
Active Learning of Classifiers
with Label and Seed Queries

(Supplementary Material)

Marco Bressan
Dept. of CS, Univ. of Milan, Italy

marco.bressan@unimi.it

Nicolò Cesa-Bianchi
DSRC & Dept. of CS, Univ. of Milan, Italy

nicolo.cesa-bianchi@unimi.it

Silvio Lattanzi
Google

silviol@google.com

Andrea Paudice
Dept. of CS, Univ. of Milan, Italy &
Istituto Italiano di Tecnologia, Italy

andrea.paudice@unimi.it

Maximilian Thiessen
Research Unit ML, TU Wien, Austria

maximilian.thiessen@tuwien.ac.at

A Supplementary material for Section 3

A.1 Claim 1

Claim 1. Let K ⊂ Rm be a convex body, let E ⊇ K be any enclosing ellipsoid, and let µE be the
centroid of E. Let f(x) = Ax+ µ be an affine transformation with ∥A∥2 ≤ λ and µ ∈ K. Then for
any x ∈ K we have f(x) ∈ σ(E,µE , λ+ 1).

Proof. Without loss of generality, we can assume K to be full rank. We can also assume E to be
the ℓ2 unit ball; otherwise, just apply an appropriate affine transformation at the beginning of the
proof, and its inverse at the end. Under these assumptions, for all x ∈ K we have ∥x∥2 ≤ 1, and
since ∥µ∥2 ≤ 1 as well, we obtain:

∥f(x)∥22 = ∥Ax∥22 + ∥µ∥22 + 2 ⟨Ax, µ⟩ ≤ λ2 + 1 + 2λ = (λ+ 1)2 (8)

which implies f(x) ∈ (λ+ 1)E.

A.2 Proof of Lemma 8

First, we prove that Ei ≤ m2(m+ 1) conv(Ci) for all i ∈ [k]. This is trivial if Ei = ∅, so assume
Ei ̸= ∅ and let ℓi ≥ 1 be the value of hi at return time. For every h = 1, . . . , ℓi let Eh

i = MVE(Sh
i)

and let µh
i be the center of Eh

i . If µi is the center of Ei then by John’s theorem σ
(
Ei, µi,

1
m

)
⊆

conv(Xi), and since Xi ⊂
⋃ℓi

h=1 E
h
i , then conv(Xi) ⊆ conv

(⋃ℓi
h=1 E

h
i

)
. Moreover Eh

i ⊆
σ
(
conv(Sh

i), µ
h
i ,m

)
for all h ∈ [ℓi], which yields:

σ

(
Ei, µi,

1

m

)
⊆ conv

ℓi⋃
h=1

σ
(
conv(Sh

i), µ
h
i ,m

)
(9)

Thus we need only to show that the right-hand side is in σ(conv(Ci), µ,m(m+ 1)) for some µ ∈ R.

1

Let Si = ∪ℓih=1S
h
i , let E = MVE(Si), and let µ be the center of E. (Note that in general E ̸= Ei).

For every h ∈ [ℓi], by applying Claim 1 from Appendix A to f(x) = σ(x, µh
i ,m) and by John’s

theorem:

σ
(
conv(Sh

i), µ
h
i ,m

)
⊆ σ(E,µ,m+ 1) ⊆ σ(conv(Si), µ,m(m+ 1)) (10)

By taking the union over all h ∈ [ℓi], and since conv(Si) ⊆ conv(Ci), we obtain:

ℓi⋃
h=1

σ
(
conv(Sh

i), µ
h
i ,m

)
⊆ σ(conv(Ci), µ,m(m+ 1)) (11)

As the right-hand side is a convex set, (11) still holds if the left-hand side is replaced by its own
convex hull; but that convex hull is the right-hand side of (9), which proves the sought claim.

We conclude the proof. For the correctness, since Ei ≤ m2(m+1) conv(Ci), and since the updates
at lines 1 and 1 guarantee that (Xi)i∈[k] is a partition of X , then ((Xi, Ei))i∈[k] is an m2(m+1)-
rounding of X . For the running time, the for loops perform k ≤ n iterations, and the while loop
performs at most n iterations as each iteration strictly decreases the size of X . The running time
of any iteration is dominated by the computation of MVE(Si) or MVE(Xi), which takes time
poly(n+m), see above. Hence Round(X, k) runs in time poly(n+m). For the query bounds, the
while loop makes O(m2k) LABEL queries per iteration. By standard generalization bounds, since the
VC dimension of ellipsoids in Rm is O(m2), Eh

i contains at least half of X ∩ Ci with probability at
least 1

2 , and thus the expected number of rounds before X becomes empty is inO(k lg n), see Bressan
et al. [2021a]. We conclude that Round(X, k) uses O(m2k2 lg n) LABEL queries in expectation.

A.3 Pseudocode of CPLearn and full proof of Theorem 10

We present CPLearn and prove Theorem 10. The pseudocode of CPLearn is given in Algorithm 4
below; to keep that pseudocode readable we have omitted some details, discussing them in the proof
(e.g., the choice of some parameters). For the sake of the proof we suppose h−1(∗) = ∅. It is
immediate to verify that the proof holds when h−1(∗) ̸= ∅, too, since SEED never returns points in
h−1(∗) and thus CPLearn behaves identically on X and on X \ h−1(∗).
CPLearn starts by issuing SEED(X,+1) and SEED(X,−1) at lines 4–4, and if either one returns NIL
then we immediately return (∅, X) or (X, ∅) accordingly, which is clearly correct. Therefore we can
continue assuming none of the two queries returned NIL.

