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Abstract

The Minimum Enclosing Ball (MEB) problem is one of the most fundamental
problems in clustering, with applications in operations research, statistics and
computational geometry. In this works, we give the first linear time differentially
private (DP) fPTAS for the Minimum Enclosing Ball problem, improving both on
the runtime and the utility bound of the best known DP-PTAS for the problem, of
Ghazi et al [21]. Given n points in Rd that are covered by the ball B(θopt, ropt),
our simple iterative DP-algorithm returns a ball B(θ, r) where r ≤ (1 + γ)ropt

and which leaves at most Õ(
√
d

γε ) points uncovered in Õ(n/γ2)-time. We also give a

local-model version of our algorithm, that leaves at most Õ(
√
nd
γε ) points uncovered,

improving on the n0.67-bound of Nissim and Stemmer [31] (at the expense of other
parameters). Lastly, we test our algorithm empirically and discuss open problems.

1 Introduction and Related Work

One of the fundamental problems in clustering is the Minimum Enclosing Ball (MEB) problem, or the
1-Center problem, in which we are given a dataset P ⊂ Rd containing n points, and our goal is to find
the smallest possible ball B(θopt, ropt) that contains P . The MEB problem has applications in various
areas of operations research, machine learning, statistics and computational geometry: gap tolerant
classifiers [11], tuning Support Vector Machine parameters [12] and Support Vector Clustering [5, 6],
k-center clustering [10], solving the approximate 1-cylinder problem [10], computation of spatial
hierarchies (e.g., sphere trees [25]), and others [18]. The MEB problem is NP-hard to solve exactly,
but it can be solved in linear time in constant dimension [29, 19] and has several fully-Polynomial
Time Approximation Schemes (fPTAS) [4, 27] that approximate it to any constant (1 + γ) in time
O(n/γ); as well as an additive γ approximation in sublinear time [13].

But in situations where the data is sensitive in nature, such as addresses, locations or descriptive
feature-vectors1 we run the risk that approximating the data’s MEB might leak information about a
single individual. Differential privacy [16, 15] (DP) alleviates such a concern as it requires that no
single individual has a significant effect on the output. Alas, the MEB problem is highly sensitive in
nature, since there exist datasets where a change to a single datum may affect the MEB significantly.

In contrast, it is evident that for any fixed ball B(θ, r) the number of input points that B contains
changes by no more than one when changing any single datum. And so, in DP we give bi-criteria
approximations of the MEB: a ball B(θ, r) that may leave at most a few points of P uncovered
and whose radius is comparable to ropt. The work of [32] returns a O(

√
log(n))-approximation

1Consider a research in a hospital in which one first runs some regression on each patient’s data, and then
looks for the spread of all regressors of all patients.
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of the MEB while omitting as few as Õ(1/ε) points from P , and it was later improved to a O(1)-
approximation [31]. The work of [21] does give a PTAS for the MEB problem, but their (1 + γ)-
approximation may leave Õ(

√
d/εγ3) datapoints uncovered2 and it runs in nO(1/γ2)-time where the

constant hidden in the big-O notation is huge; as it leverages on multiple tools that take exp(dim)-
time to construct, such as almost-perfect lattices and list-decodable covers. It should be noted that all
of these works actually study the related problem of 1-cluster in which one is given an additional
parameter t and seeks to find the smallest MEB of a subset Q ⊂ P where |Q| ≥ t. Lastly (as was
first commented in [21], Section D.2.1.), a natural way to approximate the MEB problem is through
minimizing the convex hinge-loss L(θ, x) = 1

r max{0, ‖x− θ‖ − r} but its utility depends on r (as
the utility of DP-ERM scales with the Lipfshitz constant of the loss [3]).3

By far, one of the most prominent uses of the DP-approximations of the MEB problem lies in range
estimation, as O(1)-approximations of the MEB can assist in reducing an a-priori large domain to
a ball whose radius is proportional to the diameter of P . This helps in reducing the L2-sensitivity
of problems such as the mean and other distance related queries (e.g. PCA). So for example, if we
have Ω̃(

√
d

γε ) points in a ball of radius 10ropt then a DP-approximation of the data’s mean using the
Gaussian mechanism (see Section 2) returns a point of distance ≤ γropt to the true mean (a technique
that is often applied in a Subsample-and-Aggregate framework [30]). This averaging also gives
an efficient (2 + γ)-approximation of the MEB. But it is still unknown whether there exists a DP
c-approximation of the MEB for c < 2 whose runtime is below, say, n100.

Our Contribution and Organization. In this work, we give the first DP-fPTAS for the MEB
problem. Our algorithm is very simple and so is its analysis. As input, we assume the algorithm
is run after the algorithms of [31] were already run, and as a “starting point” we have both (a) a
real number r0 which is a 4-approximation of ropt, and (b) a 10-approximation of the MEB itself,
namely a ball B such that P ⊂ B,4 which is centered at a point θ0 satisfying ‖θ0 − θopt‖ ≤ 10ropt.5
It is now our goal to refine these parameters to a (1 + γ)-approximation of the MEB. In fact, we
can assume that we have a (1 + γ)-approximation of the value of ropt: we simply iterate over all
powers: r0

4 ,
r0
4 (1 + γ), r0

4 (1 + γ)2, ..., r0 where for each guess of r we apply a privacy preserving
procedure returning either a point θ satisfying P ⊂ B(θ, r) or ⊥. In our algorithm we simply use a
binary-search over these O(1/γ) possible values, in order to save on the privacy-budget.

