
Supplementary Material for
PAC-Bayes Compression Bounds So Tight

That They Can Explain Generalization

Appendix Outline

The appendix is organized as follows.

• In Appendix A, we report results for additional bounds for SVHN and ImageNet. We also
report the compression size corresponding to our best bound values and compare it to the
compression size obtained through standard pruning. Furthermore, in Appendix A.1 we
prove why models cannot both be compressible and fit random labels.

• In Appendix B, we describe how optimization over hyperparameters like the intrinsic di-
mension impact the PAC-Bayes bound

• In Appendix C, we show how our PAC-Bayes bound benefit from transfer learning.

• In Appendix D, we discuss data-dependent priors and their effect on the subspace dimen-
sion optimization.

• In Appendix E, we detail our experimental setup including models, datasets, and hyperpa-
rameter settings for training and bound computation.

• In Appendix F, we provide a compression perspective to why equivariant models may be
more desirable for generalization.

• In Appendix G, we further discuss how our through our PAC-Bayes compression bounds,
we provide evidence that SGD is not necessary for generalization.

• In Appendix H, we ablate the model size and show how it impacts our bounds and com-
pressibility, we identify the best performing size of models for our bounds.

• In Appendix I, we present our observations on double descent and their preditability from
our PAC-Bayes bounds.

• In Appendix J, we expand our theoretical discussion and emphasize conceptual differences
between our method and previous ones in the literature.

• Lastly, in Appendix K we provide licensing information on the datasets we use.

A Additional Results

In addition to the results reported in Table 2, we report the best bounds for SVHN and ImageNet-1k
as well as the corresponding compressed size in Tables 3 and 4. In Table 3 we show how compressing
the model via intrinsic dimension (ID) yields better results than standard pruning. In this table,
we basically run our method but substitute ID with pruning and then proceed by quantizing the
remaining weights and encoding them through arithmetic encoding. When pruning we used the
standard iterative procedure following Han et al. [27], for the MNIST model we pruned 98.8%
of the weights, for the FMNIST model 97.0% of the weights, for the SVHN model 98.8% of the
weights and for both the CIFAR-10 and CIFAR-100 models we pruned 52.1% of the weights and
stopped there as the accuracy dropped significantly if we kept pruning.

Error bars on our bounds: We re-run the bounds computation for 10 times and observe that the
values are consistent. On average, we obtain±0.5% variation in our bounds for models trained from
scratch and ±0.1% variation for transfer learning models.

16

Table 3: Using our subspace method rather than pruning yields substantially higher compression
ratios and hence tighter generalization bounds. We report our error bounds (%) and compressed
size (KL (KB)), 1 KB = 8192 bits. First, we compress the model weights using ID, quantizing
its values and then storing them through arithmetic encoding. We then report the bounds obtained
by only switching ID to standard pruning. All results are data-independent and obtained with 95%
confidence, i.e. δ = .05.

Dataset ID + Quant + Arith Pruning + Quant + Arith
Err. Bound (%) KL (KB) Err. Bound (%) KL (KB)

MNIST 11.6 0.4 47.9 6.5
+ SVHN Transfer 9.0 0.4

FashionMNIST 32.8 0.8 54.9 3.5
+ CIFAR-10 Transfer 28.2 0.9

SVHN 36.1 1.3 74.4 4.3
+ ImageNet Transfer 29.1 1.4

CIFAR-10 58.2 1.2 100.0 57.8
+ ImageNet Transfer 35.1 1.0

CIFAR-100 94.6 4.1 99.9 50.7
+ ImageNet Transfer 81.3 2.8

Table 4: Our PAC-Bayesian Subspace Compression Bounds with data-dependent priors compared
to state-of-the-art PAC-Bayes non-vacous data-dependent bounds. All results are obtained with 95%
confidence, i.e. δ = .05.