Reduction to the homogeneous case via lifting. CPLearn works on a lifted version of the problem
where the target separator is homogeneous. For any z ∈ Rm and any c ∈ R let (z, c) ∈ Rm+1 be the
vector obtained by extending z with a coordinate equal to c. For each x ∈ X let x′ = (x,R), and
let X ′ = {x′ : x ∈ X} as in lines 4–4. Extend h to X ′ in the natural way by defining h(x′) = h(x)
for any x′ ∈ X ′. We claim that {x′ ∈ X ′ : h(x′) = +1} and {x′ ∈ X ′ : h(x′) = −1} are
separated in Rm+1 by a homogeneous hyperplane with margin r

2 . To see this, let u ∈ Sm−1 and
b ∈ R such that h(x) · (⟨x, u⟩ + b) ≥ r for all x ∈ X with h(x) ̸= ∗; such u and b exist by the
assumptions of the theorem, and note that b ≤ R. Now let v = (u, b/R) and let u′ = v

∥v∥2
; note that

∥v∥2 ≤ ∥u∥2 + b
R ≤ 2. Then, for every x′ ∈ X ′:

⟨x′, u′⟩ = ⟨x
′, v⟩
∥v∥2

=
⟨x, u⟩+R · b/R

∥v∥2
=
⟨x, u⟩+ b

∥v∥2
(12)

which implies:

h(x′) · ⟨x′, u′⟩ = h(x) · (⟨x, u⟩+ b)

∥v∥2
≥ r

∥v∥2
≥ r

2
(13)

Thus the problem of learning h reduces to learning the lifted version of h over X ′, which is realized
by a homogeneous separator with margin r

2 . The rest of the proof shows that CPLearn from line 4
onward solves this lifted problem under the bounds of Theorem 10.

Overview. At a high level, CPLearn is a cutting-plane algorithm—see, e.g., Mitchell [2003]. Starting
with V0 being the (m+ 1)-dimensional unit ball B(0, 1), CPLearn computes a sequence of version

2

Algorithm 4: CPLearn(X)

if SEED(X,+1) = NIL then return (∅, X)
if SEED(X,−1) = NIL then return (X, ∅)
R← maxx∈X ∥x∥2
X ′ ← {(x,R) : x ∈ X}
i← 0, V0 ← B(0, 1) in Rm+1

for i← 0, . . . , n do
draw N = Θ(m6n2a) points z1, . . . , zN independently 1

2m3 -uniformly at random from Vi

µ̂i ← 1
N

∑N
j=1 zj

X ′
i ← {x′ ∈ X ′ : ⟨µ̂i, x

′⟩ ≥ 0}
Xi ← projection of X ′

i on Rm

if SEED(Xi,−1) = NIL and SEED(X \Xi,+1) = NIL then
return (Xi, X \Xi)

else
exclude all points returned by the queries from future queries
let ui be any point returned by either query
if i = 0 then

u∗
i ← ui

else
u∗
i ← ui − z0 · ⟨ui,µ̂i⟩

⟨z0,µ̂i⟩ where z0 = h(u0) · u0

Vi+1 ← Vi ∩ {x′ ∈ Rm+1 : h(ui) · ⟨u∗
i , x

′⟩ ≥ 0}
draw points independently near-uniformly at random from Vi until N = poly(m+ n) of

them, z1, . . . , zN , fall in Vi+1

use the covariance matrix of {z1, . . . , zN} ∩ Vi+1 to compute a coordinate system under
which Vi+1 is t-rounded

spaces V1, V2, . . . by setting Vi+1 = Vi ∩ Z∗
i , where Z∗

i is some halfspace determined through SEED
queries, as follows. For every i ≥ 0 let µi be the center of mass of Vi, and consider the halfspace:

Hi = {x′ ∈ Rm+1 : ⟨µi, x
′⟩ ≥ 0} (14)

Now let X ′
i = X ′ ∩Hi and execute SEED(X ′

i,−1) and SEED(X ′ \X ′
i,+1). If both return NIL then

clearly (Xi, X \Xi), where Xi is the projection of X ′
i on Rm, is the partition of X induced by h. If

instead either query returns a point ui, then consider the halfspace:

Zi = {x′ ∈ Rm+1 : h(ui) · ⟨ui, x
′⟩ ≥ 0} (15)

Finally, let Vi+1 = Vi ∩ Zi and repeat. By standard arguments, vol(Vi+1) ≤ (1 − 1/e) vol(Vi) but
Vi+1 contains a ball of radius Ω(r/R), and the process terminates within O(m log R

r) iterations, see
for instance [Gilad-Bachrach et al., 2004, Theorem 2].

There are two main obstacles in implementing this process. The first obstacle is computing µi, which
is hard in general [Rademacher, 2007]. Fortunately, we can efficiently compute a point µ̂i that with
good probability yields the same guarantees as µi, by sampling from a near-uniform distribution over
Vi via the hit-and-run random walk technique of Lovász and Vempala [2006]. The second obstacle
is that, in order for hit-and-run to be efficient, we must have a system of coordinates under which
Vi is well-rounded, i.e., not “too thin” along any direction. Unfortunately, letting Vi+1 = Vi ∩ Zi

may make Vi+1 extremely thin, as we have no control over Zi (it depends on the SEED answers).
Therefore, CPLearn carefully rotates Zi into a new halfspace Z∗

i such that Vi+1 = Vi ∩Z∗
i contains

Vi ∩ Zi, and that vol(Vi ∩ Z∗
i) is not much smaller than vol(Vi). This allows CPLearn to sample

efficiently from Vi+1; using those samples it then computes a coordinate system under which Vi+1 is
again well-rounded.