Now, given θ0 and some radius-guess r, our goal is to shift θ0 towards θopt. So, starting from
θ0 = θ0, we repeat this simple iterative procedure: we take the mean µ of the points uncovered
by the current B(θt, r) and update θt+1 ← θt + γ2

2 (µ − θt). We argue that, if r ≥ ropt then after
T = O(γ−2 log(1/γ))-iterations we get θT such that ‖θT − θopt‖ ≤ γropt and therefore have that
P ⊂ B(θT , (1 + γ)r). The reason can be easily seen from Figure 1 — any point x ∈ P which
is uncovered by the current B(θt, r) must be closer to θopt than to θt, and therefore must have
a noticeable projection onto the direction θopt − θt. Thus, in a Perceptron-like style, making a
Θ(γ2)-size step towards this x must push us significantly in the θopt − θt direction. We thus prove
that if the distance of θt from θopt is large, this update step reduces our distance to θopt. Note that
our proof shows that in the non-private case it suffices to take any uncovered point in order to make
this progress, or any convex-combination of the uncovered points.

In the private case, rather than using the true mean of the uncovered points in each iteration, we
have to use an approximated mean. So we prove that applying our iterative algorithm with a “nice”
distribution whose mean has a large projection in the θopt − θt direction also returns a good θT in
expectation, and then amplify the success probability by naïve repetitions. We also give a SQ-style
algorithm for approximating the MEB under proximity conditions between the true- and the noisy-
mean, a result which may be of interest by itself. After discussing preliminaries in Section 2, we
present both the standard (non-noisy) version of our algorithm and its noisy variation in Section 3.

Having established that our algorithm works even with a “nice” distribution whose mean approximates
the mean of the uncovered points, all that is left is just to set the parameters of a privacy preserving

2See Lemmas 59 & 60 in [21]
3In fact, there’s more to this discussion, as we detail at the end of the introduction.
4We can always omit the few input points that may reside outside this ball.
5We comment that replacing these 4 and 10 constants with any other constants merely changes the constants

in our analysis in a very straight-forward way.

2



algorithm accordingly. To that end we work with the notion of zCDP [8] and apply solely the
Gaussian mechanism. To obtain these nice properties, it follows that the number of uncovered points
must be Ω(

√
d/εt) where εt is the privacy budget of the tth-iteration, or else we halt. And due to

the composition theorem of DP it suffices to set εt = O(ε/
√
T). This leads to a win-win situation:

either we find in some iteration a ball that leaves no more than Õ(
√
d/γε) points uncovered, or we

complete all iterations and obtain a ball of radius ≤ (1 + γ)r that covers all of P . The full details of
this analysis appear in Section 4. We then repeat this analysis but in the local-model, where each user
adds Gaussian noise to her own input point. This leads to a similar analysis incurring a

√
n-larger

bounds, as detailed in Section 5.

While at the topic of local-model DP (LDP) algorithms, it is worth mentioning that the algorithms
of [31], which provide us with a good initial “starting point”, do have a LDP-variant. Yet the LDP
variants of these algorithms may leave as many as n0.67 datapoints uncovered. So in Appendix A
we give simple differentially private algorithms (in both the curator- and local-models) that obtain
such good θ0 and r0. Formally, our LDP-algorithm returns a ball B(θ0, r0) s.t. by projecting all
points in P onto B(θ0, r) we alter no more than Õ(

√
d/ε) points and obtain P ′ ⊂ B(θ0, r0) where

r0 ≤ 6ropt(P
′). Thus, combining our LDP algorithm for finding a good starting point together with

the algorithm of Section 5 we get an overall (1 + γ)-approximation of the MEB in the local model
which may omit / alter as many as Õ(

√
nd/γε)-points. We comment that while this improves on the

previously best-known LDP algorithm’s bound of n0.67, our algorithm’s dependency on parameters
such as the dimension d or grid-size6 is worse, and furthermore – that the analysis of [31] (i) relates
to the problem of 1-cluster (finding a cluster containing t ≤ n many points) and (ii) separates
between the required cluster size and the number of omitted points (which is much smaller and only
logarithmic in d), two aspects that are not covered in our work.

Lastly, we provide empirical evaluations of our algorithm (which we deferred in its entirety to the
Supplementary Material, Section E) showing a rather ubiquitous performance across multiple datasets,
and discuss open problems in Section 6.

