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A Proofs

A.1 Proof of Corollary 3.2

This proof is adapted from the proof of Theorem 4.1 in Kumar et al. [11].

Proof.
∥Q∗ −Q∗

ϵ∥∞ = ∥T Q∗ − TϵQ∗
ϵ∥∞

≤ ∥TϵQ∗ − TϵQ∗
ϵ∥∞ + ∥T Q∗ − TϵQ∗∥∞

≤ γ ∥Q∗ −Q∗
ϵ∥∞ + α(ϵ)

(1)

Thus we have ∥Q∗ −Q∗
ϵ∥∞ ≤ 1

1−γα(ϵ).

B Missing Background: Parameterization Methods for Policy Constraint

Parameterization methods enforce the learned policy π to be close to the behavior policy πβ with
various specific parameterization of π.

BCQ [6] learns a generative model of behavior policy πβ and trains the actor as a perturbation model
ξϕ to perturb the randomly generated actions. The policy parameterized by BCQ is to greedily select
the one maximizing Q function among a large number N of perturbed sampled actions ai+ ξϕ (s, ai):

π(a|s) := argmax
ai+ξϕ(s,ai)

Qθ (s, ai + ξϕ (s, ai)) for ai ∼ πβ(a|s), i = 1, . . . , N. (2)

EMaQ [7] simplifies BCQ by discarding the perturbation models:

π(a|s) := argmax
ai

Qθ (s, ai) for ai ∼ πβ(a|s), i = 1, . . . , N. (3)

PLAS [17] learns a policy z = πϕ(s) in the latent space of the generative model and parameterizes
the policy using the decoder Dβ : z 7→ a of the generative model on top of the latent policy:

π(a|s) := Dβ(πϕ(s)). (4)

C Implementation Details and Extended Results

C.1 Benchmark Experiments (Table 2 and 3)

Data. We use the datasets from the D4RL benchmark [3], of the latest versions, which are “v2” for
both Gym-MuJoCo and AntMaze domains.
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Baselines. We report Gym-MuJoCo results of baselines directly from IQL paper [10] and rerun
competitive baselines for AntMaze tasks on “v2” datasets, taking their official implementations:

• BC [15]: modified from https://github.com/sfujim/TD3_BC
• Decision Transformer [2]: https://github.com/kzl/decision-transformer
• TD3+BC [5]: https://github.com/sfujim/TD3_BC
• CQL [12]: https://github.com/aviralkumar2907/CQL
• IQL [10]: https://github.com/ikostrikov/implicit_q_learning/

Implementation details. Our algorithm SPOT consists of two stages, namely VAE training and
policy training. We will introduce the details of both stages respectively.

For VAE training, our code is based on the implementation of BCQ: https://github.com/
sfujim/BCQ/tree/master/continuous_BCQ. Following TD3+BC [5], we normalize the states
in the dataset for Gym-MuJoCo domains but do not normalize the states for AntMaze domains.
Hyperparameters used by VAE are in Table 5.

Table 5: Hyperparameters of VAE training in SPOT.

Hyperparameter Value

VAE training

Optimizer Adam [9]
Learning rate 1× 10−3

Batch size 256
Number of iterations 105

KL term weight 0.5
Normalized states True for Gym-MuJoCo

False for AntMaze

VAE architecture

Encoder hidden dim 750
Encoder layers 3
Latent dim 2 × action dim
Decoder hidden dim 750
Decoder layers 3

For policy training, our code is based on the implementation of TD3+BC [5]. Following IQL [10],
we subtract 1 from rewards for the AntMaze datasets. Hyperparameters used by policy training are in
Table 6.

For evaluation, we average mean returns overs 10 evaluation trajectories on the Gym-MuJoCo tasks,
and average over 100 evaluation trajectories on the AntMaze tasks.

Hyperparameter tuning. The weight of regularization term λ is essential for SPOT to control
different strengths of the constraint. Following prior works [1, 11, 16], we allow access to the
environment to tune a small (< 10) set of the hyperparameter λ. The hyperparameter sets for
Gym-MuJoCo and AntMaze domains can be seen in Table 6. We tune hyperparameters using 3 seeds
but then evaluate the best hyperparameter by training with totally new 10 seeds and then report final
results on these additional 10 seeds.

As discussed in Brandfonbrener et al. [1], it’s a reasonable setup for applications like robotics, where
we can test a limited number of trained policies on a real system. Beyond the scope of this work, we
believe that to make offline RL more widely applicable, better approaches for offline policy evaluation
and selection are indispensable. Fortunately, it has attracted wide attention by the community and
we refer the reader to [14, 4]. Note that Paine et al. [14] demonstrate that policies learned by policy
constraint methods have the advantage of being easier to evaluate and rank offline, since the methods
encourage learned policies to stay close to the behavior policy.