A complete proof. We say a convex body K ⊂ Rm+1 is t-rounded if B(0, t) ⊆ K ⊆ B(0, 1). For
every u ∈ Rm+1 let hu = {x ∈ X : ⟨u, x′⟩ ≥ 0}. Fix t ∈ Ω(1/m) and c > 0 sufficiently small,
and fix a > 0 arbitrarily large. We show an implementation of CPLearn that satisfies the following
invariants:

3

1. Vi contains all vectors u ∈ Rm+1 such that hu = h

2. vol(Vi+1) ≤ (1− c) vol(Vi)

3. Vi is t-rounded under the coordinate system currently held by CPLearn

We prove that the first invariant holds deterministically for all i ≥ 0, and that with probability at
least 1− n1−a the other ones hold for all i ≥ 0. Together with the argument from Gilad-Bachrach
et al. [2004] recalled above, the first two invariants imply that CPLearn returns a separator of X
w.r.t. h in O(m log R

r) iterations (and thus SEED queries). The third invariant ensures that CPLearn
can sample enough points from the version space Vi in time poly(n+m), which in turn ensures the
overall running time is in poly(n+m), where the degree depends on a.

Let us first discuss how at lines 4 and 4 one can sample from Vi and Vi+1 in time poly(n + m)
per sample, assuming both Vi and Vi+1 are t-rounded in the coordinate system held by CPLearn.
Let K be a t-rounded convex body in Rm+1. For any given ϵ > 0, the hit-and-run algorithm
of Lovász and Vempala [2006] returns a point ϵ-uniformly at random from K after O

(
m3t2 ln t/ϵ

)
steps; see Corollary 1.2 of Lovász and Vempala [2006]. Moreover, every step of that algorithm
can be implemented in time polynomial in the representation of K, see for instance Bressan et al.
[2021a]. By letting K = Vi, and noting that the representation of Vi has size O(m + n) as i ≤ n
and every constraining halfspace can be encoded in O(m) bits, we can sample a point ϵ-uniformly
in time poly(n,m, ln t/ϵ) per sample; the same holds for Vi+1. Since we set t = Ω(1/m) and
ϵ = Ω(1/ poly(n+m)), we conclude that lines 4 and 4 take poly(n+m) time per sample.

Let us now turn to the invariants. Consider first the case i = 0. The first and third invariant hold
trivially, while the second one holds for any c ≤ 1/2 since V1 is the intersection of V0 = B(0, 1) and
a homogeneous halfspace. Let then i ≥ 1 and suppose all invariants hold for i− 1. We prove that
they hold for i+ 1 as well.

Let η = 1/2m2, let ϵ = η
m , and p = n−a/2. Then, line 4 draws N = Θ(m2/η2p2) independent

ϵ-uniform random points z1, . . . , zN from Vi, and line 4 sets µ̂i as their average. As shown in Bressan
et al. [2021a], this implies Pr(d(µ̂i, µi) ≤ ηϕ(Vi)) ≥ 1−p, where ϕ(Vi) is the Euclidean diameter of
Vi. As Vi is t-rounded, ϕ(Vi) ≤ 2, hence Pr(d(µ̂i, µi) ≤ 1/m2) ≥ 1−n−a/2. Now suppose indeed
d(µ̂i, µi) ≤ 1/m2. It is not hard to see that any halfspace Z containing µ̂i satisfies vol(Z ∩ Vi) ≥
1
e (1−

1
m)m+1 vol(Vi) = Ω(vol(Vi)); that is, µ̂1 has Tukey depth at least c (see the second invariant).

Next, consider the set X ′
i computed at line 4, and observe that X ′

i = X ∩Hi, where:

Hi = {x′ ∈ Rm+1 : ⟨µ̂i, x
′⟩ ≥ 0} (16)

Clearly, if the two queries at line 4 return NIL, then CPLearn returns the correct partition of X .
Otherwise consider the point ui returned by either query, see line 4, and let Zi as in (15). By standard
arguments µ̂i ∈ Zi, and therefore vol(Vi ∩ Zi) ≤ (1− c) vol(Vi) as said above. Moreover, again by
standard arguments, Vi ∩ Zi contains all vectors u ∈ Rm+1 such that hu = h.

Now let us turn to CPLearn. Since i ≥ 1, CPLearn at line 4 defines:

u∗
i = ui − z0 ·

⟨ui, µ̂i⟩
⟨z0, µ̂i⟩

(17)

Before continuing, we check that u∗
i is well-defined, i.e., that ⟨z0, µ̂i⟩ > 0. Indeed, µ̂i lies in the

interior of Vi since it has positive Tukey depth (see above), and since by construction Vi ⊆ Z0 for
all i ≥ 1, then µ̂i lies in the interior of Z0 too. Moreover z0 lies in the interior of Z0, too, being
the normal vector of Z0. Hence ⟨z0, µ̂i⟩ > 0, as claimed. Note also that, for every x ∈ Rm+1, the
definition of u∗

i and the linearity of the inner product yield:

⟨u∗
i , x⟩ = ⟨ui, x⟩ − ⟨z0, x⟩ ·

⟨ui, µ̂i⟩
⟨z0, µ̂i⟩

(18)

Now, CPLearn at line 4 sets Vi+1 = Vi ∩ Z∗
i , where:

Z∗
i = {x ∈ Rm+1 : h(ui) · ⟨u∗

i , x⟩ ≥ 0} (19)

We are now ready to prove the three invariants above.