Comparison with the ERM Baseline. Recall that the MEB problem, given a suggested radius r
and a convex set Θ, can be formulated as a ERM problem using a hinge-loss function `1(θ;x) =

max{0, ‖x−θ‖−r
diam(Θ) }. Indeed, when diam(Θ)� r then privately solving this ERM problem gives no

useful guarantee about the result, but much like our algorithm one can first find some θ0 close
up to, say, 10r to θopt and set Θ as a ball of radius O(r). Since there exists θopt for which
1
n

∑
x `

1(θ;x) = 0, then private SGD [3, 2] returns θ̃ for which 1
n

∑
x `

1(θ̃;x) ≤ C
√
d

εn for some
constant C > 0. This upper-bounds the number of points that contribute γr to this loss at C

√
d

εγ , and

so |P \ B(θ̃, (1 + γ)r)| = O(
√
d

εγ ). However, the caveat is that the SGD algorithm achieves such
low loss using O(n2)-SGD iterations.7 In contrast our analysis can be viewed as proving that for
the equivalent ERM in the square of the norm, `2(θ;x) = max{0, ‖x−θ‖2−r2

diam(Θ)2 }, it suffices to make

only Õ(γ−2) non-zero gradient steps to have some θT s.t. ‖θT − θopt‖ ≤ γr so that B(θT , (1+ γ)r)

covers all of the input. Thus, our result is obtained in linear Õ(n/γ2)-time.

2 Preliminaries

Notation. Given a vector v ∈ Rd we denote its L2-norm as ‖v‖, and also use 〈v, u〉 to denote the
dot-product between two d-dimensional vectors u and v. A (closed) ball B(θ, r) is the set of all
points B(θ, r) = {x ∈ Rd : ‖x− θ‖ ≤ r}. We use Õ(·) / Ω̃(·) to denote big-O / big-Ω dependency
up to poly log factors. We comment that in our work we made no effort to optimize constants.

The Gaussian and χ2
d-Distributions. Given two parameters µ ∈ R and σ2 > 0 we denote

N (µ, σ2) as the Gaussian distribution whose PDF at a point x ∈ R is (2πσ2)0.5 exp(− (x−µ)2

2σ2 ).
Standard concentration bounds give that for any x > 1 the probability PrX∼N (µ,σ2)[|X − µ| ≥
xσ] ≤ 2 exp(−x2/2). It is well-known that given two independent random variable X ∼ N (µ1, σ

2
1)

6It is known [7] that DP MEB-approximation requires the input points to lie on some prespecified finite grid.
7Unfortunately, the hinge-loss isn’t smooth, ruling out the linear SGD of [20].
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and Y ∼ N (µ2, σ
2
2) their sum is distributed like a Gaussian X + Y ∼ N (µ1 + µ2, σ

2
1 + σ2

2). We
also denote N (v, σ2Id) as the distribution over d-dimensional vectors where each coordinate j is
drawn i.i.d. from N (vj , σ

2). Given X ∼ N (0, σ2Id) it is known that ‖X‖2 is distributed like a
χ2
d-distribution; and known concentration bounds on the χ2

d-distribution give that for any x > 1 the
probability PrX∼N (0,σ2Id)[‖X‖2 > σ2(

√
d+ x)2] ≤ exp(−x2/2).

Differential Privacy. Given a domain X , two multi-sets P, P ′ ∈ Xn are called neighbors if they
differ on a single entry. An algorithm (alternatively, mechanism)M is said to be (ε, δ)-differentially
private (DP) [16, 15] if for any two neighboring P, P ′ and any set S of possible outputs we have:
Pr[M(P ) ∈ S] ≤ eε Pr[M(P ′) ∈ S] + δ.

An algorithm is said to be ρ-zero concentrated differentially privacy (zCDP) [8] if for and two
neighboring P and P ′ and any α > 1, the α-Réyni divergence between the output distribution of
M(P ) and ofM(P ′) is upper bounded by αρ, namely

∀α > 1,
1

α− 1
log

(
E

x∼M(P ′)

[(
PDF[M(P ) = x]

PDF[M(P ′) = x]

)α])
≤ αρ

It is a well-known fact that the composition of two ρ-zCDP mechanisms is 2ρ-zCDP. It is also known
that given a function f : Xn → Rd whose L2-global sensitivity is maxP∼P ′ ‖f(P )− f(P ′)‖2 ≤ G

then the Gaussian mechanism that returns f(D) +X where X ∼ N (0, G2

2ρ Id) is ρ-zCDP. Lastly, it

is known that any ρ-zCDP mechanism is (ε, δ)-DP for any δ < 1 and ε = ρ +
√
4ρ ln(1/δ). This

suggests that given ε ≤ 1 and δ ≤ e−2 it suffices to use a ρ-zCDP mechanis with ρ ≤ ε2

5 ln(1/δ) .

The Local-Model of DP: while standard algorithms in DP assume the existence of a trusted curator
who has access to the raw data, in the local-model of DP no such curator exists. While the formal
definition of the local-model involves the notion of protocols (see [35] for a formal definition), for
the context of this work it suffices to say each respondent randomized her own messages so that
altogether they preserve ρ-zCDP.

3 A Non-Private fPTAS for the MEB Problem

In this section we give our non-private algorithm. We first analyze it assuming no noise – namely, in
each iteration we use the precise mean of the points that do not reside inside the ball B(θt, r). Later,
in Section 3.1 we discuss a version of this algorithm in which rather than getting the exact mean, we
get a point which is sufficiently close to the mean.

