Active Learning of Classifiers with Label and Seed Queries (Supplementary Material)

Marco Bressan Dept. of CS, Univ. of Milan, Italy marco.bressan@unimi.it Nicolò Cesa-Bianchi DSRC & Dept. of CS, Univ. of Milan, Italy nicolo.cesa-bianchi@unimi.it

Silvio Lattanzi Google silviol@google.com Andrea Paudice Dept. of CS, Univ. of Milan, Italy & Istituto Italiano di Tecnologia, Italy andrea.paudice@unimi.it

Maximilian Thiessen Research Unit ML, TU Wien, Austria maximilian.thiessen@tuwien.ac.at

A Supplementary material for Section 3

A.1 Claim 1

Claim 1. Let $K \subset \mathbb{R}^m$ be a convex body, let $E \supseteq K$ be any enclosing ellipsoid, and let μ_E be the centroid of E. Let $f(x) = Ax + \mu$ be an affine transformation with $||A||_2 \leq \lambda$ and $\mu \in K$. Then for any $x \in K$ we have $f(x) \in \sigma(E, \mu_E, \lambda + 1)$.

Proof. Without loss of generality, we can assume K to be full rank. We can also assume E to be the ℓ_2 unit ball; otherwise, just apply an appropriate affine transformation at the beginning of the proof, and its inverse at the end. Under these assumptions, for all $x \in K$ we have $||x||_2 \le 1$, and since $||\mu||_2 \le 1$ as well, we obtain:

$$\|f(x)\|_{2}^{2} = \|Ax\|_{2}^{2} + \|\mu\|_{2}^{2} + 2\langle Ax, \mu \rangle \le \lambda^{2} + 1 + 2\lambda = (\lambda + 1)^{2}$$
(8)

which implies $f(x) \in (\lambda + 1)E$.

A.2 Proof of Lemma 8

First, we prove that $E_i \leq m^2(m+1)\operatorname{conv}(C_i)$ for all $i \in [k]$. This is trivial if $E_i = \emptyset$, so assume $E_i \neq \emptyset$ and let $\ell_i \geq 1$ be the value of h_i at return time. For every $h = 1, \ldots, \ell_i$ let $E_i^h = \operatorname{MVE}(S_i^h)$ and let μ_i^h be the center of E_i^h . If μ_i is the center of E_i then by John's theorem $\sigma(E_i, \mu_i, \frac{1}{m}) \subseteq \operatorname{conv}(X_i)$, and since $X_i \subset \bigcup_{h=1}^{\ell_i} E_i^h$, then $\operatorname{conv}(X_i) \subseteq \operatorname{conv}\left(\bigcup_{h=1}^{\ell_i} E_i^h\right)$. Moreover $E_i^h \subseteq \sigma(\operatorname{conv}(S_i^h), \mu_i^h, m)$ for all $h \in [\ell_i]$, which yields:

$$\sigma\left(E_i, \mu_i, \frac{1}{m}\right) \subseteq \operatorname{conv} \bigcup_{h=1}^{\ell_i} \sigma\left(\operatorname{conv}(S_i^h), \mu_i^h, m\right)$$
(9)

Thus we need only to show that the right-hand side is in $\sigma(\operatorname{conv}(C_i), \mu, m(m+1))$ for some $\mu \in \mathbb{R}$.

Let $S_i = \bigcup_{h=1}^{\ell_i} S_i^h$, let $E = \text{MVE}(S_i)$, and let μ be the center of E. (Note that in general $E \neq E_i$). For every $h \in [\ell_i]$, by applying Claim 1 from Appendix A to $f(x) = \sigma(x, \mu_i^h, m)$ and by John's theorem:

$$\sigma\big(\operatorname{conv}(S_i^h), \mu_i^h, m\big) \subseteq \sigma(E, \mu, m+1) \subseteq \sigma(\operatorname{conv}(S_i), \mu, m(m+1))$$
(10)

By taking the union over all $h \in [\ell_i]$, and since $\operatorname{conv}(S_i) \subseteq \operatorname{conv}(C_i)$, we obtain:

$$\bigcup_{h=1}^{\iota_i} \sigma\big(\operatorname{conv}(S_i^h), \mu_i^h, m\big) \subseteq \sigma(\operatorname{conv}(C_i), \mu, m(m+1))$$
(11)

As the right-hand side is a convex set, (11) still holds if the left-hand side is replaced by its own convex hull; but that convex hull is the right-hand side of (9), which proves the sought claim.

We conclude the proof. For the correctness, since $E_i \leq m^2(m+1) \operatorname{conv}(C_i)$, and since the updates at lines 1 and 1 guarantee that $(X_i)_{i \in [k]}$ is a partition of X, then $((X_i, E_i))_{i \in [k]}$ is an $m^2(m+1)$ rounding of X. For the running time, the **for** loops perform $k \leq n$ iterations, and the **while** loop performs at most n iterations as each iteration strictly decreases the size of X. The running time of any iteration is dominated by the computation of $\operatorname{MVE}(S_i)$ or $\operatorname{MVE}(X_i)$, which takes time $\operatorname{poly}(n+m)$, see above. Hence $\operatorname{Round}(X, k)$ runs in time $\operatorname{poly}(n+m)$. For the query bounds, the **while** loop makes $\mathcal{O}(m^2k)$ LABEL queries per iteration. By standard generalization bounds, since the VC dimension of ellipsoids in \mathbb{R}^m is $\mathcal{O}(m^2)$, E_i^h contains at least half of $X \cap C_i$ with probability at least $\frac{1}{2}$, and thus the expected number of rounds before X becomes empty is in $\mathcal{O}(k \lg n)$, see Bressan et al. [2021a]. We conclude that $\operatorname{Round}(X, k)$ uses $\mathcal{O}(m^2k^2 \lg n)$ LABEL queries in expectation.

A.3 Pseudocode of CPLearn and full proof of Theorem 10

We present CPLearn and prove Theorem 10. The pseudocode of CPLearn is given in Algorithm 4 below; to keep that pseudocode readable we have omitted some details, discussing them in the proof (e.g., the choice of some parameters). For the sake of the proof we suppose $h^{-1}(*) = \emptyset$. It is immediate to verify that the proof holds when $h^{-1}(*) \neq \emptyset$, too, since SEED never returns points in $h^{-1}(*)$ and thus CPLearn behaves identically on X and on $X \setminus h^{-1}(*)$.

CPLearn starts by issuing SEED(X, +1) and SEED(X, -1) at lines 4–4, and if either one returns NIL then we immediately return (\emptyset , X) or (X, \emptyset) accordingly, which is clearly correct. Therefore we can continue assuming none of the two queries returned NIL.