Learning curves. Learning curves of best tuned λ for each dataset is presented in Figure 4 and
Figure 5. Learning curves of different λ for Gym-MuJoCo domains is presented in Figure 6.
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Table 6: Hyperparameters of policy training in SPOT.

Hyperparameter Value

TD3

Optimizer Adam [9]
Critic learning rate 3× 10−4

Actor learning rate 3× 10−4 for Gym-MuJoCo
1× 10−4 for AntMaze

Batch size 256
Discount factor 0.99
Number of iterations 106

Target update rate τ 0.005
Policy noise 0.2
Policy noise clipping 0.5
Policy update frequency 2

Architecture

Actor hidden dim 256
Actor layers 3
Actor dropout 0.1 for Gym-MuJoCo

0.0 for AntMaze
Critic hidden dim 256
Critic layers 3

SPOT λ
{0.05, 0.1, 0.2, 0.5, 1.0, 2.0} Gym-MuJoCo
{0.025, 0.05, 0.1, 0.25, 0.5, 1.0} AntMaze
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Figure 4: Learning curves of best-tuned λ for Gym-MuJoCo domains. Error bars indicate min and
max over 10 seeds.
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Figure 5: Learning curves of best-tuned λ for AntMaze domains. Error bars indicate min and max
over 10 seeds.
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Figure 6: Learning curves of different λ for Gym-MuJoCo domains. Error bars indicate min and max
over 3 seeds. We only search for 4 values on “medium-replay” and “medium” datasets and SPOT
fails to train on walker-medium-v2 dataset with λ = 0.05 and λ = 0.1 since the constraint is too
loose.
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C.2 Ablation Study

Ablation study with variants of SPOT (Figure 2). We consider several variants of SPOT to perform
an ablation study over the components in our method:

• ‘Gaussian’: We train a parameteric model π̂β , which fits a tanh-Gaussian distribution to the
actions a given the states s: π̂β(·|s) = tanhN (µ(·|s), σ(·|s)), following [11, 16]. Then we
use π̂β as our density estimator in the actor learning objective. Hyperparameters for training
Gaussian behavior models are almost the same as Table 5.

• ‘w/o Q Norm’: We remove the Q normalization trick from SPOT.

• ‘Stoch w/ Ent’: We adopt SAC [8] as the base off-policy method of SPOT. Training objectives
can be written as:

JQ(θ) = E(s,a,r,s′)∼D
[
Qθ(s, a)− r − γEa′∼πϕ(s′) [Qθ̄ (s

′, a′)]
]2

Jπ(ϕ) = Es∼D,a∼πϕ(s)

[
−Qθ (s, a) + α log πϕ(a|s)− λl̂og πβ(a|s;φ,ψ, L)

]
.

The learning stochastic policy is parameterized as a tanh-Gaussian distribution and the
temperature α is adjusted automatically, as [8]. We do not include the entropy term when
performing the backup, as CQL [12]. Hyperparameters for training are almost the same as
Table 6.

• ‘Stoch w/o Ent’: This variant is almost the same as the above one, except that we remove
the entropy term:

Jπ(ϕ) = Es∼D,a∼πϕ(s)

[
−Qθ (s, a)− λl̂og πβ(a|s;φ,ψ, L)

]
.

We present quantitative results of variants of SPOT in Table 7, corresponding to Figure 2.

Table 7: Quantitative results of ablation study on Gym-MuJoCo and AntMaze domains. For variants
of SPOT, we report the mean and standard deviation for 5 seeds.

SPOT variants SPOTGaussian w/o Q Norm Stoch w/o Ent Stoch w/ Ent

HalfCheetah-m-e-v2 77.7±8.4 87.8±5.5 87.3±3.7 87.0±3.8 86.9±4.3
Hopper-m-e-v2 79.9±21.7 98.6±16.4 103.1±8.6 66.6±24.9 99.3±7.1
Walker-m-e-v2 105.2±6.3 112.9±0.9 111.7±0.8 110.9±0.4 112.0±0.5
HalfCheetah-m-v2 57.2±0.6 63.0±1.9 58.2±0.9 57.1±0.8 58.4±1.0
Hopper-m-v2 96.6±3.2 101.2±0.1 58.4±8.3 52.1±2.4 86.0±8.7
Walker-m-v2 81.6±1.0 83.5±1.0 84.9±3.7 84.4±0.3 86.4±2.7
HalfCheetah-m-r-v2 53.3±1.4 53.9±0.9 51.8±0.4 51.5±1.1 52.2±1.2
Hopper-m-r-v2 95.2±10.4 98.5±6.1 82.7±12.8 99.3±3.7 100.2±1.9
Walker-m-r-v2 93.6±2.2 94.4±2.6 84.7±6.4 86.1±10.3 91.6±2.8

