Active Learning of Classifiers with Label and Seed Queries (Supplementary Material)

Marco Bressan
Dept. of CS, Univ. of Milan, Italy
marco.bressan@unimi.it

Nicolò Cesa-Bianchi
DSRC \& Dept. of CS, Univ. of Milan, Italy nicolo.cesa-bianchi@unimi.it

Silvio Lattanzi

Google
silviol@google.com

Andrea Paudice
Dept. of CS, Univ. of Milan, Italy \& Istituto Italiano di Tecnologia, Italy andrea.paudice@unimi.it

Maximilian Thiessen
Research Unit ML, TU Wien, Austria maximilian.thiessen@tuwien.ac.at

A Supplementary material for Section 3

A. 1 Claim 1

Claim 1. Let $K \subset \mathbb{R}^{m}$ be a convex body, let $E \supseteq K$ be any enclosing ellipsoid, and let μ_{E} be the centroid of E. Let $f(x)=A x+\mu$ be an affine transformation with $\|A\|_{2} \leq \lambda$ and $\mu \in K$. Then for any $x \in K$ we have $f(x) \in \sigma\left(E, \mu_{E}, \lambda+1\right)$.

Proof. Without loss of generality, we can assume K to be full rank. We can also assume E to be the ℓ_{2} unit ball; otherwise, just apply an appropriate affine transformation at the beginning of the proof, and its inverse at the end. Under these assumptions, for all $x \in K$ we have $\|x\|_{2} \leq 1$, and since $\|\mu\|_{2} \leq 1$ as well, we obtain:

$$
\begin{equation*}
\|f(x)\|_{2}^{2}=\|A x\|_{2}^{2}+\|\mu\|_{2}^{2}+2\langle A x, \mu\rangle \leq \lambda^{2}+1+2 \lambda=(\lambda+1)^{2} \tag{8}
\end{equation*}
$$

which implies $f(x) \in(\lambda+1) E$.

A. 2 Proof of Lemma 8

First, we prove that $E_{i} \leq m^{2}(m+1) \operatorname{conv}\left(C_{i}\right)$ for all $i \in[k]$. This is trivial if $E_{i}=\emptyset$, so assume $E_{i} \neq \emptyset$ and let $\ell_{i} \geq 1$ be the value of h_{i} at return time. For every $h=1, \ldots, \ell_{i}$ let $E_{i}^{h}=\operatorname{MVE}\left(S_{i}^{h}\right)$ and let μ_{i}^{h} be the center of E_{i}^{h}. If μ_{i} is the center of E_{i} then by John's theorem $\sigma\left(E_{i}, \mu_{i}, \frac{1}{m}\right) \subseteq$ $\operatorname{conv}\left(X_{i}\right)$, and since $X_{i} \subset \bigcup_{h=1}^{\ell_{i}} E_{i}^{h}$, then $\operatorname{conv}\left(X_{i}\right) \subseteq \operatorname{conv}\left(\bigcup_{h=1}^{\ell_{i}} E_{i}^{h}\right)$. Moreover $E_{i}^{h} \subseteq$ $\sigma\left(\operatorname{conv}\left(S_{i}^{h}\right), \mu_{i}^{h}, m\right)$ for all $h \in\left[\ell_{i}\right]$, which yields:

$$
\begin{equation*}
\sigma\left(E_{i}, \mu_{i}, \frac{1}{m}\right) \subseteq \operatorname{conv} \bigcup_{h=1}^{\ell_{i}} \sigma\left(\operatorname{conv}\left(S_{i}^{h}\right), \mu_{i}^{h}, m\right) \tag{9}
\end{equation*}
$$

Thus we need only to show that the right-hand side is in $\sigma\left(\operatorname{conv}\left(C_{i}\right), \mu, m(m+1)\right)$ for some $\mu \in \mathbb{R}$.

Let $S_{i}=\cup_{h=1}^{\ell_{i}} S_{i}^{h}$, let $E=\operatorname{MVE}\left(S_{i}\right)$, and let μ be the center of E. (Note that in general $E \neq E_{i}$). For every $h \in\left[\ell_{i}\right]$, by applying Claim 1 from Appendix A to $f(x)=\sigma\left(x, \mu_{i}^{h}, m\right)$ and by John's theorem:

$$
\begin{equation*}
\sigma\left(\operatorname{conv}\left(S_{i}^{h}\right), \mu_{i}^{h}, m\right) \subseteq \sigma(E, \mu, m+1) \subseteq \sigma\left(\operatorname{conv}\left(S_{i}\right), \mu, m(m+1)\right) \tag{10}
\end{equation*}
$$