Dataset Err. Bound (%) SoTA (%)
MNIST 1.4 1.5 [59]
FashionMNIST 10.1 38 [19]
SVHN 8.7 –
CIFAR-10 16.6 16.7 [59]
CIFAR-100 44.4 –
ImageNet 40.9 –

A.1 Models that can fit random labels cannot be compressed

Our ability to construct nonvacuous generalization bounds rests on the ability to construct models
which both fit the training data and are highly compressible. However, when the structure in the
dataset has been completely destroyed by shuffling the labels, then we do not find that our models
are compressible (shown in Figure 3 right). This is not just an empirical fact, but one that can be
proven apriori: models which fit random labels cannot be compressed. While this result is a trivial
consequence of complexity theory, we present an argument here for illustration.

Almost all random datasets are incompressible

When sampling labels uniformly at random, almost all datasets are not substantially compressible.
Given a dataset D = {xi, yi}ni=1 (where we are only considering the labels yi, and conditioning
on the inputs xi), and denoting |D| as the length of the string of labels, the probability that a given
dataset can be compressed to size |D|−c is less than 2−c+1. To see this, one must consider that there
are only

∑|D|−c
i=0 2i ≤ 2|D|−c+1 programs of length ≤ |D| − c (fewer still when restricting to self

delimiting programs), and there are 2|D| possible datasets. Therefore averaging over all randomly
labeled datasets the fraction which are compressible to less than or equal to |D| − c bits is at most
2|D|−c+1/2|D| = 2−c+1.

A compressible model which fits the data is a compression of the dataset

Let prior P that includes a specification of the model architecture, and the model h which outputs
probabilities for each of the outcomes: p(y = k | xi) = h(xi)k. We can decompose the (prefix)
Kolmogorov complexity of the dataset (given the prior) as

K(D | P) ≤ K(D | h, P) +K(h | P). (5)

The term K(D | h, P) can be interpreted as a model fit term and upper bounded by the total
negative log likelihood simply using the model probabilities as a distribution to encode the labels:
K(D | h, P) ≤ −

∑
i log2 h(xi)yi

+ 1 = NLL(D | h) + 1.

17

Using the fact that almost all random datasets are incompressible, and choosing c = 1 + log2(1/δ),
we have that with probability at least 1 − δ over all randomly sampled datasets
K(D | P) > |D| − log2(1/δ)− 1. Plugging into Eq. (5) and rearranging, we have with probability
1− δ,

K(h|P) ≥ |D| −NLL(D | h)− log2(1/δ)− 2, (6)

In Figure 6 we plot the quantity K(h | P) + NLL(D | h) which represents the compressed size
of the dataset achieved by our model (related to the minimum description length principle). We see
that the value is considerably lower than the size of the dataset |D|, emphasizing that real machine
learning datasets such as CIFAR-10 have a very low Kolmogorov complexity and are very unlike
those with random labels.

B Subspace Dimension Optimization and Hyperparameters in the Universal
Prior

The smaller the chosen intrinsic dimension d, the more similar θ is to the initialization θ0 in Eq. (3).
Consequently, that value of θ is more likely under the universal prior given the shorter description
length. Note that in this prior, we condition on the random seed used to generate θ0 and P . As
we optimize over different parameters such as the subspace dimension d = 1, .., D, and possibly
other hyperparameters such as the learning rate, or number of quantization levels L, we must encode
these into our prior and thus pay a penalty for optimizing over them. We can accomodate this very
simply by considering the hypothesis h as not just specifying the weights, but also specifying these
hyperparameters: h = (θ, d, L, lr), and therefore using the universal prior P (h) = 2−K(h)/Z we
pay additional bits for each of these quantities: K(h) ≤ K(θ | d, L) +K(d) +K(L) +K(lr). If
we optimize over a fixed number H of distinct values known in advance for a given hyperparameter
such as L, then we can code L using this information in only log2(H) bits. In general, we can also
bound the dimensionalities searched over by the maximum D so that K(d) ≤ ⌈log2 D⌉ in any case.