Reduction to the homogeneous case via lifting. CPLearn works on a *lifted* version of the problem where the target separator is homogeneous. For any $z \in \mathbb{R}^m$ and any $c \in \mathbb{R}$ let $(z, c) \in \mathbb{R}^{m+1}$ be the vector obtained by extending z with a coordinate equal to c. For each $x \in X$ let x' = (x, R), and let $X' = \{x' : x \in X\}$ as in lines 4–4. Extend h to X' in the natural way by defining h(x') = h(x) for any $x' \in X'$. We claim that $\{x' \in X' : h(x') = +1\}$ and $\{x' \in X' : h(x') = -1\}$ are separated in \mathbb{R}^{m+1} by a homogeneous hyperplane with margin $\frac{r}{2}$. To see this, let $u \in S^{m-1}$ and $b \in \mathbb{R}$ such that $h(x) \cdot (\langle x, u \rangle + b) \ge r$ for all $x \in X$ with $h(x) \ne *$; such u and b exist by the assumptions of the theorem, and note that $b \le R$. Now let v = (u, b/R) and let $u' = \frac{v}{\|v\|_2}$; note that $\|v\|_2 \le \|u\|_2 + \frac{b}{R} \le 2$. Then, for every $x' \in X'$:

$$\langle x', u' \rangle = \frac{\langle x', v \rangle}{\|v\|_2} = \frac{\langle x, u \rangle + R \cdot {}^{b}\!/R}{\|v\|_2} = \frac{\langle x, u \rangle + b}{\|v\|_2}$$
(12)

which implies:

$$h(x') \cdot \langle x', u' \rangle = \frac{h(x) \cdot (\langle x, u \rangle + b)}{\|v\|_2} \ge \frac{r}{\|v\|_2} \ge \frac{r}{2}$$
(13)

Thus the problem of learning h reduces to learning the lifted version of h over X', which is realized by a homogeneous separator with margin $\frac{r}{2}$. The rest of the proof shows that CPLearn from line 4 onward solves this lifted problem under the bounds of Theorem 10.

Overview. At a high level, CPLearn is a cutting-plane algorithm—see, e.g., Mitchell [2003]. Starting with V_0 being the (m + 1)-dimensional unit ball B(0, 1), CPLearn computes a sequence of version

Algorithm 4: CPLearn(*X*)

if SEED(X, +1) = NIL then return (\emptyset, X) if SEED(X, -1) = NIL then return (X, \emptyset) $R \leftarrow \max_{x \in X} \|x\|_2$ $X' \leftarrow \{(x, R) : x \in X\}$ $i \leftarrow 0, V_0 \leftarrow B(0, 1)$ in \mathbb{R}^{m+1} for $i \leftarrow 0, \ldots, n$ do draw $N = \Theta(m^6 n^{2a})$ points z_1, \ldots, z_N independently $\frac{1}{2m^3}$ -uniformly at random from V_i $\hat{\mu}_{i} \leftarrow \frac{1}{N} \sum_{j=1}^{N} z_{j}$ $X'_{i} \leftarrow \{x' \in X' : \langle \hat{\mu}_{i}, x' \rangle \ge 0\}$ $X_{i} \leftarrow \text{projection of } X'_{i} \text{ on } \mathbb{R}^{m}$ if $SEED(X_i, -1) = NIL$ and $SEED(X \setminus X_i, +1) = NIL$ then **return** $(X_i, X \setminus X_i)$ else exclude all points returned by the queries from future queries let u_i be any point returned by either query if i = 0 then $u_i^* \leftarrow u_i$ else $\begin{bmatrix} u_i^* \leftarrow u_i - z_0 \cdot \frac{\langle u_i, \hat{\mu}_i \rangle}{\langle z_0, \hat{\mu}_i \rangle} \text{ where } z_0 = h(u_0) \cdot u_0 \\ V_{i+1} \leftarrow V_i \cap \{ x' \in \mathbb{R}^{m+1} : h(u_i) \cdot \langle u_i^*, x' \rangle \ge 0 \}$ draw points independently near-uniformly at random from V_i until N = poly(m + n) of them, z_1, \ldots, z_N , fall in V_{i+1} use the covariance matrix of $\{z_1, \ldots, z_N\} \cap V_{i+1}$ to compute a coordinate system under which V_{i+1} is *t*-rounded

spaces V_1, V_2, \ldots by setting $V_{i+1} = V_i \cap Z_i^*$, where Z_i^* is some halfspace determined through SEED queries, as follows. For every $i \ge 0$ let μ_i be the center of mass of V_i , and consider the halfspace:

$$H_i = \{ x' \in \mathbb{R}^{m+1} : \langle \mu_i, x' \rangle \ge 0 \}$$

$$(14)$$

Now let $X'_i = X' \cap H_i$ and execute SEED $(X'_i, -1)$ and SEED $(X' \setminus X'_i, +1)$. If both return NIL then clearly $(X_i, X \setminus X_i)$, where X_i is the projection of X'_i on \mathbb{R}^m , is the partition of X induced by h. If instead either query returns a point u_i , then consider the halfspace:

$$Z_i = \{ x' \in \mathbb{R}^{m+1} : h(u_i) \cdot \langle u_i, x' \rangle \ge 0 \}$$

$$(15)$$

Finally, let $V_{i+1} = V_i \cap Z_i$ and repeat. By standard arguments, $\operatorname{vol}(V_{i+1}) \leq (1 - 1/e) \operatorname{vol}(V_i)$ but V_{i+1} contains a ball of radius $\Omega(r/R)$, and the process terminates within $\mathcal{O}(m \log \frac{R}{r})$ iterations, see for instance [Gilad-Bachrach et al., 2004, Theorem 2].

There are two main obstacles in implementing this process. The first obstacle is computing μ_i , which is hard in general [Rademacher, 2007]. Fortunately, we can efficiently compute a point $\hat{\mu}_i$ that with good probability yields the same guarantees as μ_i , by sampling from a near-uniform distribution over V_i via the hit-and-run random walk technique of Lovász and Vempala [2006]. The second obstacle is that, in order for hit-and-run to be efficient, we must have a system of coordinates under which V_i is well-rounded, i.e., not "too thin" along any direction. Unfortunately, letting $V_{i+1} = V_i \cap Z_i$ may make V_{i+1} extremely thin, as we have no control over Z_i (it depends on the SEED answers). Therefore, CPLearn carefully rotates Z_i into a new halfspace Z_i^* such that $V_{i+1} = V_i \cap Z_i^*$ contains $V_i \cap Z_i$, and that $vol(V_i \cap Z_i^*)$ is not much smaller than $vol(V_i)$. This allows CPLearn to sample efficiently from V_{i+1} ; using those samples it then computes a coordinate system under which V_{i+1} is again well-rounded.

A complete proof. We say a convex body $K \subset \mathbb{R}^{m+1}$ is *t*-rounded if $B(0,t) \subseteq K \subseteq B(0,1)$. For every $u \in \mathbb{R}^{m+1}$ let $h_u = \{x \in X : \langle u, x' \rangle \ge 0\}$. Fix $t \in \Omega(1/m)$ and c > 0 sufficiently small, and fix a > 0 arbitrarily large. We show an implementation of CPLearn that satisfies the following invariants:

- 1. V_i contains all vectors $u \in \mathbb{R}^{m+1}$ such that $h_u = h$
- 2. $\operatorname{vol}(V_{i+1}) \le (1-c)\operatorname{vol}(V_i)$
- 3. V_i is t-rounded under the coordinate system currently held by CPLearn

We prove that the first invariant holds deterministically for all $i \ge 0$, and that with probability at least $1 - n^{1-a}$ the other ones hold for all $i \ge 0$. Together with the argument from Gilad-Bachrach et al. [2004] recalled above, the first two invariants imply that CPLearn returns a separator of X w.r.t. h in $\mathcal{O}(m \log \frac{R}{r})$ iterations (and thus SEED queries). The third invariant ensures that CPLearn can sample enough points from the version space V_i in time poly(n+m), which in turn ensures the overall running time is in poly(n+m), where the degree depends on a.

