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A Implementation Details

Training & inference details. To train our network, we adopt PyTorch [11] with ADAM opti-
mizer [7] and learning rate 1e~* on 2 NVIDIA RTX3090 GPUs. The 3, 32 in ADAM are set to
0.5, 0.99, respectively. For geometry-aware PIFu-Body (F}), we first train F;, on three-view RGBD
images (with resolutions of 512x512), end-to-end for 20 epochs with a batch size of 4, where the
learning rate is reduced by a factor of 2 every 5 epochs and the regularization loss L., is not used
in this phase. Then, we fix the backbone (the largest box in Fig. 2) in /3 and continue to train the
PIFu-body (in Fig. 2) part with the additional loss L., for 5 epochs. The training strategy of fixing
the backbone is mainly to prevent L,.., from affecting the depth denoising, thereby making D, ¢
smooth. For the RGBD images involved in training, we randomly select three views with intervals of
approximately 135 degree, 90 degree, 135 degree, according to the captured setting (Sec. C). Besides,
we sample 8000 3D points for training J; according to the sampling strategy of PIFuHD [13].

For our high-resolution PIFu-Face (F;), in order to model vivid expressions, we first train the
single-view Fy independently for approximately 100 epochs with a learning rate of le= on the
processed FaceScape [19] dataset. Refer to Fig. 6 (a) in the main paper for the facial mesh processing
procedure. In this phase, we sample 5000 points around the ground-truth facial model and render the
front-view facial RGBD images to pre-train . The loss function used here is the same as PIFu [12].

Finally, we fine-tune the whole network (5, & F) with a learning rate of le~5 for 5 epochs on
THuman2.0 [20] training set, to optimize F to fit the whole body, where the backbone in F is fixed.
To jointly train F3 and JFy, we sample 5000 body and facial points equally, as shown in Fig. 7(a).
Here, the facial points used for training are selected as stated in Sec. 3.2 in our main paper, but we

replace Df ¢ with Dgt (i.e., ground-truth facial depth map) to ensure the sampling correctness.

For the hyper-parameters during training, we set po and 1 in L, as 1.0, 1.0 respectively, € in L4
as 4mm, pp, As, pn in Lp as 10.0, {1,3/4,2/4,1/4}, 1.0 respectively. For A.¢q, Ap in L, we set
them as 100.0, 10.0 respectively. Besides, we set the dilate rate = as 2, 6, as 0.01m and « as 0.15m.

When evaluating the models on THuman2.0 [20] test set, we first generate the three-view RGBD
images with 5 different degrees of depth noise (0.5cm, 1.0cm, 1.5cm, 2.0cm, 2.5cm of Gaussian
standard deviation) for each mesh, and then measure the Point-to-Surface, Chamfer and Normal
errors between the reconstructed and the ground-truth surfaces.

When testing the models on our captured data, we adopt three-view RGBD images with intervals
of 135 degree, 90 degree, 135 degree, as the capture setting. The user is required to face the middle
camera (i.e., front view f), and the real depth data is captured using Microsoft Azure Kinect-V4
sensors. The captured RGB resolution is 2560x1440, and depth resolution is 1440x1440. We crop
and down-sample the captured RGBD images to a resolution of 512x512 as the inputs for our
network. Here we use background-matting-v2 [8] to obtain body binary mask M. For high-resolution
facial RGB image, we first use RetinaFace [3] to detect the front-view face region, and a face skin
segmentation network [4] to obtain the facial binary mask My, then crop the facial RGB image
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from the original full-body image as I ;. For the running time, it takes about 0.831s for our network
to perform depth denoising and 12.287s to predict the occupancy field of resolution 2563. After
obtaining the occupancy fields Oy and O, we perform face-to-body fusion (W) to get the fused field
and then apply the Marching Cube algorithm [9] to recover the final human mesh.

Network details. In our geometry-aware PIFu-body 3, Mj, is the implicit function that predicts
the occupancy values, implemented as a multi-layer perceptron (MLP) with skip connections and
the hidden neurons as (1024, 512, 256), (128, 128, 128, 128). The first group of neurons reduces
the feature dimensions, and the second group is used to query occupancy values. The function A
indicates the multi-view feature aggregation module, implemented by a multi-head Transformer [15]
encoder with 8 heads and 6 layers. Besides, for the RGB and depth encoders, we use two independent
HRNets [16] (HRNetV2-W18-Small-v2) as feature extraction backbone. In our PIFu-Face F, since
the depth input to F7 is the denoised facial depth, we adopt a single encoder to encode RGBD features.
Specifically, the function H s is the HourGlass [10] network used in PIFu [5] and the function M ¢ is
the MLP with skip connections and the hidden neurons as (512, 256, 128, 32).

Details of competing methods. When comparing with PIFuHD [13], StereoPIFu [6], we directly
use their pre-trained models since there are no open-source training codes. For IPNet [2], we fine-
tune their pre-trained model on our training set, and when testing on our captured data, we use the
fused point clouds (the former, latter and current frames) as inputs. For DoubleFusion [21] and
Function4D [20], we re-implement the two methods following the details of the papers, but not in real
time. For Function4D [20], we track the former and latter frames for the current frame and fuse the
multi-frame point clouds to produce three new depth maps. The regenerated depth map is smoother
and contains more details. We then feed these depth maps into the multi-view PIFu model with the
truncated PSDF features. For multi-view RGBD-PIFu [12], we retrain the original PIFu model on
three-view RGBD images with the same settings as our model.