C Transfer Learning Bounds

We show the expanded results both with and without transfer learning in Table 3. When finetuning
from ImageNet we use the larger EfficientNet-B0 models rather than the small convnet. Despite the
fact that the model is significantly larger than the convnet or resnet models that we use to achieve the
best bounds for from scratch training, the difference between the finetuned and pretrained models is
highly compressible.

D Data Dependent Priors

We observe that when using data dependent priors, our optimization over the subspace dimension
(and the complexity of the model used to fit the data when measured against the prior) favors very
low dimensions and low KL values which we show empirically in Figure 4. Indeed, a large fraction
of the data fitting is moved into fitting a good prior, particularly when the dataset fraction used to
train the prior is large. When the prior is already fitted on the data, the final solution can have a very
low complexity with respect to that prior without affecting data fit, and is encouraged to do so.

E Experimental Details

In this section we provide experimental details to reproduce our results.

E.1 Model Training Details

We use a standard small convolutional architecture for our experiments, which we find produces
better bounds than its ResNet counterparts. The architecture is detailed in Table 5, and we use
k = 16 for experiments, but this value is ablated in Figure 6.

18

0.2 0.5 0.8
Prior Train Subset

20

30

40

50

60

70

Er
r.

Bo
un

d
(%

)

Intrinsic. Dim.
0
3500
5000
7500

0.2 0.5 0.8
Prior Train Subset

50

60

70

80

90

100

Er
r.

Bo
un

d
(%

) Intrinsic. Dim.
0
5000
10000
15000
20000

(a) CIFAR-10 (b) CIFAR-100

Figure 4: Data-dependent bounds focus on fitting a good prior. Our bounds using data dependent
priors trained using varying fractions of the training dataset. We see that when using data dependent
priors, lower intrinsic dimensionalities and lower KL models are favored by the bound.

Stochastic training: All models were trained for 500 epochs using the Adam optimizer with learn-
ing rate 0.001, except for ImageNet which was trained for 80 epochs with SGD using learning rate
of 0.05 and weight decay of 0.00002. The model architectures for each dataset are listed below:

• MNIST [44] (+ SVHN [56] Transfer): LeNet-5 [44].

• FashionMNIST [69] (+ CIFAR-10 [38] Transfer): ResNet20 [28].

• SVHN: ConvNet (Table 5).

• SVHN + ImageNet Transfer: EfficientNet-B0 [63].

• CIFAR-10: ConvNet.

• CIFAR-10 + ImageNet Transfer: EfficientNet-B0 [63].

• CIFAR-100 [38]: ConvNet.

• CIFAR-100 + ImageNet [15] Transfer: EfficientNet-B0.

Table 5: Simple convolutional architecture we use to compute our bounds.

ConvNet Architecture
Conv(3,k), BN, ReLU
Conv(k,k), BN, ReLU
Conv(k,2k), BN, ReLU
MaxPool2d(2)
Conv(2k,2k), BN, ReLU
Conv(2k,2k), BN, ReLU
Conv(2k,2k), BN, ReLU
MaxPool2d(2)
Conv(2k,2k), BN, ReLU
Conv(2k,2k), BN, ReLU
Conv(2k,2k), BN, ReLU
GlobalAveragePool2d
Linear(2k,C)

Full-batch training: We train all models for 3000 epochs, use learning rates equal to 0.1 (MNIST
+ LeNet-5 and CIFAR-10 + ResNet-18) and 0.5 (CIFAR-10 + ConvNet), and a cosine learning
rate scheduler that we warm-up for 10 epochs. We also clip the full gradient to have an L2-norm of
at most 0.25 before performing parameter updates in each epoch [24].

Transfer Learning All previous training details remain the same, except that θ0 from Eq. (3) is
initialized from a pre-trained checkpoint instead of a random initialization. As typically done in
literature, the final classification layer is replaced with a randomly initialized fully-connected layer
to account for the number of classes in the downstream task.