Let us first discuss how at lines 4 and 4 one can sample from V_i and V_{i+1} in time poly(n + m) per sample, assuming both V_i and V_{i+1} are t-rounded in the coordinate system held by CPLearn. Let K be a t-rounded convex body in \mathbb{R}^{m+1} . For any given $\epsilon > 0$, the hit-and-run algorithm of Lovász and Vempala [2006] returns a point ϵ -uniformly at random from K after $\mathcal{O}(m^3 t^2 \ln t/\epsilon)$ steps; see Corollary 1.2 of Lovász and Vempala [2006]. Moreover, every step of that algorithm can be implemented in time polynomial in the representation of K, see for instance Bressan et al. [2021a]. By letting $K = V_i$, and noting that the representation of V_i has size $\mathcal{O}(m + n)$ as $i \leq n$ and every constraining halfspace can be encoded in $\mathcal{O}(m)$ bits, we can sample a point ϵ -uniformly in time $poly(n, m, \ln t/\epsilon)$ per sample; the same holds for V_{i+1} . Since we set $t = \Omega(1/m)$ and $\epsilon = \Omega(1/poly(n + m))$, we conclude that lines 4 and 4 take poly(n + m) time per sample.

Let us now turn to the invariants. Consider first the case i = 0. The first and third invariant hold trivially, while the second one holds for any $c \leq 1/2$ since V_1 is the intersection of $V_0 = B(0, 1)$ and a homogeneous halfspace. Let then $i \geq 1$ and suppose all invariants hold for i - 1. We prove that they hold for i + 1 as well.

Let $\eta = 1/2m^2$, let $\epsilon = \frac{\eta}{m}$, and $p = n^{-a}/2$. Then, line 4 draws $N = \Theta(m^2/\eta^2 p^2)$ independent ϵ -uniform random points z_1, \ldots, z_N from V_i , and line 4 sets $\hat{\mu}_i$ as their average. As shown in Bressan et al. [2021a], this implies $\Pr(d(\hat{\mu}_i, \mu_i) \leq \eta \phi(V_i)) \geq 1 - p$, where $\phi(V_i)$ is the Euclidean diameter of V_i . As V_i is t-rounded, $\phi(V_i) \leq 2$, hence $\Pr(d(\hat{\mu}_i, \mu_i) \leq 1/m^2) \geq 1 - n^{-a}/2$. Now suppose indeed $d(\hat{\mu}_i, \mu_i) \leq 1/m^2$. It is not hard to see that any halfspace Z containing $\hat{\mu}_i$ satisfies $\operatorname{vol}(Z \cap V_i) \geq \frac{1}{e}(1 - \frac{1}{m})^{m+1} \operatorname{vol}(V_i) = \Omega(\operatorname{vol}(V_i))$; that is, $\hat{\mu}_1$ has Tukey depth at least c (see the second invariant).

Next, consider the set X'_i computed at line 4, and observe that $X'_i = X \cap H_i$, where:

$$H_i = \{ x' \in \mathbb{R}^{m+1} : \langle \hat{\mu}_i, x' \rangle \ge 0 \}$$
(16)

Clearly, if the two queries at line 4 return NIL, then CPLearn returns the correct partition of X. Otherwise consider the point u_i returned by either query, see line 4, and let Z_i as in (15). By standard arguments $\hat{\mu}_i \in Z_i$, and therefore $\operatorname{vol}(V_i \cap Z_i) \leq (1-c) \operatorname{vol}(V_i)$ as said above. Moreover, again by standard arguments, $V_i \cap Z_i$ contains all vectors $u \in \mathbb{R}^{m+1}$ such that $h_u = h$.

Now let us turn to CPLearn. Since $i \ge 1$, CPLearn at line 4 defines:

$$u_i^* = u_i - z_0 \cdot \frac{\langle u_i, \hat{\mu}_i \rangle}{\langle z_0, \hat{\mu}_i \rangle} \tag{17}$$

Before continuing, we check that u_i^* is well-defined, i.e., that $\langle z_0, \hat{\mu}_i \rangle > 0$. Indeed, $\hat{\mu}_i$ lies in the interior of V_i since it has positive Tukey depth (see above), and since by construction $V_i \subseteq Z_0$ for all $i \ge 1$, then $\hat{\mu}_i$ lies in the interior of Z_0 too. Moreover z_0 lies in the interior of Z_0 , too, being the normal vector of Z_0 . Hence $\langle z_0, \hat{\mu}_i \rangle > 0$, as claimed. Note also that, for every $x \in \mathbb{R}^{m+1}$, the definition of u_i^* and the linearity of the inner product yield:

$$\langle u_i^*, x \rangle = \langle u_i, x \rangle - \langle z_0, x \rangle \cdot \frac{\langle u_i, \hat{\mu}_i \rangle}{\langle z_0, \hat{\mu}_i \rangle}$$
(18)

Now, CPLearn at line 4 sets $V_{i+1} = V_i \cap Z_i^*$, where:

$$Z_i^* = \{ x \in \mathbb{R}^{m+1} : h(u_i) \cdot \langle u_i^*, x \rangle \ge 0 \}$$
(19)

We are now ready to prove the three invariants above.

The first invariant. We claim that $V_i \cap Z_i \subseteq V_i \cap Z_i^*$. In fact, we claim $Z_0 \cap Z_i \subseteq Z_0 \cap Z_i^*$; this implies $V_i \cap Z_i \subseteq V_i \cap Z_i^*$, since by construction $V_i \subseteq Z_0$ as $i \ge 1$. In turn, since $V_i \cap Z_i$ contains

all vectors $u \in \mathbb{R}^{m+1}$ such that $h_u = h$, see above, this implies that V_{i+1} contains all those vectors as well, proving the first invariant. Let $x \in Z_0 \cap Z_i$. Then:

$$h(u_i) \cdot \langle u_i^*, x \rangle = h(u_i) \cdot \langle u_i, x \rangle - h(u_i) \cdot \langle z_0, x \rangle \cdot \frac{\langle u_i, \mu_i \rangle}{\langle z_0, \mu_i \rangle}$$
(20)

Let us examine the terms of (20). First, $h(u_i) \cdot \langle u_i, x \rangle \ge 0$ since $x \in Z_i$. Second, $\langle z_0, x \rangle \ge 0$ since $x \in Z_0$. Third, $\langle z_0, \hat{\mu}_i \rangle > 0$ as noted above. Thus the term $-h(u_i) \cdot \langle z_0, x \rangle \cdot \frac{\langle u_i, \hat{\mu}_i \rangle}{\langle z_0, \hat{\mu}_i \rangle}$ has the same sign as $-h(u_i) \cdot \langle u_i, \hat{\mu}_i \rangle$. However, by definition u_i is a counterexample to the labeling given by H_i , which means $h(u_i) \cdot \langle u_i, \hat{\mu}_i \rangle < 0$. Therefore $h(u_i) \cdot \langle u_i^*, x \rangle \ge 0$, which implies $x \in Z_i^*$ as desired.