By taking the union over all $h \in\left[\ell_{i}\right]$, and since $\operatorname{conv}\left(S_{i}\right) \subseteq \operatorname{conv}\left(C_{i}\right)$, we obtain:

$$
\begin{equation*}
\bigcup_{h=1}^{\ell_{i}} \sigma\left(\operatorname{conv}\left(S_{i}^{h}\right), \mu_{i}^{h}, m\right) \subseteq \sigma\left(\operatorname{conv}\left(C_{i}\right), \mu, m(m+1)\right) \tag{11}
\end{equation*}
$$

As the right-hand side is a convex set, (11) still holds if the left-hand side is replaced by its own convex hull; but that convex hull is the right-hand side of 9 , which proves the sought claim.
We conclude the proof. For the correctness, since $E_{i} \leq m^{2}(m+1) \operatorname{conv}\left(C_{i}\right)$, and since the updates at lines 1 and 1 guarantee that $\left(X_{i}\right)_{i \in[k]}$ is a partition of X, then $\left(\left(X_{i}, E_{i}\right)\right)_{i \in[k]}$ is an $m^{2}(m+1)$ rounding of X. For the running time, the for loops perform $k \leq n$ iterations, and the while loop performs at most n iterations as each iteration strictly decreases the size of X. The running time of any iteration is dominated by the computation of $\operatorname{MVE}\left(S_{i}\right)$ or $\operatorname{MVE}\left(X_{i}\right)$, which takes time poly $(n+m)$, see above. Hence $\operatorname{Round}(X, k)$ runs in time poly $(n+m)$. For the query bounds, the while loop makes $\mathcal{O}\left(m^{2} k\right)$ LABEL queries per iteration. By standard generalization bounds, since the VC dimension of ellipsoids in \mathbb{R}^{m} is $\mathcal{O}\left(m^{2}\right), E_{i}^{h}$ contains at least half of $X \cap C_{i}$ with probability at least $\frac{1}{2}$, and thus the expected number of rounds before X becomes empty is in $\mathcal{O}(k \lg n)$, see Bressan et al. 2021a. We conclude that $\operatorname{Round}(X, k)$ uses $\mathcal{O}\left(m^{2} k^{2} \lg n\right)$ Label queries in expectation.

A. 3 Pseudocode of CPLearn and full proof of Theorem 10

We present CPLearn and prove Theorem 10 . The pseudocode of CPLearn is given in Algorithm 4 below; to keep that pseudocode readable we have omitted some details, discussing them in the proof (e.g., the choice of some parameters). For the sake of the proof we suppose $h^{-1}(*)=\emptyset$. It is immediate to verify that the proof holds when $h^{-1}(*) \neq \emptyset$, too, since SEED never returns points in $h^{-1}(*)$ and thus CPLearn behaves identically on X and on $X \backslash h^{-1}(*)$.

CPLearn starts by issuing $\operatorname{SEED}(X,+1)$ and $\operatorname{SEED}(X,-1)$ at lines 4,4 , and if either one returns NIL then we immediately return (\emptyset, X) or (X, \emptyset) accordingly, which is clearly correct. Therefore we can continue assuming none of the two queries returned NIL.
Reduction to the homogeneous case via lifting. CPLearn works on a lifted version of the problem where the target separator is homogeneous. For any $z \in \mathbb{R}^{m}$ and any $c \in \mathbb{R}$ let $(z, c) \in \mathbb{R}^{m+1}$ be the vector obtained by extending z with a coordinate equal to c. For each $x \in X$ let $x^{\prime}=(x, R)$, and let $X^{\prime}=\left\{x^{\prime}: x \in X\right\}$ as in lines 4 . Extend h to X^{\prime} in the natural way by defining $h\left(x^{\prime}\right)=h(x)$ for any $x^{\prime} \in X^{\prime}$. We claim that $\left\{x^{\prime} \in X^{\prime}: h\left(x^{\prime}\right)=+1\right\}$ and $\left\{x^{\prime} \in X^{\prime}: h\left(x^{\prime}\right)=-1\right\}$ are separated in \mathbb{R}^{m+1} by a homogeneous hyperplane with margin $\frac{r}{2}$. To see this, let $u \in S^{m-1}$ and $b \in \mathbb{R}$ such that $h(x) \cdot(\langle x, u\rangle+b) \geq r$ for all $x \in X$ with $h(x) \neq *$; such u and b exist by the assumptions of the theorem, and note that $b \leq R$. Now let $v=(u, b / R)$ and let $u^{\prime}=\frac{v}{\|v\|_{2}}$; note that $\|v\|_{2} \leq\|u\|_{2}+\frac{b}{R} \leq 2$. Then, for every $x^{\prime} \in X^{\prime}:$

$$
\begin{equation*}
\left\langle x^{\prime}, u^{\prime}\right\rangle=\frac{\left\langle x^{\prime}, v\right\rangle}{\|v\|_{2}}=\frac{\langle x, u\rangle+R \cdot b / R}{\|v\|_{2}}=\frac{\langle x, u\rangle+b}{\|v\|_{2}} \tag{12}
\end{equation*}
$$

which implies:

$$
\begin{equation*}
h\left(x^{\prime}\right) \cdot\left\langle x^{\prime}, u^{\prime}\right\rangle=\frac{h(x) \cdot(\langle x, u\rangle+b)}{\|v\|_{2}} \geq \frac{r}{\|v\|_{2}} \geq \frac{r}{2} \tag{13}
\end{equation*}
$$