19

E.2 Bound Hyperparameter Optimization

As explained in Appendix B, we optimize the bound hyperparameters by considering that the hy-
pothesis of interest h specifies the hyperparameters in addition to the weights. Therefore, we pay
bits back for the combination of hyperparemeters that we select. For example, if we are doing a grid
search over 2 values of the quantization-aware training learning rate, 2 values of the intrinsic dimen-
sionality values, 2 values of the quantization levels, and use k-means by default, then the number of
bits that we pay is log2(2× 2× 2) = 3 bits.

Optimizing PAC-Bayes bounds for data-independent priors: Our PAC-Bayesian subspace com-
pression bounds for data-independent priors have 4 hyperparameters that we list here-under along-
side the possible values that we consider for each hyperparameter:

• The learning rate for the quantization-aware training, possible values: {0.001, 0.003, 0.005,
0.0001}.

• The intrinsic dimensionality, possible values: {0, 1000, 2500, 3000, 3500, 4000, 5000, 7500,
8000, 10000, 12000, 15000, 20000, 25000, 50000, 100000, 250000, 500000}, except for
the ImageNet transfer learning which was conducted on the more limited range:
{500, 1000, 2000, 3000, 4000, 6000, 8000}

• The number of quantization levels, possible values: {0, 7, 11, 30, 50}.

• The quantization initialization, possible values: {uniform, k-means}.

Note that we only use a subset of these hyperparameter values for some datasets, depending on the
dataset size and other considerations. For all bound computations, we use arithmetic encoding and
30 epochs of quantization-aware training.

In Table 6, we summarize the hyperparameters corresponding to the data-independent bounds that
we report in Table 2.

Table 6: Hyperparameters corresponding to our PAC-Bayesian Subspace Compression Bounds re-
ported in Table 2 as well as SVHN and ImageNet to SVHN transfer learning with data-independent
priors. All bound results are obtained with 95% confidence, i.e. δ = .05.

Err. Bound (%) Quant. Learning Rate Intrinsic Dimensionality Levels Quant. Init.
MNIST 11.6 0.005 1000 7 Uniform

+ SVHN Transfer 9.0 0.005 1000 7 Uniform
FashionMNIST 32.8 0.005 2500 7 Uniform

+ CIFAR-10 Transfer 28.2 0.005 2500 7 Uniform
SVHN 36.1 0.0001 3500 11 Uniform

+ ImageNet Transfer 29.1 0.003 4000 7 Uniform
CIFAR-10 58.2 0.0001 3500 7 k-Means

+ ImageNet Transfer 35.1 0.003 3000 7 Uniform
CIFAR-100 94.6 0.0001 10000 11 k-Means

+ ImageNet Transfer 81.3 0.003 8000 7 Uniform

Optimizing PAC-Bayes bounds for data-dependent priors: In addition to the hyperparameters
listed above, we also tune the hyperparameter corresponding to the subset of the training dataset that
we use to train the prior on. We consider the following values for the subset of the training dataset:
{20%, 50%, 80%}.
In Table 7, we summarize the the hyperparameters corresponding to the data-dependent bounds that
we report in Table 2. The best bounds are obtained for intrinsic dimensionality equal to 0, therefore
no quantization is performed.

E.3 Computational Infrastructure & Resources

Our computational hardware involved a mix of NVIDIA GeForce RTX 2080 Ti (12GB), NVIDIA
TITAN RTX (24GB), NVIDIA V100 (32GB), and NVIDIA RTX8000 (48GB). The experiments
were managed via W&B [5]. The total computational cost of all experiments (including the ones
that do not appear in this work) amounts to ≈ 8000 GPU hours.