The second invariant. We claim that $\hat{\mu}_i \in Z_i^*$. To this end just substitute $x = \hat{\mu}_i$ in (18) to see that $\langle u_i^*, \hat{\mu}_i \rangle = 0$. since μ_i has Tukey depth c > 0 w.r.t. V_i , we deduce that $\operatorname{vol}(V_{i+1}) = \operatorname{vol}(V_i \cap Z_i^*) \leq (1-c) \operatorname{vol}(V_i)$. This proves the second invariant.

The third invariant. First of all, we claim that $\operatorname{vol}(V_{i+1}) = \operatorname{vol}(V_i \cap Z_i^*) \ge c \operatorname{vol}(V_i)$. To this end just observe that $\hat{\mu}_i$ is on the boundary of $\mathbb{R}^{m+1} \setminus Z_i^*$, too. Consider then line 4 of CPLearn: if the samples are independent ϵ -uniform over V_i , then every sample drawn ends in V_{i+1} independently with probability at least $c - \epsilon$. Hence, as long as $\epsilon < c/2$, a sample of $\Theta(N)$ such points from V_i will contain a subsample of N points z_1, \ldots, z_N in V_{i+1} with probability $1 - e^{-\Theta(N)}$. Moreover, those N samples will be $\frac{\epsilon}{c}$ -uniform in V_{i+1} . Therefore line 4 takes time $\operatorname{poly}(n+m)$ with probability $1 - e^{-\Theta(N)}$. Moreover, those normalizes a coordinate system under which V_{i+1} is t-rounded with probability at least $1 - n^{-a}/2$, see for instance Vempala [2010]. This proves the third invariant.

Wrap-up. Note that CPLearn makes at most n iterations, as every iteration either returns (if the SEED queries return NIL) or decreases the number of points of X for which the label is not known (see line 4). Hence, with probability at least $1 - n^{1-a}$, all the invariants above hold for all i = 0, ..., n-1. The query bounds and the running time bounds follow as explained above.

A.4 One-sided margin

We sketch the proof of Theorem 3. Let d be a metric over \mathbb{R}^m induced by some norm $\|\cdot\|_d$. We say $C \subseteq X$ has one-sided strong convex hull margin γ with respect to d if $d(\operatorname{conv}(X \setminus C), \operatorname{conv}(C)) \ge \gamma \phi_d(C)$.

The idea behind Theorem 3 is to compute a Euclidean *one-sided* α *-rounding* of X w.r.t. h, that is, a set $\widehat{X} \subseteq X$ such that $C \subseteq \widehat{X}$ and $\widehat{X} \leq \alpha \operatorname{conv}(C)$, where $C = h^{-1}(+1)$. We will compute \widehat{X} for $\alpha = \text{poly}\left(\frac{\kappa_d}{\gamma}\right)$, and then use the cutting-planes algorithm of Section 3.2. As the margin is invariant under scaling, assume without loss of generality $\inf_{u \in S^{m-1}} \|u\|_d = 1$ and $\sup_{v \in S^{m-1}} \|v\|_d = \kappa_d$. Let x = SEED(X, +1). If x = NIL then clearly h = -1. Otherwise we run BallSearch(X, x), listed below. BallSearch sorts X by distance from x, and then uses LABEL queries to perform a binary search and find a pair of points $x_{lo} \in C$ and $x_{hi} \in X \setminus C$ adjacent in the ordering. (This works even if the order is not monotone w.r.t. the labels). At this point BallSearch guesses a value t for $\frac{\gamma}{\kappa_d}$, starting with t = 1. Given t, with a SEED query BallSearch checks if there are points of C among the points at distance between $d_{\rm euc}(x, x_{\rm hi})$ and $\frac{1}{t} d_{\rm euc}(x, x_{\rm hi})$ from $x_{\rm hi}$. If not, then it lets $\widehat{X} = X \cap B(x, d_{euc}(x, x_{lo}))$, else it lets $\widehat{X} = X \cap B(x, \frac{1}{t}d_{euc}(x, x_{hi}))$. Finally, it checks whether $C \subseteq \widehat{X}$; if yes then it returns \widehat{X} , else it halves t and repeat. One can show that this procedure stops with $t \geq \frac{\gamma}{2\kappa_d}$, yielding a \widehat{X} such that $\phi(\widehat{X}) = \mathcal{O}(\phi(C)/t)$ and that C and $\widehat{X} \setminus C$ are linearly separated with margin $\Omega(t\frac{\gamma}{\kappa_d}\phi(\widehat{X}))$. Setting $R = \phi(\widehat{X})$ and $r = d_{euc}(C, \widehat{X} \setminus C)$, we conclude that $\frac{R}{r} = \text{poly}\left(\frac{\kappa_d}{\gamma}\right)$. At this point by Theorem 10 we can compute C by running $\text{CPLearn}(\widehat{X})$, which takes time poly(n+m) and uses $\mathcal{O}(m \log \frac{\kappa_d}{\gamma})$ SEED queries in expectation.

A remark on Theorem 3. Given two pseudometrics d and q induced by seminorms $\|\cdot\|_d$ and $\|\cdot\|_q$, let $\kappa_d(q) = \sup_{u \in S_q^{m-1}} \|u\|_d / \inf_{v \in S_q^{m-1}} \|v\|_d$. If one can compute $\|\cdot\|_q$ efficiently, then Theorem 3 holds with $\kappa_d(q)$ in place of κ_d . In fact, Theorem 3 is just the special case where $q = d_{\text{euc}}$. Therefore one can restate Theorem 3 so that d is an arbitrary pseudometric (thus including the case $\kappa_d = \infty$), provided one has access to an approximation q of d with finite distortion.

Algorithm 5: BallSearch (X, x_1)

$$\begin{split} & \text{let } x_1, \dots, x_n \text{ be the points of } X \text{ in order of Euclidean distance from } x_1 \text{ (break ties arbitrarily)} \\ & \text{if } \text{LABEL}(x_n) = +1 \text{ then return } X \\ & \text{lo} \leftarrow 1, \text{hi} \leftarrow n \\ & \text{while } \text{hi} - \text{lo} \geq 2 \text{ do} \\ & \left\lfloor \begin{array}{c} i \leftarrow \left\lceil \frac{\text{hi} + \text{lo}}{2} \right\rceil \\ & \text{if } \text{LABEL}(x_i) = 1 \text{ then } \text{lo} \leftarrow i \text{ else } \text{hi} \leftarrow i \\ & t \leftarrow 1, \ r \leftarrow d_{\text{euc}}(x_1, x_{\text{lo}}), \ R \leftarrow d_{\text{euc}}(x_1, x_{\text{hi}}) \\ & \text{repeat} \\ & \left\lfloor \begin{array}{c} U_i \leftarrow \left\{ x \in X : R \leq d_{\text{euc}}(x, x_1) \leq \frac{1}{t}R \right\} \\ & \text{if } \text{SEED}(U_i, +1) = \text{NIL then } \widehat{X} \leftarrow X \cap B(x_1, r) \text{ else } \widehat{X} \leftarrow X \cap B(x_1, \frac{1}{t}R) \\ & t \leftarrow t/2 \\ \end{array} \right. \\ & \text{until } \text{SEED}(X \setminus \widehat{X}, +1) = \text{NIL} \\ & \text{return } \widehat{X}; \end{split}$$