The first invariant. We claim that Vi ∩ Zi ⊆ Vi ∩ Z∗
i . In fact, we claim Z0 ∩ Zi ⊆ Z0 ∩ Z∗

i ; this
implies Vi ∩ Zi ⊆ Vi ∩ Z∗

i , since by construction Vi ⊆ Z0 as i ≥ 1. In turn, since Vi ∩ Zi contains

4

all vectors u ∈ Rm+1 such that hu = h, see above, this implies that Vi+1 contains all those vectors
as well, proving the first invariant. Let x ∈ Z0 ∩ Zi. Then:

h(ui) · ⟨u∗
i , x⟩ = h(ui) · ⟨ui, x⟩ − h(ui) · ⟨z0, x⟩ ·

⟨ui, µ̂i⟩
⟨z0, µ̂i⟩

(20)

Let us examine the terms of (20). First, h(ui) · ⟨ui, x⟩ ≥ 0 since x ∈ Zi. Second, ⟨z0, x⟩ ≥ 0 since
x ∈ Z0. Third, ⟨z0, µ̂i⟩ > 0 as noted above. Thus the term −h(ui) · ⟨z0, x⟩ · ⟨ui,µ̂i⟩

⟨z0,µ̂i⟩ has the same
sign as −h(ui) · ⟨ui, µ̂i⟩. However, by definition ui is a counterexample to the labeling given by Hi,
which means h(ui) · ⟨ui, µ̂i⟩ < 0. Therefore h(ui) · ⟨u∗

i , x⟩ ≥ 0, which implies x ∈ Z∗
i as desired.

The second invariant. We claim that µ̂i ∈ Z∗
i . To this end just substitute x = µ̂i in (18) to see that

⟨u∗
i , µ̂i⟩ = 0. since µi has Tukey depth c > 0 w.r.t. Vi, we deduce that vol(Vi+1) = vol(Vi ∩ Z∗

i) ≤
(1− c) vol(Vi). This proves the second invariant.

The third invariant. First of all, we claim that vol(Vi+1) = vol(Vi ∩ Z∗
i) ≥ c vol(Vi). To this end

just observe that µ̂i is on the boundary of Rm+1 \ Z∗
i , too. Consider then line 4 of CPLearn: if the

samples are independent ϵ-uniform over Vi, then every sample drawn ends in Vi+1 independently
with probability at least c− ϵ. Hence, as long as ϵ < c/2, a sample of Θ(N) such points from Vi will
contain a subsample of N points z1, . . . , zN in Vi+1 with probability 1− e−Θ(N). Moreover, those
N samples will be ϵ

c -uniform in Vi+1. Therefore line 4 takes time poly(n +m) with probability
1− e− poly(n+m). For N large enough, the inverse of the covariance matrix of z1, . . . , zN CPLearn
yields a coordinate system under which Vi+1 is t-rounded with probability at least 1− n−a/2, see
for instance Vempala [2010]. This proves the third invariant.

Wrap-up. Note that CPLearn makes at most n iterations, as every iteration either returns (if the
SEED queries return NIL) or decreases the number of points of X for which the label is not known (see
line 4). Hence, with probability at least 1−n1−a, all the invariants above hold for all i = 0, . . . , n−1.
The query bounds and the running time bounds follow as explained above.

A.4 One-sided margin

We sketch the proof of Theorem 3. Let d be a metric over Rm induced by some norm ∥ · ∥d. We say
C ⊆ X has one-sided strong convex hull margin γ with respect to d if d(conv(X \ C), conv(C)) ≥
γϕd(C).

The idea behind Theorem 3 is to compute a Euclidean one-sided α-rounding of X w.r.t. h, that is, a
set X̂ ⊆ X such that C ⊆ X̂ and X̂ ≤ α conv(C), where C = h−1(+1). We will compute X̂ for
α = poly

(
κd

γ

)
, and then use the cutting-planes algorithm of Section 3.2. As the margin is invariant

under scaling, assume without loss of generality infu∈Sm−1 ∥u∥d = 1 and supv∈Sm−1 ∥v∥d = κd.
Let x = SEED(X,+1). If x = NIL then clearly h = −1. Otherwise we run BallSearch(X,x), listed
below. BallSearch sorts X by distance from x, and then uses LABEL queries to perform a binary
search and find a pair of points xlo ∈ C and xhi ∈ X \ C adjacent in the ordering. (This works
even if the order is not monotone w.r.t. the labels). At this point BallSearch guesses a value t for
γ
κd

, starting with t = 1. Given t, with a SEED query BallSearch checks if there are points of C
among the points at distance between deuc(x, xhi) and 1

t deuc(x, xhi) from xhi. If not, then it lets
X̂ = X ∩B(x, deuc(x, xlo)), else it lets X̂ = X ∩B(x, 1

t deuc(x, xhi)). Finally, it checks whether
C ⊆ X̂; if yes then it returns X̂ , else it halves t and repeat. One can show that this procedure
stops with t ≥ γ

2κd
, yielding a X̂ such that ϕ(X̂) = O(ϕ(C)/t) and that C and X̂ \ C are linearly

separated with margin Ω
(
t γ
κd

ϕ(X̂)
)
. Setting R = ϕ(X̂) and r = deuc(C, X̂ \ C), we conclude that

R
r = poly

(
κd

γ

)
. At this point by Theorem 10 we can compute C by running CPLearn(X̂), which

takes time poly(n+m) and uses O
(
m log κd

γ

)
SEED queries in expectation.