20

Table 7: Hyperparameters corresponding to our PAC-Bayes bounds reported in Table 2 as well
as SVHN and ImageNet with data-dependent priors. The best bounds are obtained for intrinsic
dimensionality equal to 0, therefore no quantization is performed. All bound results are obtained
with 95% confidence, i.e. δ = .05.

Err. Bound (%) Training Subset (%)
MNIST 1.4 50
FashionMNIST 10.1 80
SVHN 8.7 50
CIFAR-10 16.6 80
CIFAR-100 44.4 80
ImageNet 40.9 50

E.4 Breaking Data and Model Structure Experiment

In this experiment we compared our generalization bounds derived for training convolutional net-
works and MLPs on standard CIFAR10, as well as when data structure is broken by shuffling the
pixels or shuffling the labels. We trained for 100 standard epochs with batch size 128 and then an-
other 50 epochs of quantization aware training in all cases. We use 7 quantization levels and uniform
quantization initialization for all to simplify. When comparing against an MLP, we use a 3 hidden
layer MLP with ReLU nonlinearities, and we feed in the images by flattening them into 3× 32× 32
sized vectors. We use 150 hidden units in the intermediate layers of the MLP and choose k = 46
in the simple convolutional architecture described in Table 5 so as to match the parameter count
(though slightly smaller models perform slightly better as ablated in Figure 6).

F Equivariance

We conduct a simple experiment to evaluate the extent to which model equivariance has on the
compressibility of deep learning models and the tightness of our generalization bounds. We use
the rotationally equivariant C8 WideResNet model from Weiler and Cesa [66] which has an 8-fold
rotational symmetry, and we also use a non equivariant version of this model. The equivariant model
has a depth of 10 and a widen factor of 4 yielding 1.451M parameters. We control for the number
of parameters by adjusting the widen factor of the non equivariant model to 4.67 yielding 1.447M
parameters.

500 1000 1500 2000
Subspace Dimension

0

20

40

60

80

100

Er
r.

Bo
un

d
(%

)

WRN
C8WRN

500 1000 1500 2000
Subspace Dimension

0

20

40

60

80

100

Er
r.

Bo
un

d
(%

)

(a) RotMNIST (12k labels) (b) MNIST (60k labels)

Figure 5: Rotationally-equivariant models provably generalize better on rotationally-
equivariant data. Comparison of rotationally equivariant C8 WideResNet vs ordinary WideResNet
with the same number of parameters on (a) the rotationally equivariant RotMNIST dataset [42]
and (b) the ordinary MNIST dataset. Both models are capable of fitting the data, but the equivariant
model yields a more compressible solution when fitting the rotationally equivariant data than the non
equivariant model, and hence yields a better generalization bound. (Note the difference in dataset
size, RotMNIST has only 12K data points unlike MNIST)

We evaluate these models both on MNIST and the RotMNIST dataset [42] consisting of 12K training
examples of rotated MNIST digits. As shown in Figure 5 (a), when paired with the rotationally

21

symmetric RotMNIST dataset, the rotationally equivariant model achieves better bounds and is more
compressible than it’s non equivariant counterpart despite having the same number of parameters.
However, when this symmetry of the dataset is removed by considering standard MNIST, we see
that the benefits of equivariance to the generalization bound and compressibility vs the WRN model
dissapear.

G Full-Batch vs. Stochastic Training (SGD)

To further expand on the results that we present in Section 6, we study the impact of hyperpa-
rameters, namely the weight decay and the architecture choice, on the bounds obtained through
full-batch (F-B) training. Table 8 summarizes these results and we provide the training and bound
computation details in Appendix E. Our PAC-Bayes subspace compression bounds provide similar
theoretical guarantees for both full-batch and stochastic training, suggesting that the implicit biases
of SGD are not necessary to guarantee good generalization. Moreover, we see that the results are
consistent for different configurations, which result in comparable bounds overall.