B Supplementary material for Section 4

B.1 Full proof of Theorem 4

Construction. We first discuss the case k = 2. Let e_1, \ldots, e_m be the canonical basis of \mathbb{R}^m . To ease the notation define p = m - 1; the input set will span a p-dimensional subspace. Define:

$$\ell = \left\lfloor \frac{1}{\sqrt{2\gamma\sqrt{m}}} \right\rfloor \tag{21}$$

Since $\gamma \leq \frac{m^{-3/2}}{16}$ and $m \geq 2$,

$$\ell \ge \frac{1}{\sqrt{2\frac{m^{-3/2}}{16}\sqrt{m}}} = \sqrt{8m} \ge 4 \tag{22}$$

For each $i \in [p]$ and $j \in [\ell]$, let $x_i^j = e_i + j \cdot e_m$. Finally, let $X = \{x_i^j : i \in [p], j \in [\ell]\}$. Define the concept class:

$$\mathcal{H} = \left\{ \bigcup_{i \in [p]} \{x_i^1, \dots, x_i^{\ell_i}\} : (\ell_1, \dots, \ell_p) \in [\ell]^p \right\}$$
(23)

Let $C = \{C_1, C_2\}$ be any partition of X with $C_1 \in \mathcal{H}$ and $C_2 = X \setminus C_1$. First, we observe that C_1 and C_2 are separated by a hyperplane. Let (ℓ_1, \ldots, ℓ_p) be the vector defining C_1 . Then we let:

$$\iota = (-\ell_1, \dots, -\ell_p, 1) \tag{24}$$

Then for any $x_i^j \in X$,

$$\langle u, x_i^j \rangle = -\ell_i + j \tag{25}$$

which is bounded from above by zero if and only if $j \leq \ell_i$, that is, if and only if $x_i^j \in C_1$. Hence C_1 and C_2 admit a linear separator. Next we prove that, under the Euclidean distance, C_1 and C_2 have strong convex hull margin γ . Using the vector u defined above, since every $x_i^j \in C_2$ has $j \geq \ell_i + 1$, then $\langle u, x_i^j \rangle \geq 1$. This implies:

$$d(\operatorname{conv}(C_1), \operatorname{conv}(C_2)) \ge \frac{1}{\|u\|_2} \ge \frac{1}{\sqrt{p\ell^2 + 1}} \ge \frac{1}{\ell\sqrt{m}}$$
(26)

The diameter of C_1 is at most that of X, which equals $d(x_1^1, x_2^\ell) \leq \ell - 1 + \sqrt{2} \leq 2\ell$. Together with (26) and the fact that $\ell \leq \frac{1}{\sqrt{2\gamma\sqrt{m}}}$, this provides:

$$d(\operatorname{conv}(C_1), \operatorname{conv}(C_2)) \ge \frac{1}{2\ell^2 \sqrt{m}} \phi_d(C_1) \ge \frac{2\gamma\sqrt{m}}{2\sqrt{m}} \phi_d(C_1) = \gamma \phi_d(C_1)$$
(27)

The same holds for C_2 . Hence C has strong convex hull margin γ .

Query bound. Let $V_0 = \{(C_1, C_2) : C_1 \in \mathcal{H}\}$. This is the initial version space. We let the target concept $\mathcal{C} = (C_1, C_2)$ be drawn uniformly at random from V_0 . For all $t = 0, 1, \ldots$, we denote by V_t be the version space after the first t SEED queries made by the algorithm. Now fix any $t \ge 1$ and let SEED(U, y) be the t-th such query. Without loss of generality we assume y = 1; a symmetric argument applies to y = 2. If $U \cap C_1$ contains a point x in the agreement region of V_{t-1} , i.e., whose label can be inferred from past queries, then we return x. Therefore we can continue under the assumption that U does not contain any such point (doing otherwise cannot reduce the probability that the algorithm learns nothing). The oracle answers so to maximize $\frac{|V_t|}{|V_{t-1}|}$, as described below.

For each $i \in [p]$ let $S_i = \{x_i^j : j \in [\ell]\}$. We consider S_i as a sequence of points sorted by the index j. Let Z_i be the subset of S_i in the disagreement region of V_{t-1} together with the point in S_i preceding this region; observe that this point always exists, as $x_i^1 \in C_1$ is in the agreement region. Note that Z_i is necessarily an interval of S_i . We let $U_i = Z_i \cap U$ for each $i \in [p]$ and $P(U) = \{i \in [p] : U_i \neq \emptyset\}$. For every $i \in P(U)$, we let α_i be the fraction of points of Z_i that precede the first point in U_i . Let $x_i^* = \arg \max\{j : x_i^j \in S_i \cap C_1\}$. Observe that $|V_{t-1}| = \prod_{i \in [p]} |Z_i|$, as x_i^* can be every point of Z_i . Indeed, x_i^* is uniformly distributed over Z_i ; either x_i^* is a point in the disagreement region of S_i , or the disagreement region of S_i is fully contained in C_2 and x_i^* is the point preceding the disagreement region of S_i .

Now we show that $\mathbb{E}[|V_{t-1}|/|V_t|] \leq p+1$. Let \mathcal{E} be the event that SEED(U, 1) = NIL. Write:

$$\mathbb{E}\left[\frac{|V_{t-1}|}{|V_t|}\right] = \Pr(\mathcal{E}) \mathbb{E}\left[\frac{|V_{t-1}|}{|V_t|} \middle| \mathcal{E}\right] + \Pr(\overline{\mathcal{E}}) \mathbb{E}\left[\frac{|V_{t-1}|}{|V_t|} \middle| \overline{\mathcal{E}}\right]$$
(28)

We bound the two terms of (28) starting with the first one. Note that \mathcal{E} holds if and only if $U_i \cap C_1 = \emptyset$ for all $i \in P(U)$. Since x_i^* is uniformly distributed over Z_i , for all $i \in P(U)$ we have:

$$\Pr(C_1 \cap U_i = \emptyset) = \alpha_i \tag{29}$$

And since the distributions of those points are independent:

$$\Pr(\mathcal{E}) = \prod_{i \in P(U)} \Pr(C_1 \cap U_i = \emptyset) = \prod_{i \in P(U)} \alpha_i$$
(30)

If $Pr(\mathcal{E}) > 0$ and \mathcal{E} holds, then x_i^* is uniformly distributed over the first $\alpha_i |Z_i|$ points of Z_i , as the rest of Z_i belongs to C_2 . This holds independently for all *i*, thus:

$$|V_t| = \left(\prod_{i \in P(U)} \alpha_i |Z_i|\right) \left(\prod_{i \in [p] \setminus P(U)} |Z_i|\right) = \left(\prod_{i \in P(U)} \alpha_i\right) \left(\prod_{i \in [p]} |Z_i|\right) = |V_{t-1}| \prod_{i \in P(U)} \alpha_i$$
(31)