Algorithm 1 Non-Private Minimum Enclosing Ball
Input: a set of n points P ⊆ Rd, an approximation parameter γ ∈ (0, 1),
an initial radius r0 s.t. ropt ≤ r0 ≤ 4ropt, and an initial center θ0 s.t. ‖θ0 − θopt‖ ≤ 10ropt.

1: Set imin ← 0, imax ← ln1+γ(4)(≈ 4
γ ), and θ∗ ← θ0.

2: while (imin < imax) do
3: icur = b imin+imax

2 c
4: rcur ← (1 + γ)icur · r0/4
5: θcur ← MMEB(P, γ, rcur, θ0)
6: if P ⊂ B(θcut, (1 + γ)rcur) then
7: Set imax ← icur, θ∗ ← θcur and r∗ ← (1 + γ)rcur
8: else
9: imin ← icur + 1

10: return B(θ∗, r∗)

Theorem 3.1. For any P ⊂ Rd, denote B(θopt, ropt) as the MEB of P . Then Algorithm 1 returns a
ball B(θ, r) where P ⊂ B(θ, r) and r ≤ (1 + 3γ)ropt.

At the core of the proof of Theorem 3.1 lies the following lemma.
Lemma 3.2. Applying Algorithm 2 with any r ≥ ropt and any θ0 where ‖θ0 − θopt‖ ≤ 10ropt we
obtain a θ where ‖θ − θopt‖ ≤ γropt in at most T iterations.
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Algorithm 2 Margin based Minimum Enclosing Ball (MMEB)
Input: a set of n points P ⊆ Rd, an approximation parameter γ ∈ (0, 1),
a candidate radius r, and an initial center θ0 s.t. ‖θ0 − θopt‖ ≤ 10ropt.

1: Set T ← 4
γ2 ln(

100
γ2 ), and θ0 = θ0.

2: for t = 0, 1, 2, . . . , T − 1 do
3: if ({x ∈ P : x /∈ B(θt, r)} = ∅) then return θt

4: else
5: Set nt

w ← |{x ∈ P : x /∈ B(θt, r)}| and µt
w ← 1

nt
w

∑
x/∈B(θt,r)

x

6: Update θt+1 ← θt − γ2

2 (θt − µt
w)

7: return θT

It is important to note that Lemma 3.2 holds even if in each iteration the update step isn’t based on
the mean µt of the set of uncovered point, but rather any convex combination of the uncovered points.
Specifically, even if we use in each iteration a single point which is uncovered by B(θt, r), then the
algorithm’s convergence in T steps can be guaranteed.

Proof of Theorem 3.1. Suppose Lemma 3.2 indeed holds. Then it immediately implies whenever
Algorithm 2 is run with r ≥ ropt we obtain a point θ where P ⊂ B(θopt, ropt) ⊂ B(θ, (1 + γ)ropt).
Denote i∗ = min{i ∈ N : r0

4 (1 + γ)i ≥ ropt}. It is simple to prove inductively that in each iteration
of Algorithm 1 we have that i∗ ≥ imin. Next, call an integer i successful if we obtain for its radius
rcur(i) some point θ where P ⊂ B(θ, (1 + γ)rcur(i)). Again, it is simple to argue inductively
that imax is always successful. It follows that when the binary search of Algorithm 1 terminates,
imin = imax and we have a successful i, and so we return a ball of radius r0

4 (1 + γ)imin · (1 + γ) ≤
(1 + γ)2ropt ≤ (1 + 3γ)ropt which contains all points in P , thus concluding our proof.

Figure 1: For a point x uncovered by B(θ, r) where
r ≥ ropt, it must be that x’s projection onto the
θθopt-line is closer to θopt than to θ.

Thus, all that is left is to prove Lemma 3.2. Its
proof, in turn, requires the following claim.
Claim 3.3. Given a set of n points P ⊆ Rd,
let B(θopt, ropt) denote the MEB of P . Let
θ ∈ Rd be an arbitrary point, and let r be any
real number where r ≥ ropt. Then for any
x ∈ P s.t. ‖θ − x‖ > r it holds that

〈θ − θopt, x− θopt〉 ≤
1

2
‖θ − θopt‖2

Proof. Let x ∈ P be a point s.t. x /∈ B(θ, r),
as depicted in Figure 1. Let m be the mid-
dle point θ+θopt

2 , and let H be the hyper-
plane orthogonal to θ − θopt which passes
through m. Denote H+ as the (open) half-
spaceH+ = {z ∈ Rd : ‖z−θopt‖ < ‖z−θ‖}.
Therefore x ∈ H+ which in turn implies that

〈x− θopt, θ − θopt〉 < 〈m− θopt, θ − θopt〉 =
1

2
‖θ − θopt‖2

We are now ready to prove our main lemma.