A remark on Theorem 3. Given two pseudometrics d and q induced by seminorms ∥ · ∥d and ∥ · ∥q ,
let κd(q) = supu∈Sm−1

q
∥u∥d/ infv∈Sm−1

q
∥v∥d. If one can compute ∥ ·∥q efficiently, then Theorem 3

holds with κd(q) in place of κd. In fact, Theorem 3 is just the special case where q = deuc. Therefore
one can restate Theorem 3 so that d is an arbitrary pseudometric (thus including the case κd =∞),
provided one has access to an approximation q of d with finite distortion.

5

Algorithm 5: BallSearch(X,x1)

let x1, . . . , xn be the points of X in order of Euclidean distance from x1 (break ties arbitrarily)
if LABEL(xn) = +1 then return X
lo← 1, hi← n
while hi− lo ≥ 2 do

i←
⌈
hi+ lo

2

⌉
if LABEL(xi) = 1 then lo← i else hi← i

t← 1, r ← deuc(x1, xlo), R← deuc(x1, xhi)
repeat

Ui ←
{
x ∈ X : R ≤ deuc(x, x1) ≤ 1

tR
}

if SEED(Ui,+1) = NIL then X̂ ← X ∩B(x1, r) else X̂ ← X ∩B
(
x1,

1
tR
)

t← t/2

until SEED(X \ X̂,+1) = NIL

return X̂;

B Supplementary material for Section 4

B.1 Full proof of Theorem 4

Construction. We first discuss the case k = 2. Let e1, . . . , em be the canonical basis of Rm. To ease
the notation define p = m− 1; the input set will span a p-dimensional subspace. Define:

ℓ =

⌊
1√

2γ
√
m

⌋
(21)

Since γ ≤ m−3/2

16 and m ≥ 2,

ℓ ≥ 1√
2m−3/2

16

√
m

=
√
8m ≥ 4 (22)

For each i ∈ [p] and j ∈ [ℓ], let xj
i = ei + j · em. Finally, let X = {xj

i : i ∈ [p], j ∈ [ℓ]}. Define the
concept class:

H =

⋃
i∈[p]

{x1
i , . . . , x

ℓi
i } : (ℓ1, . . . , ℓp) ∈ [ℓ]p

 (23)

Let C = {C1, C2} be any partition of X with C1 ∈ H and C2 = X \ C1. First, we observe that C1

and C2 are separated by a hyperplane. Let (ℓ1, . . . , ℓp) be the vector defining C1. Then we let:
u = (−ℓ1, . . . ,−ℓp, 1) (24)

Then for any xj
i ∈ X ,

⟨u, xj
i ⟩ = −ℓi + j (25)

which is bounded from above by zero if and only if j ≤ ℓi, that is, if and only if xj
i ∈ C1. Hence C1

and C2 admit a linear separator. Next we prove that, under the Euclidean distance, C1 and C2 have
strong convex hull margin γ. Using the vector u defined above, since every xj

i ∈ C2 has j ≥ ℓi + 1,
then ⟨u, xj

i ⟩ ≥ 1. This implies:

d(conv(C1), conv(C2)) ≥
1

∥u∥2
≥ 1√

pℓ2 + 1
≥ 1

ℓ
√
m

(26)

The diameter of C1 is at most that of X , which equals d(x1
1, x

ℓ
2) ≤ ℓ − 1 +

√
2 ≤ 2ℓ. Together

with (26) and the fact that ℓ ≤ 1√
2γ

√
m

, this provides:

d(conv(C1), conv(C2)) ≥
1

2ℓ2
√
m

ϕd(C1) ≥
2γ
√
m

2
√
m

ϕd(C1) = γ ϕd(C1) (27)

6

The same holds for C2. Hence C has strong convex hull margin γ.

Query bound. Let V0 = {(C1, C2) : C1 ∈ H}. This is the initial version space. We let the target
concept C = (C1, C2) be drawn uniformly at random from V0. For all t = 0, 1, . . ., we denote by
Vt be the version space after the first t SEED queries made by the algorithm. Now fix any t ≥ 1 and
let SEED(U, y) be the t-th such query. Without loss of generality we assume y = 1; a symmetric
argument applies to y = 2. If U ∩ C1 contains a point x in the agreement region of Vt−1, i.e., whose
label can be inferred from past queries, then we return x. Therefore we can continue under the
assumption that U does not contain any such point (doing otherwise cannot reduce the probability
that the algorithm learns nothing). The oracle answers so to maximize |Vt|

|Vt−1| , as described below.

For each i ∈ [p] let Si = {xj
i : j ∈ [ℓ]}. We consider Si as a sequence of points sorted by the index j.

Let Zi be the subset of Si in the disagreement region of Vt−1 together with the point in Si preceding
this region; observe that this point always exists, as x1

i ∈ C1 is in the agreement region. Note that Zi

is necessarily an interval of Si. We let Ui = Zi ∩ U for each i ∈ [p] and P (U) = {i ∈ [p] : Ui ̸= ∅}.
For every i ∈ P (U), we let αi be the fraction of points of Zi that precede the first point in Ui. Let
x∗
i = argmax{j : xj

i ∈ Si ∩C1}. Observe that |Vt−1| =
∏

i∈[p] |Zi|, as x∗
i can be every point of Zi.

Indeed, x∗
i is uniformly distributed over Zi; either x∗

i is a point in the disagreement region of Si, or
the disagreement region of Si is fully contained in C2 and x∗

i is the point preceding the disagreement
region of Si.