AntMaze-u-v2 83.0±4.9 95.2±1.9 74.5±20.0 78.2±17.5 93.5±2.4
AntMaze-u-d-v2 35.2±27.0 38.2±3.9 34.0±11.8 39.5±3.9 40.7±5.1
AntMaze-m-p-v2 46.0±13.8 72.2±5.3 20.0±28.6 21.0±36.4 74.7±4.6
AntMaze-m-d-v2 71.0±3.7 72.4±8.9 0.0±0.0 22.2±38.5 79.1±5.6
AntMaze-l-p-v2 29.6±4.8 38.8±15.9 0.0±0.0 11.0±19.1 35.3±8.3
AntMaze-l-d-v2 31.0±10.1 31.8±6.2 26.3±10.0 25.3±9.91 36.3±13.7

Effect of L in density estimation. As a way of investigating the effect of the tightness of density
estimation (see Section 4.2) on the final performance, we evaluate different values of the number
of samples L used in density estimation. We present result of L ∈ {1, 5, 10} for Gym-MuJoCo
domains in Figure 7. We note that all variants yield similar performance, which demonstrates that for
this circumstance the ELBO estimator is a good enough density estimator. Thus unless otherwise
specified, we adopt L = 1 as a default option in all of our experiments.
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Figure 7: Comparing performance with different number of samples L used in density estimation. hc
= HalfCheetah, h = Hopper, w = Walker, m = medium, m-r = medium-replay, m-e = medium-expert.
Bars indicate the mean and standard deviation for 3 seeds.

C.3 Online Fine-tuning (Table 4)

Baselines. We takes the official implementation of IQL [10]: https://github.com/ikostrikov/
implicit_q_learning/ as our baseline.

Implementation details. We online fine-tune our models for 1M gradient steps after offline RL.
In the online RL phase, we collect data actively in the environment with exploration noise 0.1 and
add the data to the replay buffer. We linearly decay the regularization term weight λ in the online
phase. We find that in the challenging AntMaze domains with high-dimensional state and action
space as well as sparse reward, bootstrapping error is serious even in the online phase, thus we stop
decay when λ reaches the 20% of its initial value at the 0.8M-th step. We also have experimented
with gradually relaxing the implicit constraint of IQL by increasing its inverse temperature [13, 10]
but we find that IQL does not benefit from this. Additionally, we find that a larger discount factor
γ is of great importance in the antmaze-large datasets, thus we set γ = 0.995 when fine-tuning on
antmaze-large datasets, for both SPOT and IQL to ensure a fair comparison. All other training details
are kept the same between the offline RL phase and the online RL phase.

Learning curves. Learning curves of online fine-tuning of SPOT and the baseline IQL are presented
in Figure 8.
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Figure 8: Learning curves of online fine-tuning for AntMaze domains of SPOT and the baseline IQL.
Error bars indicate min and max over 5 seeds.
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C.4 Analytic Experiments (Figure 1b)

Intuition. We assume that the same constraint strength implies the same risk of extrapolation error
on Q estimation (related theoretical bound can be found in [11]). Benefiting from the exact constraint
formulation (Eq. (4)), SPOT can fully exploit feasible actions that is ϵ-supported: {a : πβ(a|s) > ϵ}.
However, other kinds of constraints may deviate from the density-based formulation of ϵ-support set,
thus feasible actions under these constraints may only constitute a subset of the minimal support set
that covers them. Under the risk of Q estimation error but only exploiting a subset of the ϵ-supported
actions, baseline methods may limit their optimality and provide a fragile tradeoff between satisfied
constraint strength and optimality. To quantitatively illustrate this, we conduct experiments comparing
the performance of different methods under the same constraint strength.

Data. We use the Gym-MuJoCo “medium-replay” and “medium” datasets from the D4RL benchmark
[3], of the latest versions “v2”.

Baselines. We choose several policy constraint methods as our baselines, taking their official
implementation or the implementations evaluated by D4RL benchmarks:

• BCQ [6]: https://github.com/rail-berkeley/d4rl_evaluations/tree/
master/bcq

• BEAR [11]: https://github.com/rail-berkeley/d4rl_evaluations/tree/
master/bear

• PLAS [17]: https://github.com/Wenxuan-Zhou/PLAS
• TD3+BC [5]: https://github.com/sfujim/TD3_BC

Constraint strength control. Constraint strength of different policy constraint methods can be
controlled by their own unique hyperparameters. By varying the values of these hyperparameters,
we can get a spectrum of constraint strength. Hyperparameters that we adjust for each method are
summaries as follows:

• BCQ [6]: max perturbation Φ ∈ {0.02, 0.05, 0.1}. The smaller the value is, the stronger the
constraint will be.