It follows that $\Pr(\mathcal{E})\mathbb{E}\left[\frac{|V_{t-1}|}{|V_t|} \middle| \mathcal{E}\right] \leq 1.$

Let us now bound the second term of (28). If \mathcal{E} does not hold, then SEED(U, 1) returns the smallest point $x \in U_i$ for any $i \in P(U)$ such that $C_1 \cap U_i \neq \emptyset$ (note that necessarily $x \in C_1$). For any fixed $i \in P(U)$, the probability of returning the smallest point of U_i is bounded by $Pr(C_1 \cap U_i \neq \emptyset)$, which is $1 - \alpha_i$; and if this is the case, then we have $|V_t| = (1 - \alpha_i)|V_{t-1}|$. Thus:

$$\Pr(\overline{\mathcal{E}})\mathbb{E}\left[\frac{|V_{t-1}|}{|V_t|} \,\Big| \,\overline{\mathcal{E}}\right] \le \Pr(\overline{\mathcal{E}}) \max_{i \in P(U)} (1 - \alpha_i) \frac{1}{(1 - \alpha_i)} = \Pr(\overline{\mathcal{E}}) \le 1 \tag{32}$$

So the two terms of (2) are both bounded by 1; we conclude that $\mathbb{E}\left[\frac{|V_{t-1}|}{|V_t|}\right] \leq 2$.

We can conclude the query bound. For any $\bar{t} \ge 1$,

$$\mathbb{E}\left[\log\frac{|V_0|}{|V_{\bar{t}}|}\right] = \mathbb{E}\left[\sum_{t=1}^{\bar{t}}\log\frac{|V_{t-1}|}{|V_t|}\right]$$
(33)

$$=\sum_{t=1}^{\bar{t}} \mathbb{E}\left[\log\frac{|V_{t-1}|}{|V_t|}\right]$$
(34)

$$\leq \sum_{t=1}^{\bar{t}} \log \mathbb{E}\left[\frac{|V_{t-1}|}{|V_t|}\right] \qquad \text{Jensen's inequality} \qquad (35)$$

$$\leq \sum_{t=1}^{5} \log 2 \qquad \text{see above} \qquad (36)$$
$$= \bar{t} \qquad (37)$$

Since $|V_0| = \ell^{m-1}$, by Markov's inequality, and since $(m-1)\log \ell - \log 2 \ge \frac{(m-1)\log \ell}{2} \ge \frac{m\log \ell}{4}$:

$$\Pr(|V_{\bar{t}}| \le 2) = \Pr\left(\log\frac{|V_0|}{|V_{\bar{t}}|} \ge (m-1)\log\ell - \log 2\right) \le \frac{4\mathbb{E}\left[\log\frac{|V_0|}{|V_{\bar{t}}|}\right]}{m\log\ell} \le \frac{4\bar{t}}{m\log\ell}$$
(38)

Now let T be the random variable counting the number of queries spent by the algorithm, and let V_T be the version space at return time. Since C is uniform over V_T and C is returned with probability at least $\frac{1}{2}$, then $\Pr(|V_T| \le 2) \ge \frac{1}{2}$. By (38) and linearity of expectation,

$$\frac{1}{2} \le \Pr(|V_T| \le 2) = \sum_{\bar{t} \ge 0} \Pr(T = \bar{t}) \Pr(|V_{\bar{t}}| \le 2) \le \sum_{\bar{t} \ge 0} \Pr(T = \bar{t}) \cdot \frac{4\bar{t}}{m \log \ell} = \mathbb{E}[T] \frac{4}{m \log \ell}$$
(39)

Therefore $\mathbb{E}[T] \ge \frac{m \log \ell}{8}$. Now, since $\ell \ge 4$ then $\ell \ge \frac{4}{5\sqrt{2\gamma\sqrt{m}}}$, which since $m \le (16\gamma)^{-2/3}$ yields

$$\ell \ge \frac{4}{5\sqrt{2\gamma(16\gamma)^{-1/3}}} = \sqrt[3]{\frac{1}{\gamma}} \frac{4}{5\sqrt{2(16)^{-1/3}}} = \sqrt[3]{\frac{1}{\gamma}} \frac{4 \cdot 4^{1/3}}{5\sqrt{2}}$$
(40)

Since $\frac{4^{4/3}}{5\sqrt{2}} > 0.89$, we conclude that:

$$\mathbb{E}[T] > \frac{m \log \frac{0.89}{\sqrt[3]{\gamma}}}{8 \log m} > \frac{m \frac{1}{3} \log \frac{1}{2\gamma}}{8 \log m} = \frac{m \log \frac{1}{2\gamma}}{24 \log m}$$
(41)

which concludes the proof for k = 2.

Multiclass. For any $k \ge 2$ let $k' = \lfloor \frac{k}{2} \rfloor$. For each $s \in [k']$ consider the construction for the case k = 2 shifted along the *m*-th dimension by $(s - 1)\ell \cdot e_m$:

$$X_{s} = \left\{ x_{i}^{j} + (s-1)\ell \cdot e_{m} : i \in [p], j \in [\ell] \right\}$$
(42)

We let $X^* = \bigcup_{s \in [k']} X_s$, and we define the possible subsets of X^* corresponding to class C_{2s-1} as:

$$\mathcal{H}_{s} = \left\{ \bigcup_{i \in [p]} \left\{ x_{i}^{1} + (s-1)\ell \cdot e_{m}, \ \dots, \ x_{i}^{\ell_{i}} + (s-1)\ell \cdot e_{m} \right\} : (\ell_{1}, \dots, \ell_{p}) \in [\ell]^{p} \right\}$$
(43)

Finally, let \mathcal{H} be the set of all partitions $\mathcal{C} = (C_1, \ldots, C_k)$ of X^* such that $C_{2s-1} \in \mathcal{H}_s$ and $C_{2s} = X_s \setminus C_{2s-1}$ for all $s \in [k']$, and let $C_k = \emptyset$ in case k is odd. The same arguments of the case k = 2 prove that any such \mathcal{C} has convex hull margin γ . Indeed, for adjacent classes C_i, C_{i+1} those arguments prove that the strong convex hull margin is at least γ ; for non-adjacent classes, the margin can only be larger. The random target concept $\mathcal{C} = (C_1, \ldots, C_k)$ is obtained by drawing each C_{2s-1} for $s \in [k']$ uniformly at random from \mathcal{H}_s , and letting $C_{2s} = X_s \setminus C_{2s-1}$.

We turn to the bound. Consider a generic query SEED(U, i) issued by the algorithm. Without loss of generality we can assume $U \subseteq C_{2s-1} \cup C_{2s} = X_s$ where $s = \lfloor \frac{i}{2} \rfloor$; indeed, by construction of \mathcal{H} , that query can never return a point in $U \setminus X_s$. This shows that learning \mathcal{C} requires solving the k'independent binary instances X_s , returning $\mathcal{C}_s = (C_{2s-1}, C_{2s})$, for $s \in [k']$. As the probability of returning \mathcal{C} is bounded from above by the minimum over $s \in [k]$ of the probability of returning \mathcal{C}_s , the algorithm must make at least $\frac{m}{24} \log \frac{1}{2\gamma}$ queries for each $s \in [k']$, concluding the proof.