Now we show that E[|Vt−1|/|Vt|] ≤ p+ 1. Let E be the event that SEED(U, 1) = NIL. Write:

E
[
|Vt−1|
|Vt|

]
= Pr(E)E

[
|Vt−1|
|Vt|

∣∣∣ E]+ Pr(E)E
[
|Vt−1|
|Vt|

∣∣∣ E] (28)

We bound the two terms of (28) starting with the first one. Note that E holds if and only if Ui∩C1 = ∅
for all i ∈ P (U). Since x∗

i is uniformly distributed over Zi, for all i ∈ P (U) we have:

Pr(C1 ∩ Ui = ∅) = αi (29)

And since the distributions of those points are independent:

Pr(E) =
∏

i∈P (U)

Pr(C1 ∩ Ui = ∅) =
∏

i∈P (U)

αi (30)

If Pr(E) > 0 and E holds, then x∗
i is uniformly distributed over the first αi|Zi| points of Zi, as the

rest of Zi belongs to C2. This holds independently for all i, thus:

|Vt| =

 ∏
i∈P (U)

αi|Zi|

 ∏
i∈[p]\P (U)

|Zi|

 =

 ∏
i∈P (U)

αi

∏
i∈[p]

|Zi|

 = |Vt−1|
∏

i∈P (U)

αi

(31)

It follows that Pr(E)E
[
|Vt−1|
|Vt|

∣∣∣ E] ≤ 1.

Let us now bound the second term of (28). If E does not hold, then SEED(U, 1) returns the smallest
point x ∈ Ui for any i ∈ P (U) such that C1 ∩ Ui ̸= ∅ (note that necessarily x ∈ C1). For any fixed
i ∈ P (U), the probability of returning the smallest point of Ui is bounded by Pr(C1 ∩ Ui ̸= ∅),
which is 1− αi; and if this is the case, then we have |Vt| = (1− αi)|Vt−1|. Thus:

Pr(E)E
[
|Vt−1|
|Vt|

∣∣∣ E] ≤ Pr(E) max
i∈P (U)

(1− αi)
1

(1− αi)
= Pr(E) ≤ 1 (32)

So the two terms of (2) are both bounded by 1; we conclude that E
[
|Vt−1|
|Vt|

]
≤ 2.

7

We can conclude the query bound. For any t̄ ≥ 1,

E
[
log
|V0|
|Vt̄|

]
= E

[
t̄∑

t=1

log
|Vt−1|
|Vt|

]
(33)

=

t̄∑
t=1

E
[
log
|Vt−1|
|Vt|

]
(34)

≤
t̄∑

t=1

logE
[
|Vt−1|
|Vt|

]
Jensen’s inequality (35)

≤
t̄∑

t=1

log 2 see above (36)

= t̄ (37)

Since |V0| = ℓm−1, by Markov’s inequality, and since (m− 1) log ℓ− log 2 ≥ (m−1) log ℓ
2 ≥ m log ℓ

4 :

Pr(|Vt̄| ≤ 2) = Pr

(
log
|V0|
|Vt̄|
≥ (m− 1) log ℓ− log 2

)
≤

4E
[
log |V0|

|Vt̄|

]
m log ℓ

≤ 4 t̄

m log ℓ
(38)

Now let T be the random variable counting the number of queries spent by the algorithm, and let VT

be the version space at return time. Since C is uniform over VT and C is returned with probability at
least 1

2 , then Pr(|VT | ≤ 2) ≥ 1
2 . By (38) and linearity of expectation,

1

2
≤ Pr(|VT | ≤ 2) =

∑
t̄≥0

Pr(T = t̄) Pr(|Vt̄| ≤ 2) ≤
∑
t̄≥0

Pr(T = t̄) · 4t̄

m log ℓ
= E[T]

4

m log ℓ

(39)

Therefore E[T] ≥ m log ℓ
8 . Now, since ℓ ≥ 4 then ℓ ≥ 4

5
√

2γ
√
m

, which since m ≤ (16γ)−2/3 yields

ℓ ≥ 4

5
√
2γ(16γ)−1/3

= 3

√
1

γ

4

5
√

2(16)−1/3
= 3

√
1

γ

4 · 41/3

5
√
2

(40)

Since 44/3

5
√
2
> 0.89, we conclude that:

E[T] >
m log 0.89

3
√
γ

8 logm
>

m 1
3 log

1
2γ

8 logm
=

m log 1
2γ

24 logm
(41)

which concludes the proof for k = 2.

Multiclass. For any k ≥ 2 let k′ =
⌊
k
2

⌋
. For each s ∈ [k′] consider the construction for the case

k = 2 shifted along the m-th dimension by (s− 1)ℓ · em:

Xs =
{
xj
i + (s− 1)ℓ · em : i ∈ [p], j ∈ [ℓ]

}
(42)

We let X∗ =
⋃

s∈[k′] Xs, and we define the possible subsets of X∗ corresponding to class C2s−1 as:

Hs =

⋃
i∈[p]

{
x1
i + (s−1)ℓ · em, . . . , xℓi

i + (s−1)ℓ · em
}

: (ℓ1, . . . , ℓp) ∈ [ℓ]p

 (43)

Finally, let H be the set of all partitions C = (C1, . . . , Ck) of X∗ such that C2s−1 ∈ Hs and
C2s = Xs \ C2s−1 for all s ∈ [k′], and let Ck = ∅ in case k is odd. The same arguments of the case
k = 2 prove that any such C has convex hull margin γ. Indeed, for adjacent classes Ci, Ci+1 those
arguments prove that the strong convex hull margin is at least γ; for non-adjacent classes, the margin
can only be larger. The random target concept C = (C1, . . . , Ck) is obtained by drawing each C2s−1

for s ∈ [k′] uniformly at random fromHs, and letting C2s = Xs \ C2s−1.

