(s, a)− r2(s, a)|+ ∥w1 − w2∥+
√

∥A1 −A2∥

≤ sup
s,a

|r1(s, a)− r2(s, a)|+ ∥w1 − w2∥+
√
∥A1 −A2∥F, (64)

where the second to last inequality follows from the fact that |
√
x−√

y| ≤
√
|x− y| for any x, y ≥ 0.

For matrices, ∥·∥ and ∥·∥F denote the matrix operator norm and Frobenius norm, respectively.

Let CR be an ε
3 -cover of R such that |CR| = NR( ε3 ). Let Cw be an ε

3 -cover of {w ∈ Rd| ∥w∥ ≤
R} with respect to the l2-norm of a vector, and let CA be an ε2

9 -cover of {A ∈ Rd×d| ∥A∥F ≤
d1/2B2λ−1} with respect to the Frobenius norm. By Lemma D.5 in Jin et al. (2020), it holds that

|Cw| ≤ (1 + 6R/ε)d, |CA| ≤ [1 + 18d1/2B2/(λε2)]d
2

.

By Equation (64), for any V1 ∈ V , there exists r2 ∈ CR, w2 ∈ Cw and A such that V2 parametrized
by (r2, w2, A2) satisfies dist(V1, V2) ≤ ε. Hence, it holds that N (ϵ;R,B, λ) ≤ |NR( ε3 )| · |Cw| · |CA|,
which yields the desired result.
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