C Supplementary material for Section A.4

Lemma 13. Let $C \subseteq X$ have strong convex hull margin $\gamma \in (0, 1]$ w.r.t. d. For any $x_1 \in C$ BallSearch (X, x_1) takes time poly(n + m), uses $\mathcal{O}(\log n)$ LABEL queries and $\mathcal{O}(\log \frac{\kappa_d}{\gamma})$ SEED queries, and outputs $\widehat{X} \subseteq X$ such that

$$\begin{split} & I. \ C \subseteq \widehat{X} \\ & 2. \ d_{\text{euc}}(\text{conv}(C), \text{conv}(\widehat{X} \setminus C)) \geq \frac{\gamma^2}{4\kappa_s^2} \phi(\widehat{X}) \end{split}$$

Proof. To begin, observe that $d_{\text{euc}} \leq d \leq \kappa_d d_{\text{euc}}$ implies that the ratio between distances changes by a factor at most κ_d between d_{euc} and d. In particular this implies that for any set $\hat{X} \subseteq X$:

$$\frac{d_{\text{euc}}(\text{conv}(C), \text{conv}(X \setminus C))}{\phi(C)} \ge \frac{d(\text{conv}(C), \text{conv}(X \setminus C))}{\kappa_d \phi_d(C)}$$
(44)

We will use this inequality below.

Now, suppose line 5 of BallSearch returns, so $\hat{X} = X$. The running time, the query bounds, and point (1) are straightforward. To prove (2), since $x_1, x_n \in C$ we have:

$$\phi(C) \ge d_{\text{euc}}(x_1, x_n) \ge \frac{1}{2}\phi(X) = \frac{1}{2}\phi(\widehat{X}) \ge \frac{\gamma}{2\kappa_d}\phi(\widehat{X})$$
(45)

where we used $\phi(X) = \max_{a,b \in X} d_{euc}(a,b) \leq \max_{a,b \in X} (d_{euc}(a,x_1) + d_{euc}(x_1,b)) \leq 2d_{euc}(x_1,x_n)$. Therefore $\phi(\widehat{X}) \leq \frac{2\kappa_d}{\gamma} \phi(C)$, which together with (44) and the margin condition gives:

$$\frac{d(\operatorname{conv}(C),\operatorname{conv}(\widehat{X}\setminus C))}{\phi(\widehat{X})} \ge \frac{d_{\operatorname{euc}}(\operatorname{conv}(C),\operatorname{conv}(\widehat{X}\setminus C))}{\frac{2\kappa_d}{\gamma}\phi(C)} \ge \frac{d(\operatorname{conv}(C),\operatorname{conv}(\widehat{X}\setminus C))}{\frac{2\kappa_d}{\gamma}\kappa_d\phi_d(C)} \ge \frac{\gamma^2}{2\kappa_d^2}$$
(46)

We turn to the **repeat** loop. Consider a generic iteration just before the update of t. We prove:

(a) $d(C, \widehat{X} \setminus C) \ge \min\left(t, \frac{\gamma}{\kappa_d}\right) \frac{\gamma}{2\kappa_d} \phi(\widehat{X})$ (b) if $t \le \frac{\gamma}{\kappa_d}$ then $C \subseteq \widehat{X}$

First, suppose SEED $(U_i, +1) = NIL$, in which case $\widehat{X} = X \cap B(x_1, r)$. To prove (a), observe that $x_1, x_{lo} \in C$ implies:

$$\phi(C) \ge d_{\text{euc}}(x_1, x_{\text{lo}}) = r \ge \frac{1}{2}\phi(\widehat{X}) \ge \min\left(\frac{t}{2}, \frac{\gamma}{2\kappa_d}\right)\phi(\widehat{X}) \tag{47}$$

Now use the argument above, but with $1/\min(\frac{t}{2}, \frac{\gamma}{2\kappa_d})$ in place of $\frac{2\kappa_d}{\gamma}$ in (46). To prove (b), note that $x_1 \in C$ and $x_{\text{hi}} \in X \setminus C$ implies $R = d_{\text{euc}}(x_1, x_{\text{hi}}) \ge d_{\text{euc}}(C, X \setminus C)$. Since $d_{\text{euc}} \le d \le \kappa_d d_{\text{euc}}$, and by the margin assumptions,

$$\frac{R}{\phi(C)} \ge \frac{d_{\text{euc}}(C, X \setminus C)}{\phi(C)} \ge \frac{d(C, X \setminus C)}{\kappa_d \phi_d(C)} \ge \frac{\gamma}{\kappa_d} \ge \min\left(t, \frac{\gamma}{\kappa_d}\right)$$
(48)

Therefore $\phi(C) \leq \max\left(\frac{1}{t}, \frac{\kappa_d}{\gamma}\right) R$, which implies $C \subseteq X \cap B\left(x_1, \max\left(\frac{1}{t}, \frac{\kappa_d}{\gamma}\right) R\right)$. For $t \leq \frac{\kappa_d}{\gamma}$ the right-hand side is $X \cap B(x_1, \frac{1}{t}R)$. Note however that $X \cap B(x_1, \frac{1}{t}R) = (X \cap B(x_1, r)) \cup U_i$ since $x_{\text{lo}}, x_{\text{hi}}$ are adjacent in the sorted list. But SEED $(U_i, +1) = \text{NIL}$, hence $C \subseteq X \cap B(x_1, r) = \hat{X}$.

Next, suppose SEED $(U_i, +1) = y \neq \text{NIL}$, in which case $\widehat{X} = X \cap B(x_1, \frac{1}{t}R)$. To prove (a), note that $\phi(C) \ge d(x_1, y) \ge R$, and that $\phi(\widehat{X}) \le 2\frac{1}{t}R$. Hence $\phi(C) \ge \frac{t}{2}\phi(\widehat{X}) \ge \min\left(\frac{t}{2}, \frac{\gamma}{2\kappa_d}\right)\phi(\widehat{X})$. Now use again the argument above, but with $1/\min\left(\frac{t}{2}, \frac{\gamma}{2\kappa_d}\right)$ in place of $\frac{2\kappa_d}{\gamma}$ in (46). To prove (b), the argument for the case above implies $C \subseteq X \cap B(x_1, \max\left(\frac{1}{t}, \frac{\kappa_d}{\gamma}\right)R)$. If $t \le \frac{\gamma}{\kappa_d}$ then the right-hand side is just \widehat{X} .