Proof of Lemma 3.2. First, we argue that in any iteration t of Algorithm 2 where {x ∈ P : x /∈
B(θt, r)} 6= ∅ it holds that ‖θt+1 − θopt‖2 ≤ (1− γ2

2 )‖θt − θopt‖2 + (γ
2

2 )2 · r2opt. That is because
by definition

‖θt+1 − θopt‖2 =

∥∥∥∥((1− γ2

2
)θt +

γ2

2
µt
w

)
− θopt

∥∥∥∥2 =

∥∥∥∥(1− γ2

2
)
(
θt − θopt

)
+

γ2

2

(
µt
w − θopt

)∥∥∥∥2
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= (1− γ2

2
)2 · ‖θt − θopt‖2 + 2

γ2

2
(1− γ2

2
)〈θt − θopt, µwt − θopt〉+ (

γ2

2
)2 · ‖µwt − θopt‖2

Claim 3.3 gives that 〈θt− θopt, µ
t
w − θopt〉 = 1

nt
w

∑
x/∈B(θt,r)

〈θt− θopt, x− θopt〉 ≤ 1
2‖θ

t− θopt‖2, so

≤ (1− γ2

2
)2 · ‖θt − θopt‖2 + 2(

γ2

2
− γ4

4
) · 1

2
‖θt − θopt‖2 + (

γ2

2
)2 · ‖µwt − θopt‖2

Lastly note that the ball B(θopt, ropt) is convex and so

≤ (1− γ2 +
γ4

4
) · ‖θt − θopt‖2 + (

γ2

2
− γ4

4
) · ‖θt − θopt‖2 +

γ4

4
· r2opt

≤ (1− γ2

2
)‖θt − θopt‖2 +

γ4

4
· r2opt

(1)

So now, consider any iteration of Algorithm 2 with r ≥ ropt and where ‖θt − θopt‖ ≥ γropt and in
which we make an update step. Due to Equation (1)

‖θt+1 − θopt‖2 ≤ (1− γ2

2
)‖θt − θopt‖2 +

γ4

4
· r2opt ≤ (1− γ2

2
)‖θt − θopt‖2 +

γ4

4
· ‖θ

t − θopt‖2

γ2

= (1− γ2

4
)‖θt − θopt‖2 ≤ e−

γ2

4 ‖θt − θopt‖2

This suggests that after T = 4
γ2 ln(

100
γ2 ) iterations where ‖θt − θopt‖ ≥ γropt we get that

‖θT − θopt‖2 ≤ e−
Tγ2

4 ‖θ0 − θopt‖2 ≤
γ2

100
· 100r2opt = γ2r2opt

as required. Now, should it be the case that in some iteration ‖θt − θopt‖ < γropt and we make an
update step. Again, Equation (1) asserts that

‖θt+1 − θopt‖2 ≤ (1− γ2

2
)‖θt − θopt‖2 +

γ4

4
· r2opt < (1− γ2

2
)γ2r2opt +

γ4

4
· r2opt < γ2r2opt

so once ‖θt − θopt‖ < γropt then we have that ‖θτ − θopt‖ < γropt for all τ ≥ t.

3.1 The Noisy/SQ-Version of the fPTAS for the MEB Problem

Now, we consider a scenario where in each iteration t, rather than using the exact mean µt
w =∑

x∈P\B(θt,r) x

|P\B(θt,r)| , we obtain an approximated mean µ̃t
w = µt

w +∆t. We consider here two scenarios:
(a) where ∆t is a zero-mean bounded-variance random noise — a setting we refer to as the random
noise setting; and (b) where ∆t is an arbitrary noise s.t. the constraint that ‖∆t‖ = O(γr) — a setting
we refer to as arbitrary noise. The latter isn’t used in our algorithm and is deferred to Appendix B.

The random noise setting. In this setting, our update step in each iteration is made not using a
deterministically chosen uncovered point but rather by a draw from a distribution Dt whose mean is
“as good” as an uncovered point. This requires us to make two changes to the algorithm: (i) modify
the update rate and (ii) repeat the entire algorithm R = O(log(1/β)) times.
Claim 3.4. Consider an altered version of Algorithm 2 which (1) repeats the algorithm R =
dlog4/3(1/β)e times, (2) each repetition is composed of at most T = 4096

γ2 ln( 121·4γ2 ) update-steps and
(3) in each iteration where it doesn’t terminate it draws a point z ∼ Dt and makes that update-step:
θt+1 ← θt + γ2

2048z. If it holds that for each iteration t we have that Dt satisfies the two properties

(i) E
z∼Dt

[
〈θopt − θt, z〉 | θt

]
≥ 1

4
‖θt − θopt‖2

(ii) E
z∼Dt

[‖z‖2 | θt] ≤ 512r2 (2)

then, provided that r ≥ ropt, we have that w.p. ≥ 1 − β one of the R repetitions of the revised
algorithm returns a candidate center θT where P ⊂ B(θT , (1 + γ)r).
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Proof. To prove the claim it suffices to show that in a single execution of the algorithm we have
that Pr[‖θT − θopt‖ ≤ γr] = Pr[‖θT − θopt‖2 ≤ γ2r2] ≥ 1/4, implying that in R repetitions of the
algorithm the failure probability decreases to (3/4)R = β. To that end, denote the non-negative random
variables Y t = ‖θt − θopt‖2 for each iteration t. Note that if we show that E[Y T ] ≤ 3

4γ
2r2 then

Markov’s inequality implies that Pr[Y T ≥ γ2r2] ≤ 3/4. So our goal is to prove that E[Y T ] ≤ 3
4γ

2r2.