Transfer learning using full-batch training: We perform full batch training for transfer learning
from SVHN to MNIST using LeNet-5 and the same experimental setup described in Appendix E.
Our best PAC-Bayes subspace compression bounds for SVHN to MNIST transfer are 8.7% and
9.0% for full-batch and SGD training, respectively. This finding provides further evidence that
good generalization of neural networks, and the success of transfer learning in particular, does not
necessarily require stochasticity or additional flatness-inducing procedures to be achieved.

Finally, we note that we optimize over the same set of hyperparameters for the bound computation
for both full-batch and stochastic training.

Table 8: Our PAC-Bayes subspace compression bounds obtained through full-batch (F-B) training
for different configurations and datasets.

Dataset Architecture Stochastic Err. Bound (%) F-B Weight Decay F-B Err. Bound (%)

MNIST LeNet-5 11.6

0.01
0.001
0.005
0.0001

12.5
11.2
12.0
11.7

CIFAR-10 ResNet-18 74.7

0.01
0.001
0.005
0.0001

77.8
76.3
76.1
75.3

CIFAR-10 ConvNet 58.2
0.01
0.001
0.0001

65.8
63.6
61.4

H Model Size vs. Compressibility

We perform an ablation to determine how the size of the model affects our generalization bounds.
Using the fixed model architecture Table 5, we vary the width k from 4 to 192. Using our subspace
compression scheme, we find that the compression ratio of the model does increase with model size,
however the total compressed size still increases slowly making our bounds less strong for larger
models. For this paper, we find the sweet spot k = 16 is just above the point with equal number of
parameters and data points.

We note that this finding leaves room for an improved compression scheme and generalization
bounds which are able to explain why even larger models still generalize better. Curiously, when
plotting to the total compressed dataset size (K(h|P) + NLL) using the model as a compression
scheme, we find that the MDL principle which favors shorter description lengths of the data actually
prefers larger models than our PAC-Bayes generalization bounds selects.

22

104 105 106 107

Model Parameters

56

58

60

62

Er
r.

Bo
un

d
(%

)

Best ID dim
2000
3500
5000

104 105 106 107

Model Parameters

10.0

12.5

15.0

17.5

20.0

M
DL

 (K
B)

Figure 6: Model size, compressibility, and MDL. Left: Generalization error bound as a function
of model size on the CIFAR10 dataset. The ID subspace dimension that achieves the best bound
is shown by the color. In terms of our bound computation, the optimal number of parameters of
the network is only slightly above the number of data points. Right: The total compressed size
(K(h|P) + NLL) of the training dataset using our model as a compression scheme. While the raw
labels have size 20.3KB (shown by the black line), the best model compresses the labels down to
8.6KB. Curiously, the compressed dataset size and hence the MDL principle favors larger models
than our generalization bounds.

I Double Descent

Under select conditions, we are able to reproduce the double descent phenomenon in our generaliza-
tion bounds. In Figure 7 (right), we show that our bound exhibits a double descent similar to what
we see in terms of the test error Figure 7 (left). The results we show in Figure 7 (right) are obtained
for a fixed intrinsic dimensionality of 35000, but we observed that this middle descent consistently
appears in our bounds plots for a given (fixed) intrinsic dimensionality where we select the best
bound for each base width. However, we expect that extending the plot out to larger model widths
the bound gets worse again as explained in Appendix H.

5 10 15 20
Base Width

0.20

0.25

0.30

0.35

0.40

Te
st

 E
rro

r (
La

st
 E

po
ch

)

Label Noise
0.2
Mode
Scratch
Transfer

5 10 15 20
Base Width

85

86

87

88

89

90

Er
r.

Bo
un

d
(%

)

Figure 7: Our bounds display a double descent as we increase the width. Left: Double descent
(in terms of the test error of the last epoch model) observed when varying the width of a ResNets-18
model to fit the CIFAR-10 dataset with label noise equal to 0.2. Right: Our bounds showing a
similar double descent behaviour where the bound starts to worsen only to become better again at
a later width. Here we can fix the intrinsic dimensionality to be equal to 35000 and we choose the
best subspace compression bound for each base width.