• BEAR [11]: MMD threshold ε ∈ {0.02, 0.05, 0.1}. The smaller the value is, the stronger
the constraint will be.

• PLAS [17]: max latent action σ ∈ {1.0, 2.0, 3.0}. The smaller the value is, the stronger the
constraint will be.

• TD3+BC [5]: Q term weight α ∈ {1.0, 2.5, 4.0}. The smaller the value is, the stronger the
constraint will be.

• SPOT (Ours): regularization term weight λ ∈ {0.05, 0.1, 0.2, 0.5}.The larger the value is,
the stronger the constraint will be.

Quantitative results. We run baselines with varying hyperparameters for 3 seeds and present results
in Table 8. We find that BEAR is unstable and rerunning for different seeds does not fix it, thus we
exclude failed results from the Figure 1b and Figure 9.

Table 8: Quantitative results with 3 seeds for baselines in analytic experiments. hc = HalfCheetah, h
= Hopper, w = Walker, m = medium, m-r = medium-replay.

BCQ BEAR PLAS
Φ=0.02 Φ=0.05 Φ=0.1 ε=0.02 ε=0.05 ε=0.1 σ=1.0 σ=2.0 σ=3.0

hc-m-v2 44.2±1.6 46.7±0.4 49.3±0.8 42.8±0.1 42.8±0.1 17.3±28.8 43.3±0.3 44.8±0.1 45.0±1.0
h-m-v2 55.2±2.1 59.5±1.4 54.3±2.7 51.0±1.4 51.9±2.8 1.9±1.9 56.9±7.4 55.0±3.2 52.9±5.5
w-m-v2 80.9±1.4 70.3±11.1 69.2±1.1 -0.2±0.1 19.8±34.7 -0.3±0.0 74.1±2.3 78.4±4.9 73.4±8.3

hc-m-r-v2 38.0±2.5 40.0±1.6 43.5±1.0 36.7±0.6 37.2±0.8 37.2±0.5 40.7±1.5 43.5±0.4 44.3±0.7
h-m-r-v2 49.4±14.7 25.8±5.2 36.8±9.7 59.2±14.8 49.1±13.7 62.2±6.9 28.7±3.8 27.4±4.6 26.2±5.6
w-m-r-v2 44.2±20.8 55.8±11.8 36.1±5.5 1.5±1.5 7.7±6.0 4.3±1.7 53.6±31.8 63.3±18.9 39.6±27.5
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Missing graphs. Due to space limitation, we only present results for “medium-replay” datasets for
Figure 1b. The complete graphs are presented in Figure 9.
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Figure 9: Full graphs of analysis on tradeoff between constraint strength and optimality, extending
Figure 1b.

C.5 Computation Cost

Inferece time (Figure 3). We evaluate the runtime of different offline RL methods, that interact with
the HalfCheetah environment to produce a full 1000-steps trajectory. For parameterization methods,
we evaluate BCQ (num. of sampled actions N = 100) [6], PLAS [17], EMaQ (num. of sampled
actions N = 100) [7] and for regularization methods, we evaluate BEAR (num. of sampled actions
p = 10) [11], TD3+BC [5] and our SPOT. All numbers of runtime of Figure 3 are the mean of 100
trajectories. We compare different methods with consistent model size to ensure fairness.

Train time. Table 9 presents train time of 1M steps of various offline RL algorithms. All train time
experiments were run with author-provided implementations on a single TITAN V GPU and Intel
Xeon Gold 6130 CPU at 2.10GHz.

Table 9: Train time of 1M steps of various offline RL algorithms.

BCQ BEAR PLAS CQL TD3+BC SPOT

Train time 5h 25m 12h 30m 3h 5m 14h 20m 1h 58m 3h 25m

D Broader Impact

Social impacts. Offline reinforcement learning has the potential to enable or scale-up practical
applications for reinforcement learning, such as robotics, recommendation, healthcare, or educational
applications, where data collecting is always expensive or risky, and offline logged data can lead to a
better real-world performance by either pure offline or offline2online learning. A limitation to offline
RL is that the learned policy, regularized by the offline data, may contain biases originally from the
data-collecting policy.

Academic research. Developing a simple and effective offline RL algorithm is the primary aim
behind our work. We situate our work in the literature on policy constraint methods for offline
RL, covering discussion w.r.t empirical performance, implementation simplicity, and computation
efficiency. We identify that a standard off-policy RL algorithm plugged with a VAE-based explicit
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support constraint is sufficient for exceeding most of substantially more complicated methods on
both standard and challenging benchmarks, which may encourage researchers to revisit the progress
of offline RL and derive new and better offline RL methods.
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