We can now analyze the conditional expectation and observe that

E
[
‖θt+1 − θopt‖2 | θt

]
= E

[∥∥∥∥θt − θopt +
γ2

2048
z

∥∥∥∥2 | θt
]

= E
[
‖θt − θopt‖2 +

2γ2

2048
〈z, θt − θopt〉+ (

γ2

2048
)2‖z‖2 | θt

]
z∼Dt

≤ ‖θt − θopt‖2 −
2γ2

2048
· 1
4
‖θt − θopt‖2 +

γ4 · 512r2

20482
= (1− γ2

4096
)‖θt − θopt‖2 +

γ4

8192
r2

Since E[Y t+1 | θt] ≤ (1− γ2

4096 )Y
t + γ4

8192r
2 then it is easy to see that E[Y T ] ≤ (1− γ2

4096 )
T · Y 0 +

γ4

8192r
2
∑T−1

t=0 (1− γ2

4096 )
t ≤ (1− γ2

4096 )
t · (11r)2+ γ2

2 r2. It follows that iteration T = 4096
γ2 ln( 121·4γ2 )

we have that E[Y T ] ≤ γ2

4 r2 + γ2

2 r2 = 3
4γ

2r2 as required.

Corollary 3.5. Suppose that in each iteration t of the revised algorithm Dt is a distribution that
satisfies the required two properties of Claim 3.4 w.p. ≥ 1− 1

8T ·dlog8/7(1/β)e
. Then, repeating this

algorithm R = dlog8/7(1/β)e many times we have that w.p. ≥ 1− β it holds that for at least one
repetition we have P ⊂ (B(θT , (1 + γ)r).

Proof. Using the union bound, it follows that in one of the R · T repetition of the revised algorithm
the probability that one draw isn’t from a good Dt (that does satisfy these two properties) is at most
1/8. It follows that Pr[Y T ≥ γ2r2] ≥ 1/4− 1/8 = 1/8. Repeating this algorithm R reduces the failure
probability to (7/8)R ≤ β.

4 A Differentially Private fPTAS for the MEB Problem

We now turn our attention to the privacy-preserving versions of Algorithms 1 and 2. In this section
we give their curator-model ρ-zCDP versions (Algorithms 3 and 4 resp.), whereas in the following
section (Section 5) we detail their local-model zCDP versions. Due to space constraints, (i) the
proof that Algorithm 3 is ρ-zCDP, (ii) the the full proofs of the following two statements, and (iii)
the application of Algorithm 3 to Subsample-and-Aggregate are all deferred to the Supplementary
Material, Section C.

Algorithm 3 Differentially Private Minimum Enclosing Ball (DP-MEB)
Input: a set of n points P ⊆ Rd, an approximation parameter γ ∈ (0, 1),
an initial radius r0 s.t. ropt ≤ r0 ≤ 4ropt, and an initial center θ0 s.t. ‖θ0 − θopt‖ ≤ 10ropt,

error parameter β and privacy-parameter ρ.
1: Remove any x ∈ P which doesn’t belong to B(θ0, 11r0).
2: Set imin ← 0, imax ← ln1+γ(4)(≈ 4

γ ), and θ∗ ← θ0.
3: Set B ← dlog2 (ln1+γ(4))e.
4: while (imin < imax) do
5: icur = b imin+imax

2 c
6: rcur ← (1 + γ)icur · r0/4
7: θcur ← DP-MMEB(P, γ, β

B , ρ
B , rcur, θ0)

8: if (θcur 6= ⊥) then
9: Set imax ← icur, θ∗ ← θcur and r∗ ← (1 + γ)rcur

10: else
11: imin ← icur + 1
12: return B(θ∗, r∗)
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Algorithm 4 DP-Margin based Minimum Enclosing Ball (DP-MMEB)
Input: a set of n points P ⊆ Rd, an approximation parameter γ ∈ (0, 1),
an error parameter β ∈ (0, 1), privacy parameter ρ,
a candidate radius r, and an initial center θ0 s.t. ‖θ0 − θopt‖ ≤ 10ropt.

1: Set R ← dlog8/7(1/β)e, θ0 ← θ0, T ← 4096
γ2 ln( 484γ2 ), β0 = 1

16RT , σ2
count ←

R(T+1)
ρ , and

σ2
sum ←

RT ·(88r)2
ρ .

2: repeat
3: for t = 0, 1, 2, . . . , T − 1 do
4: Sample ∆count ∼ N (0, σ2

count).
5: ñt

w ← |{x ∈ P : x /∈ B(θt, r)}|+∆count

6: if
(
ñt
w < 88

√
RT√
ρ

(√
d+

√
2 ln(4RT/β0)

))
then

7: return θt

8: Sample ∆sum ∼ N (0, σ2
sumId).

9: Set µ̃t
w ← 1

ñwt

( ∑
x/∈B(θt,r)

(x− θt) + ∆sum

)
.

10: Update θt+1 ← θt + γ2

2048 µ̃wt

11: Sample ∆count ∼ N (0, σ2
count).