8

We turn to the bound. Consider a generic query SEED(U, i) issued by the algorithm. Without loss
of generality we can assume U ⊆ C2s−1 ∪ C2s = Xs where s = ⌊ i2⌋; indeed, by construction of
H, that query can never return a point in U \Xs. This shows that learning C requires solving the k′

independent binary instances Xs, returning Cs = (C2s−1, C2s), for s ∈ [k′]. As the probability of
returning C is bounded from above by the minimum over s ∈ [k] of the probability of returning Cs,
the algorithm must make at least m

24 log
1
2γ queries for each s ∈ [k′], concluding the proof.

C Supplementary material for Section A.4

Lemma 13. Let C ⊆ X have strong convex hull margin γ ∈ (0, 1] w.r.t. d. For any x1 ∈ C
BallSearch(X,x1) takes time poly(n + m), uses O(log n) LABEL queries and O(log κd

γ) SEED

queries, and outputs X̂ ⊆ X such that

1. C ⊆ X̂

2. deuc(conv(C), conv(X̂ \ C)) ≥ γ2

4κ2
d
ϕ(X̂)

Proof. To begin, observe that deuc ≤ d ≤ κd deuc implies that the ratio between distances changes
by a factor at most κd between deuc and d. In particular this implies that for any set X̂ ⊆ X:

deuc(conv(C), conv(X̂ \ C))

ϕ(C)
≥ d(conv(C), conv(X̂ \ C))

κd ϕd(C)
(44)

We will use this inequality below.

Now, suppose line 5 of BallSearch returns, so X̂ = X . The running time, the query bounds, and
point (1) are straightforward. To prove (2), since x1, xn ∈ C we have:

ϕ(C) ≥ deuc(x1, xn) ≥
1

2
ϕ(X) =

1

2
ϕ(X̂) ≥ γ

2κd
ϕ(X̂) (45)

where we used ϕ(X) = maxa,b∈X deuc(a, b) ≤ maxa,b∈X(deuc(a, x1) + deuc(x1, b)) ≤
2deuc(x1, xn). Therefore ϕ(X̂) ≤ 2κd

γ ϕ(C), which together with (44) and the margin condition
gives:

d(conv(C), conv(X̂ \ C))

ϕ(X̂)
≥ deuc(conv(C), conv(X̂ \ C))

2κd

γ ϕ(C)
≥ d(conv(C), conv(X̂ \ C))

2κd

γ κd ϕd(C)
≥ γ2

2κ2
d

(46)

We turn to the repeat loop. Consider a generic iteration just before the update of t. We prove:

(a) d(C, X̂ \ C) ≥ min
(
t, γ

κd

)
γ

2κd
ϕ(X̂)

(b) if t ≤ γ
κd

then C ⊆ X̂

First, suppose SEED(Ui,+1) = NIL, in which case X̂ = X ∩ B(x1, r). To prove (a), observe that
x1, xlo ∈ C implies:

ϕ(C) ≥ deuc(x1, xlo) = r ≥ 1

2
ϕ(X̂) ≥ min

(
t

2
,

γ

2κd

)
ϕ(X̂) (47)

Now use the argument above, but with 1/min
(
t
2 ,

γ
2κd

)
in place of 2κd

γ in (46). To prove (b), note that
x1 ∈ C and xhi ∈ X \ C implies R = deuc(x1, xhi) ≥ deuc(C,X \ C). Since deuc ≤ d ≤ κd deuc,
and by the margin assumptions,

R

ϕ(C)
≥ deuc(C,X \ C)

ϕ(C)
≥ d(C,X \ C)

κd ϕd(C)
≥ γ

κd
≥ min

(
t,

γ

κd

)
(48)

9

Therefore ϕ(C) ≤ max
(
1
t ,

κd

γ

)
R, which implies C ⊆ X ∩B

(
x1,max

(
1
t ,

κd

γ

)
R
)
. For t ≤ κd

γ the
right-hand side is X ∩B(x1,

1
tR). Note however that X ∩B(x1,

1
tR) = (X ∩B(x1, r))∪Ui since

xlo, xhi are adjacent in the sorted list. But SEED(Ui,+1) = NIL, hence C ⊆ X ∩B(x1, r) = X̂ .

Next, suppose SEED(Ui,+1) = y ̸= NIL, in which case X̂ = X∩B(x1,
1
tR). To prove (a), note that

ϕ(C) ≥ d(x1, y) ≥ R, and that ϕ(X̂) ≤ 2 1
tR. Hence ϕ(C) ≥ t

2ϕ(X̂) ≥ min
(
t
2 ,

γ
2κd

)
ϕ(X̂). Now

use again the argument above, but with 1/min
(
t
2 ,

γ
2κd

)
in place of 2κd

γ in (46). To prove (b), the
argument for the case above implies C ⊆ X ∩B

(
x1,max

(
1
t ,

κd

γ

)
R
)
. If t ≤ γ

κd
then the right-hand

side is just X̂ .

To conclude the proof, note that by point (b) above the repeat loop returns in O(log κd

γ) iterations.
Therefore BallSearch(X,x1) uses O(log n) LABEL queries and O(log κd

γ) SEED queries. Finally,
note that the running time can be brought to poly(n+m) by storing the output of all SEED queries,
and replacing Ui with Ui \ Ui ∩ Ĉ where Ĉ ⊂ C is the subset of points of C known so far. In this
way, at each repeat iteration either X̂i ⊆ C or we learn the label of some point of C previously
unknown. Therefore repeat makes at most n iterations; it is immediate to see that each iteration takes
time poly(n+m) and thus BallSearch runs in time poly(n+m) as well.