To conclude the proof, note that by point (b) above the **repeat** loop returns in $\mathcal{O}(\log \frac{\kappa_d}{\gamma})$ iterations. Therefore BallSearch (X, x_1) uses $\mathcal{O}(\log n)$ LABEL queries and $\mathcal{O}(\log \frac{\kappa_d}{\gamma})$ SEED queries. Finally, note that the running time can be brought to poly(n+m) by storing the output of all SEED queries, and replacing U_i with $U_i \setminus U_i \cap \hat{C}$ where $\hat{C} \subset C$ is the subset of points of C known so far. In this way, at each **repeat** iteration either $\hat{X}_i \subseteq C$ or we learn the label of some point of C previously unknown. Therefore **repeat** makes at most n iterations; it is immediate to see that each iteration takes time poly(n+m) and thus BallSearch runs in time poly(n+m) as well. \Box

C.1 Proof of Theorem 3

Let x = SEED(X, +1). If x = NIL then stop and return \emptyset . Otherwise run BallSearch(X, x) to obtain \widehat{X} . By Lemma 13 this takes poly(n+m) time, $\mathcal{O}(\log n)$ LABEL queries, and $\mathcal{O}(\log \frac{\kappa_d}{\gamma})$ SEED queries. By Lemma 13 $C \subseteq \widehat{X}$, and C and $\widehat{X} \setminus C$ are linearly separated with margin $\frac{\gamma^2}{4\kappa_d^2}\phi(\widehat{X})$. Thus \widehat{X} satisfies the assumptions of Theorem 10 with $R/r = \frac{4\kappa_d^2}{\gamma^2}$, and by running $\text{CPLearn}(\widehat{X})$ we obtain C in time poly(n+m) using $\mathcal{O}(m \log \frac{\kappa_d}{\gamma})$ SEED queries in expectation.

D Bounds for inputs with bounded bit complexity

We consider the case where X has bounded bit complexity, distinguishing two widely used cases.

D.1 Rational coordinates

Suppose $X \subset \mathbb{Q}^m$ and every $x \in X$ can be encoded in $b(x) \leq B$ bits as follows [Korte and Vygen, 2018]. If $x \in \mathbb{Z}$, then $b(x) = 1 + \lceil \log(|x|+1) \rceil$. If $x = p/q \in \mathbb{Q}$ with $p, q \in \mathbb{Z}$ coprime, then b(x) = b(p) + b(q). If $x \in \mathbb{Q}^m$, then $b(x) = m + \sum_{i \in [m]} b(x_i)$. We show that B gives a lower bound on the margin. The argument is related to Kwek and Pitt [1998].

Lemma 14. Suppose $X \subset \mathbb{Q}^m$ has bit complexity bounded by B, and suppose $C \subseteq X$ and $X \setminus C$ are linearly separable. Then $d(\operatorname{conv}(C), \operatorname{conv}(X \setminus C)) \geq 2^{-\mathcal{O}(m^2B)}$.

Proof. Let $P = \operatorname{conv}(C)$ and let H be a hyperplane containing a face of P. By Lemma 4.5 of Korte and Vygen [2018], $H = \{x \in \mathbb{R}^m : \langle w, x \rangle = t\}$ for some $w \in \mathbb{Q}^m$ and $t \in \mathbb{Q}$ such that $b(w) + b(t) \leq 75m^2B$. The distance between H and any $x \in X \setminus C$ is:

$$d(x,H) = \frac{|\langle w,x\rangle - t|}{\|w\|_2} \tag{49}$$

To bound $|\langle w, x \rangle - t|$ suppose w, x, t are encoded by:

$$w_i = \frac{p_w^i}{q_w^i} \quad i \in [m], \qquad x_i = \frac{p_x^i}{q_x^i} \quad i \in [m], \qquad t = \frac{p_t}{q_t}$$
 (50)

Replacing those quantities in the expression of $|\langle w, x \rangle - t|$, taking the common denominator, observing that the numerator of the resulting expression is an integer, and recalling that $|\langle w, x \rangle - t| > 0$, we deduce:

$$|\langle w, x \rangle - t| \ge \frac{1}{q_t \prod_{i \in [m]} q_w^i q_x^i}$$
(51)

However, since $b(x) = \mathcal{O}(\log(1+|x|))$ for any $x \in \mathbb{Z}$,

$$b\left(q_t\prod_{i\in[m]}q_w^i q_x^i\right) = \mathcal{O}\left(b(q_t) + \sum_{i\in[m]} (b(w_i) + b(x_i))\right) = \mathcal{O}(b(t) + b(w) + b(x))$$
(52)

which therefore is in $\mathcal{O}(m^2B)$. Therefore $|\langle w, x \rangle - t| \ge 2^{-\mathcal{O}(m^2B)}$. To bound $||w||_2$ we just note that $||w||_2 \le ||w||_1 \le 2^{b(w)} \le 2^{75m^2B}$. We conclude that:

$$d(x,H) = \frac{|\langle w, x \rangle - t|}{\|w\|_2} \ge 2^{-\mathcal{O}(m^2B)}$$
(53)

The proof is complete.

Corollary 15. Suppose $X \subset \mathbb{N}^m$ has bit complexity bounded by $B \in \mathbb{N}$ in the rational coordinates model, and let $C = (C_1, \ldots, C_k)$ be a partition of X such that C_i, C_j are linearly separable for every distinct $i, j \in [k]$. Then C can be learned in time poly(n+m) using $\mathcal{O}(k^2m^3B)$ SEED queries in expectation.

Proof. Any $x \in X$ satisfies $||x||_2 \leq ||x||_1 \leq 2^B$, and by Lemma 14 any two distinct classes $C_i, C_j \in \mathcal{C}$ are linearly separable with margin $r = 2^{-\mathcal{O}(m^2B)}$. By Theorem 10, CPLearn(X) with SEED restricted to classes i, j returns a separator for C_i and C_j in time poly(m + n) using $\mathcal{O}(m \log \frac{R}{r}) = \mathcal{O}(m^3B)$ SEED queries in expectation. By intersecting the separators for all $j \in [k] \setminus i$ we obtain C_i . Repeating this process for all $i \in [k]$ yields the claim. \Box

D.2 Grid

Let c > 0 be such that 1/c is an integer and suppose that $X \subseteq Q = \{-1, -1 + c, \dots, 1 - c, 1\}^m$. We call this the grid model. If $1/c \leq 2^{B/m} - 1$ then we say that the bit complexity of X is bounded by B.

Corollary 16. Suppose $X \subset \mathbb{N}^m$ has bit complexity bounded by $B \in \mathbb{N}$ in the grid model, and let $\mathcal{C} = (C_1, \ldots, C_k)$ be a partition of X such that C_i, C_j are linearly separable for every distinct $i, j \in [k]$. Then C can be learned in time $\operatorname{poly}(n+m)$ using $\mathcal{O}(k^2m(B + \log m))$. SEED queries in expectation.

Proof. We use the approach of Gonen et al. [2013]. Let c > 0 be such that 1/c is an integer and suppose that $X \subseteq Q = \{-1, -1 + c, \dots, 1 - c, 1\}^m$. By Lemma 10 of Gonen et al. [2013], any two sets in Q that are linearly separable are also linearly separable with margin $r = (c/\sqrt{m})^{m+2}$. We can thus apply CPLearn as in the proof of Corollary 15, obtaining for separating every C_i, C_j a running time of $\operatorname{poly}(m+n)$ and an expected query bound of $\mathcal{O}(m \log \frac{R}{r}) = \mathcal{O}(m^2 \log(m/c))$. Since $c \ge 2^{-B/m} - 1$, then the bound becomes $\mathcal{O}(m^2 \log(m2^{B/m})) = \mathcal{O}(m^2(B/m + \log m)) = \mathcal{O}(m(B + \log m))$. This proves the total expected query bound of $\mathcal{O}(k^2m(B + \log m))$.