12: if
(
|P \ B(θT , (1 + γ)r)}| +∆count ≤

√
2R(T+1) log(4R(T+1)/β0)

ρ

)
then return θT and

halt
13: until R repetitions
14: return ⊥

Lemma 4.1. W.p. ≥ 1− β, applying Algorithm 4 with r ≥ ropt and an initial center θ0 s.t. ‖θ0 −
θopt‖ ≤ 10ropt returns a point θt where |P \B(θt, (1 + γ)r)| ≤ 88

√
RT
ρ

(√
d+

√
2 ln(4RT/β0)

)
+√

2R(T+1) log(4R(T+1)/β0)
ρ .

Proof. Given a repetition r and iteration t denote the events

Er,t1 := in the (r, t)-draws, |∆count| ≤ σcount

√
2 ln(4R(T+1)/β0)

Er,t2 := in the (r, t)-draw, ‖∆sum‖ ≤ σsum

(√
d+

√
2 ln(4RT/β0)

)
and denote also Ei =

⋃
r,t E

r,t
i for i = 1, 2. Using standard bounds on the concentration of the

Gaussian distribution and the χ2
d-distribution together with the union-bound we have that Pr[E1 ∪

E2] ≤ R(T + 1) · β0

2R(T+1) +RT β0

2RT ≤ β0.

Fix r and t. Under Er,t1 ∩ E
r,t
2 holding, the required conditions detailed in (2) hold, which – using

Corollary 3.5 – yields the correctness of our algorithm. Under the same notation as in Algorithm 4,

denote the distribution of 1
nt
w+∆count

( ∑
x/∈B(θt,r)

(x− θt) + ∆sum

)
as Dt.

First, observe that under Er,t1 , the condition ñt
w ≥ 88

√
RT√
ρ

(√
d+

√
2 ln(4RT/β0)

)
implies that

nt
w ≥

88
√
RT
√
ρ

(√
d+

√
2 ln(4RT/β0)

)
−

√
2R(T + 1) ln(4R(T+1)/β0)

ρ
≥ 44|∆count|

and secondly, observe that ∆sum is drawn from a spherically symmetric distribution, so for any a > 0
we have that E[∆sum| ‖∆sum‖ ≤ a] = 0. And so, if indeed Algorithm 4 passes the if-condition and
makes an update step we have

E
z∼Dt

[
〈θopt − θt, z〉| θt, Er,t1 ∩ E

r,t
2

]
= 〈θopt − θt,E

∆sum +
∑

x/∈B(θt,r)

(x− θt)

nt
w +∆count

| θt, Er,t1 ∩ E
r,t
2

〉
8



independ.
= 〈θopt − θt,E

[
1

nt
w +∆count

| θt, Er,t1

] ∑
x/∈B(θt,r)

(x− θt)〉

= 〈θopt − θt,E
[

nt
w

nt
w +∆count

| θt, Er,t1

] ∑
x/∈B(θt,r)

(x− θt)

nt
w

〉

= E
[

1

1 + ∆count/nt
w

| θt, Er,t1

]
〈θopt − θt,

∑
x/∈B(θt,r)

x

nt
w

− θt〉
Clm 3.3
≥

(
1

1− 1/44

)
· 1
2
‖θt − θopt‖2 ≥

1

4
‖θt − θopt‖2

and also

E
z∼Dt

[‖z‖2| θt, Er,t1 ∩ E
r,t
2 ] = E

∥∥∥∥∥
∑

x/∈B(θt,r)

(x−θt)

nt
w+∆count

+
∆sum

nt
w +∆count

∥∥∥∥∥
2

| θt, Er,t1 ∩ E
r,t
2


= E

( nt
w

nt
w+∆count

)2 ∥∥∥∥∥
∑

x/∈B(θt,r)

x

nt
w

− θt

∥∥∥∥∥
2

+

2〈∆sum,
∑

x/∈B(θt,r)

(x−θt)〉+‖∆sum‖2

(nt
w+∆count)2

| θt, Er,t1 ∩ E
r,t
2


independ.

= E

( 1

1 + ∆count

nt
w

)2

| θt, Er,t1


∥∥∥∥∥∥∥

∑
x/∈B(θt,r)

x

nt
w

− θt

∥∥∥∥∥∥∥
2

+
0 + E

[
‖∆sum‖2| θt, Er,t2

]
(ñt

w)
2

≤ 1

1− 1/44
· (11r)2 + RT · (88r)2

ρ

(√
d+

√
2 ln(4RT/β0)

)2
· 1

(ñt
w)

2
< 512r2

since ñt
w ≥ 88

√
RT
ρ

(√
d+

√
2 ln(4RT/β0)

)
in order for us to make an update.