C.1 Proof of Theorem 3

Let x = SEED(X,+1). If x = NIL then stop and return ∅. Otherwise run BallSearch(X,x) to obtain
X̂ . By Lemma 13 this takes poly(n + m) time, O(log n) LABEL queries, and O(log κd

γ) SEED

queries. By Lemma 13 C ⊆ X̂ , and C and X̂ \ C are linearly separated with margin γ2

4κ2
d
ϕ(X̂).

Thus X̂ satisfies the assumptions of Theorem 10 with R/r =
4κ2

d

γ2 , and by running CPLearn(X̂) we
obtain C in time poly(n+m) using O(m log κd

γ) SEED queries in expectation.

D Bounds for inputs with bounded bit complexity

We consider the case where X has bounded bit complexity, distinguishing two widely used cases.

D.1 Rational coordinates

Supose X ⊂ Qm and every x ∈ X can be encoded in b(x) ≤ B bits as follows [Korte and Vygen,
2018]. If x ∈ Z, then b(x) = 1 + ⌈log(|x| + 1)⌉. If x = p/q ∈ Q with p, q ∈ Z coprime, then
b(x) = b(p) + b(q). If x ∈ Qm, then b(x) = m +

∑
i∈[m] b(xi). We show that B gives a lower

bound on the margin. The argument is related to Kwek and Pitt [1998].
Lemma 14. Suppose X ⊂ Qm has bit complexity bounded by B, and suppose C ⊆ X and X \ C
are linearly separable. Then d(conv(C), conv(X \ C)) ≥ 2−O(m2B).

Proof. Let P = conv(C) and let H be a hyperplane containing a face of P . By Lemma 4.5
of Korte and Vygen [2018], H = {x ∈ Rm : ⟨w, x⟩ = t} for some w ∈ Qm and t ∈ Q such that
b(w) + b(t) ≤ 75m2B. The distance between H and any x ∈ X \ C is:

d(x,H) =
|⟨w, x⟩ − t|
∥w∥2

(49)

To bound |⟨w, x⟩ − t| suppose w, x, t are encoded by:

wi =
piw
qiw

i ∈ [m], xi =
pix
qix

i ∈ [m], t =
pt
qt

(50)

Replacing those quantities in the expression of |⟨w, x⟩−t|, taking the common denominator, observing
that the numerator of the resulting expression is an integer, and recalling that |⟨w, x⟩ − t| > 0, we
deduce:

|⟨w, x⟩ − t| ≥ 1

qt
∏

i∈[m] q
i
wq

i
x

(51)

10

However, since b(x) = O(log(1 + |x|)) for any x ∈ Z,

b

qt
∏

i∈[m]

qiwq
i
x

 = O

b(qt) +
∑
i∈[m]

(b(wi) + b(xi))

 = O(b(t) + b(w) + b(x)) (52)

which therefore is in O(m2B). Therefore |⟨w, x⟩ − t| ≥ 2−O(m2B). To bound ∥w∥2 we just note
that ∥w∥2 ≤ ∥w∥1 ≤ 2b(w) ≤ 275m

2B . We conclude that:

d(x,H) =
|⟨w, x⟩ − t|
∥w∥2

≥ 2−O(m2B) (53)

The proof is complete.

Corollary 15. Suppose X ⊂ Nm has bit complexity bounded by B ∈ N in the rational coordinates
model, and let C = (C1, . . . , Ck) be a partition of X such that Ci, Cj are linearly separable for
every distinct i, j ∈ [k]. Then C can be learned in time poly(n+m) usingO(k2m3B) SEED queries
in expectation.

Proof. Any x ∈ X satisfies ∥x∥2 ≤ ∥x∥1 ≤ 2B , and by Lemma 14 any two distinct classes
Ci, Cj ∈ C are linearly separable with margin r = 2−O(m2B). By Theorem 10, CPLearn(X)
with SEED restricted to classes i, j returns a separator for Ci and Cj in time poly(m + n) using
O(m log R

r) = O(m
3B) SEED queries in expectation. By intersecting the separators for all j ∈ [k]\i

we obtain Ci. Repeating this process for all i ∈ [k] yields the claim.

D.2 Grid

Let c > 0 be such that 1/c is an integer and suppose that X ⊆ Q = {−1,−1 + c, . . . , 1 − c, 1}m.
We call this the grid model. If 1/c ≤ 2B/m − 1 then we say that the bit complexity of X is bounded
by B.
Corollary 16. Suppose X ⊂ Nm has bit complexity bounded by B ∈ N in the grid model, and
let C = (C1, . . . , Ck) be a partition of X such that Ci, Cj are linearly separable for every distinct
i, j ∈ [k]. Then C can be learned in time poly(n+m) using O(k2m(B + logm)). SEED queries in
expectation.

Proof. We use the approach of Gonen et al. [2013]. Let c > 0 be such that 1/c is an integer and
suppose that X ⊆ Q = {−1,−1 + c, . . . , 1 − c, 1}m. By Lemma 10 of Gonen et al. [2013], any
two sets in Q that are linearly separable are also linearly separable with margin r = (c/

√
m)m+2.

We can thus apply CPLearn as in the proof of Corollary 15, obtaining for separating every Ci, Cj

a running time of poly(m+ n) and an expected query bound of O(m log R
r) = O(m

2 log(m/c)).
Since c ≥ 2−B/m − 1, then the bound becomes O(m2 log(m2B/m)) = O(m2(B/m+ logm)) =
O(m(B + logm)). This proves the total expected query bound of O(k2m(B + logm)).

11