23

J PAC-Bayes Bounds

J.1 Catoni PAC-Bayes Bound

In our case, since neural networks achieve low training error, we focus on a bound like Catoni [7]
which becomes tighter when KL (Q,P) is large. This is the same bound used in Zhou et al. [73].
Theorem 1 (Catoni [7]). Given a 0-1 loss ℓ, a fixed α > 1 and a confidence level δ ∈ (0, 1) then

θ ∼ Q
E

[R (fθ)] ≤ inf
λ>1

Φ−1
λ/N

[
θ ∼ Q

E
[R̂ (fθ)] +

α

λ

[
KL (Q,P) + log

1

δ
+ 2 log

(
log
(
α2λ

)
logα

)]]
holds with probability higher than 1− δ and where

Φ−1
γ (x) =

1− eγx

1− eγ
.

J.2 Variable Length Encoding and Robustness Adjustment

In Zhou et al. [73], the authors assume a fixed length encoding for the weights. Given that the
distribution over quantization levels is highly nonuniform, using a variable length encoding (such
as Huffman encoding or arithmetic encoding) can represent the same information using fewer bits.
While this choice gives significant benefits, it means that we cannot immediately make use of ro-
bustness adjustment from Zhou et al. [73], where the robustness adjustment comes from considering
neighboring models that result from perturbing the weights slightly.

Revisiting the prior derivation in Zhou et al. [73], we show why the method used for bounding the
KL does not transfer over to variable length encodings. In Zhou et al. [73], the prior used is

P = 1
Z

∑
S,Q,C

2−(|S|+|C|+d⌈logL⌉)N
(
ŵ (S,Q,C) , τ2

)
where S denotes the encoding of the position of the pruned weights, C denotes the codebook, Q the
codebook value that the weight take, d the number of nonzero weights, L the number of clusters, ŵ
the quantized weight and τ2 the prior variance. Note that ŵ changes depending on S,Q,C and also
note that the fixed-length encoding can be seen in how we sum over d⌈logL⌉ options. This prior is
a mixture of Gaussians centered at the quantized values. With this choice of prior Zhou et al. [73]
and setting the posterior to be also Gaussian centered at a quantized value, one can upper bound the
KL with a computationally tractable term involving the sum over dimensions. Crucially, for their
decomposition they use the fact that the size of the encoding |Q| is d ⌈logL⌉, which is independent
of the coding Q and only dependent on the codebook C. Therefore they are able to upper bound the
KL.

KL

N (ŵ, σ2Id
)
,
∑
Q

N (ŵ(Ŝ, Q, Ĉ), τ2)

 =

d∑
i=1

KL

N (ŵi, σ
2
)
,

L∑
j=1

N
(
ŵj , τ

2
)

due to the independence of the fixed length encoding to that of the values that each quantized value
takes, see appendix in Zhou et al. [73]. This independence is broken for variable length encoding as
the cluster centers and the values that each weight can take are interlinked. Thus, we cannot express
and satisfactorily approximate the first high-dimensional KL term as a sum of one-dimensional
elements that can be estimated through quadrature or Monte Carlo.

K Licences

MNIST 4 [44] is made available under the terms of the Creative Commons Attribution-Share Alike
3.0 license. FashionMNIST 5 [69] is available under the MIT license. CIFAR-10 and CIFAR-100
[38] are made available under the MIT license. ImageNet 6 [15] is the copyright of Stanford Vision
Lab, Stanford University, Princeton University. SVHN 7 [56] is released for non-commericial use
only.

4http://yann.lecun.com/exdb/mnist/
5https://github.com/zalandoresearch/fashion-mnist
6https://www.image-net.org/download
7http://ufldl.stanford.edu/housenumbers/

24

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://www.image-net.org/download
http://ufldl.stanford.edu/housenumbers/