Corollary 3.5 suggests that if we make all T updates then indeed ‖θT − θ0‖ ≤ γr and so |P \
B(θT , (1 + γ)R)| = 0. So under E1 Algorithm 4 returns θT . Otherwise, at some iteration we do not
make an update step, which under E1 suggests that

nt
w = |P \B(θt, r)| ≤ 88

√
RT

ρ

(√
d+

√
2 ln(4RT/β0)

)
+

√
2R(T + 1) log(4R(T + 1)/β0)

ρ

Corollary 4.2. Given r0 where ropt ≤ r0 ≤ 4ropt and a point θ0 where ‖θ0 − θ∗‖ ≤ 10ropt, w.p.
≥ 1− β Algorithm 3 is a O(n · log

2(1/γ) log(1/β)
γ2 )-time algorithm that returns a ball B(θ∗, r) where

r ≤ (1 + 3γ)ropt and where |P \B(θ∗, r∗)| = O(

(√
d+

√
log(log(1/β)/γ)

)√
log(1/γ) log(1/β)

γ
√
ρ ).

The proof is deferred to Supplementary Material, Section C. We comment that the amplification of the
success probability of the algorithm from 1/8 to 1− β can be done using the amplification techniques
of [28] which saves on the privacy budget: instead of naïvely setting the privacy budget per iteration
as ρ/R, we could use conversions to (ε, δ)-DP and as a result “shave-off” a factor of R. But since
R = O(log(1/β)) this would merely reduce polyloglog factors, at the expense of readability.

5 A Local-DP fPTAS for the MEB Problem

In this section we give the local-model version of our algorithm. At the core of its utility proof is a
lemma analogous to Lemma 4.1, in which we prove that w.h.p. in each iteration t the distribution
of our update-step satisfies (w.h.p.) the requirements of (2). Again, due to space constraints, we
merely state the LDP algorithm in this section, and defer both its privacy and utility analyses to the
Supplementary Material, Section D — where we prove that it is a ρ-zCDP algorithm that returns a ball
B(θ∗, r∗) such that r∗ ≤ (1 + 3γ)ropt and |P \B(θ∗, r∗)| = O(

√
n log(1/γ)
γ2√ρ

(√
d+

√
log(1/γβ)

)
).
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Algorithm 5 LDP-Margin based Minimum Enclosing Ball (LDP-MMEB)
Input: a set of n points P ⊆ Rd, an approximation parameter γ ∈ (0, 1),
an error parameter β ∈ (0, 1), privacy parameter ρ,
a candidate radius r, and an initial center θ0 s.t. ‖θ0 − θopt‖ ≤ 10ropt.

1: Set R ← dlog8/7(1/β)e, θ0 ← θ0, T ← 4096
γ2 ln( 484γ2 ), β0 = 1

16RT , σ2
count ←

R(T+1)
ρ , and

σ2
sum ←

RT ·(88r)2
ρ .

2: repeat
3: for t = 0, 1, 2, . . . , T − 1 do
4: for each (x ∈ P ) do
5: Sample ∆count ∼ N (0, σ2

count).
6: Sample ∆sum ∼ N (0, σ2

sumId).
7: if (x /∈ B(θt, r)) then
8: Send Y t

x = 1 +∆count, Z
t
x = x− θt +∆sum

9: else Send Y t
x = ∆count, Z

t
x = ∆sum

10: Set ñt
w =

∑
x∈P Y t

x and ṽtw = 1
ñt
w

∑
x∈P Zt

x.

11: if
(
ñt
w < 88

√
nRT√
ρ

(√
d+

√
2 ln(4RT/β0)

))
then return θt

12: Update θt+1 ← θt + γ2

2048 ṽ
t
w

13: for each (x ∈ P ) do
14: Sample ∆count ∼ N (0, σ2

count).
15: if (x /∈ B(θT , (1 + γ)r)) then
16: Send Y T

x = 1 +∆count

17: else Send Y T
x = ∆count

18: Set nT
w ←

∑
x Yx

19: if
(
nT
w ≤

√
2nR(T+1) log(4R(T+1)/β0)

ρ

)
then return θT and halt

20: until R repetitions
21: return ⊥

6 Discussion and Open Problems

This work is the first to give a DP-fPATS for the MEB problem, in both the curator- and the local-
model, and it leads to numerous open problems. The first is the question of improving the utility
guarantee. Specifically, the number of points our algorithm may omit from P has a dependency of
Õ(1/γ) in the approximation factor, where this dependency follows from the fact that in each of our
T = Õ(γ−2) iterations. Thus finding either an iterative algorithm which makes� T iterations or a
variant of SVT that will allow the privacy budget to scale like O(log(T )) will reduce this dependency
to only polylog(γ−1). Alternatively, it is intriguing whether there exists a lower-bound for any zCDP
PTAS of the MEB problem proving a polynomial dependency on γ. (The best we were able to prove
is via packing argument [23, 8] using a grid of O((1/γ)d) many points, leading to a d log(1/γ) bound.)

A different open problem lies on the the application of this DP-MEB approximation to the task
of DP-clustering, and in particular — on improving on the works of [24, 34, 14] for “stable” k-
median/means clustering. One can presumably combine our technique with the LSH-based approach
used in [31] to cover a subset of points lying close together, however — it is unclear to us what is the
effect of using only some of each cluster’s “core” on the approximated MEB we return and on the
k-means/median cost. But it is possible that our work can be a building block in a first PTAS for the
k-center problem in low-dimensions, a setting in which k-center has a non-private PTAS [22].
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