Obtaining the points set S;. To obtain the set S; where 3D points are projected on the depth-
jumping regions, we first calculate the depth-jumping maps, denoted as MY(i = 1, ..., ), from the
ground-truth depth maps Dgt(i =1,...,N). In M, the value of the 3x3 regions with a depth range
greater than th (default as 6¢cm) is set to 1, and O otherwise. Then, for each queried 3D body point
Xy, if the 2D projection x; is located in the depth-jumping regions, we put Xy, in the S;. We can set
a flag s;(-) to mark these points as:
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where B(-, x) is the nearest sampling function. We set the threshold & to 0, which means that as
long as a point X is projected to the depth-jumping regions under one view, it will be marked in S;.
This allows more points in Sy, to be optimized by L,..4. As shown in Fig. A, the points marked in S;
are more clustered in the depth-jumping regions such as the body edges.

Figure A: Visualization of the sampled points set S;. We show the results from three perspective
views. The points are mainly clustered in the depth-jumping regions (e.g., body edges).

B More Results.

Qualitative comparisons on the test dataset. Fig. B shows the reconstructed results of four existing
approaches and our method on our test dataset. It can be seen that our reconstructed results are
closer to the ground-truth models (especially the details). As stated in Sec. 4.1 in our main paper,
Multi-view RGBD-PIFu tends to lose some high-frequency details (e.g., face surface), and suffer
from floating geometry (Fig. B(a)). The topological error in the back view is obvious in PIFuHD and



StereoPIFu. Besides, the details in the front view tend to be incorrect (Fig. B(b,c)). For IPNet, even if
we fine-tune the model, the topological errors and geometry missing are still evident (Fig. B(d)).
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Figure B: Qualitative comparisons on our test dataset, between our proposed method and four state-of-
the-art approaches. Multi-view RGBD-PIFu [12] (a). PIFuHD [13] (b). StereoPIFu [6] (c). IPNet [2]
(the outer and inner reconstructed results) (d). Ours (e). Ground-truth models (f). We show the front
and back results. Zoom in to see the details.
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Figure C: Visualization of depth denoising on our captured data. Raw RGB images and depth maps
(fused point clouds) (a,b). Results of DDRNet [ 18] and Sterzentsenko ez al. [14] (c,d). Our refined
depth maps and the fused point clouds (from three refined depths) (e,f). We show the refined depth
maps in two different views. Zoom in to see details.

Comparisons with the depth denoising methods. Fig. C and Fig. 3 in our main paper show the
depth denoising results of DDRNet [18], Sterzentsenko et al. [14], and ours on our captured data. We
can see that both the previous two methods over-smooth the original depths (Fig. C(c,d)). Besides,
DDRNet [18] suffer from topological errors from other perspectives (Fig. C(c)). In contrast, our
results recover the high-frequency details and the topology information is correct (Fig. C(e,f)).

Comparisons of the view number. We conduct an experiment to evaluate the view number (Fig. D).
We first pre-train the three-view model according to the details in Sec. A, then add input images
and continue to train the pre-trained model. We can see that as the number of views increases, the
geometric details gradually become better, especially in the invisible or small regions (boxes). But it
can be seen that when the number of views is greater than 3, the overall topology information and
details hardly change, probably because the three-view depth maps have covered most of the body
(Fig. C(b,f)), which is why we choose to adopt the three-view capture setting (Sec. C).
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Figure D: Comparisons on the number of views. RGBD images of the front view (a). 3 views (our
setting) (b). 6 views (c). 8 views (d). 10 views (e). 12 views (f). Zoom in to see details (especially
the details inside the boxes).

Comparisons with face reconstruction methods. We compared our PIFu-Face to three state-of-
the-art face reconstruction methods. Visual comparisons are shown in Fig. E, which shows that our
method produces competitive face reconstruction results. Compared to these methods that explicitly
reconstruct the face model, our PIFu-Face implicitly predicts the face occupancy fields, which
facilitates our face-body occupancy fields fusion scheme for full-body reconstruction.

Figure E: Qualitative comparisons between three state-of-the-art face reconstruction methods and our
PIFu-Face model. Input facial RGB image (a). Predicted facial normal maps of Abrevava et al. [1]
(b). 3D reconstructed facial model of DF2Net [22] (c), FaceVerse [17] (d). Our reconstructed facial
results (e). Zoom in to see the details.

More textured results. In Fig. G, we provide more reconstructed human geometric models along
with the corresponding textured results. The textured results are overall high-quality and well aligned
with the geometric models.

More geometric results. We show more of our reconstructed geometric results in Fig. H. It can be
seen that our method can produce vivid facial/hair details and accurate bodies under different poses.

C Obtaining Real RGBD Data

During capturing, we placed color and depth (Kinect-V4) cameras in a circle at 45-degree intervals
to ease the calibration, as illustrated in Fig. F(a). For each camera, we used the infrared calibration
board to calibrate the intrinsic parameters and initial extrinsic Kinect parameters. Then we used the
iterative closest point (ICP) method to match the points clouds captured by multiple depth sensors to
further optimize the extrinsic parameters. Afterward, we recorded the captured RGBD images and
performed the de-distortion operation on the captured RGB images. During testing, we obtain the
three-view RGBD images with intervals of (135 degree, 90 degree, 135 degree) as shown in Fig. F(b),
and the user is required to face the cameras in the middle.
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Figure F: Our capturing system. Two background images (a). Three selected RGB images (135
degree, 90 degree, 135 degree) (b).

Personal information of captured data. We captured RGBD images of different people. Although
the captured data contains personal information, it is licensed only for academic research purposes.

D Border Impacts

While we do not foresee our method causing any direct negative societal impact, it may be leveraged
to create malicious applications using 3D human reconstruction. The human information captured
using Kinect sensors may have the risk of a leak that raises privacy concerns. We urge the readers to
limit the usage of this work to legal use cases.

Figure G: More of our textured results.



Figure H: More of our reconstructed results
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