Thus the problem of learning h reduces to learning the lifted version of h over X^{\prime}, which is realized by a homogeneous separator with margin $\frac{r}{2}$. The rest of the proof shows that CPLearn from line 4 onward solves this lifted problem under the bounds of Theorem 10
Overview. At a high level, CPLearn is a cutting-plane algorithm—see, e.g., Mitchell [2003]. Starting with V_{0} being the $(m+1)$-dimensional unit ball $B(0,1)$, CPLearn computes a sequence of version

```
Algorithm 4: CPLearn \((X)\)
if \(\operatorname{SEED}(X,+1)=\operatorname{NIL}\) then return \((\emptyset, X)\)
if \(\operatorname{SEED}(X,-1)=\operatorname{NIL}\) then return \((X, \emptyset)\)
\(R \leftarrow \max _{x \in X}\|x\|_{2}\)
\(X^{\prime} \leftarrow\{(x, R): x \in X\}\)
\(i \leftarrow 0, V_{0} \leftarrow B(0,1)\) in \(\mathbb{R}^{m+1}\)
for \(i \leftarrow 0, \ldots, n\) do
    draw \(N=\Theta\left(m^{6} n^{2 a}\right)\) points \(z_{1}, \ldots, z_{N}\) independently \(\frac{1}{2 m^{3}}\)-uniformly at random from \(V_{i}\)
    \(\hat{\mu}_{i} \leftarrow \frac{1}{N} \sum_{j=1}^{N} z_{j}\)
    \(X_{i}^{\prime} \leftarrow\left\{x^{\prime} \in X^{\prime}:\left\langle\hat{\mu}_{i}, x^{\prime}\right\rangle \geq 0\right\}\)
    \(X_{i} \leftarrow\) projection of \(X_{i}^{\prime}\) on \(\overline{\mathbb{R}}^{m}\)
    if \(\operatorname{SEED}\left(X_{i},-1\right)=\operatorname{NIL}\) and \(\operatorname{SEED}\left(X \backslash X_{i},+1\right)=\operatorname{NIL}\) then
        return \(\left(X_{i}, X \backslash X_{i}\right)\)
    else
        exclude all points returned by the queries from future queries
        let \(u_{i}\) be any point returned by either query
        if \(i=0\) then
                \(u_{i}^{*} \leftarrow u_{i}\)
        else
            \(u_{i}^{*} \leftarrow u_{i}-z_{0} \cdot \frac{\left\langle u_{i}, \hat{\mu}_{i}\right\rangle}{\left\langle z_{0}, \hat{\mu}_{i}\right\rangle}\) where \(z_{0}=h\left(u_{0}\right) \cdot u_{0}\)
        \(V_{i+1} \leftarrow V_{i} \cap\left\{x^{\prime} \in \mathbb{R}^{m+1}: h\left(u_{i}\right) \cdot\left\langle u_{i}^{*}, x^{\prime}\right\rangle \geq 0\right\}\)
    draw points independently near-uniformly at random from \(V_{i}\) until \(N=\operatorname{poly}(m+n)\) of
        them, \(z_{1}, \ldots, z_{N}\), fall in \(V_{i+1}\)
    use the covariance matrix of \(\left\{z_{1}, \ldots, z_{N}\right\} \cap V_{i+1}\) to compute a coordinate system under
        which \(V_{i+1}\) is \(t\)-rounded
```

spaces V_{1}, V_{2}, \ldots by setting $V_{i+1}=V_{i} \cap Z_{i}^{*}$, where Z_{i}^{*} is some halfspace determined through SEED queries, as follows. For every $i \geq 0$ let μ_{i} be the center of mass of V_{i}, and consider the halfspace:

$$
\begin{equation*}
H_{i}=\left\{x^{\prime} \in \mathbb{R}^{m+1}:\left\langle\mu_{i}, x^{\prime}\right\rangle \geq 0\right\} \tag{14}
\end{equation*}
$$

Now let $X_{i}^{\prime}=X^{\prime} \cap H_{i}$ and execute $\operatorname{seED}\left(X_{i}^{\prime},-1\right)$ and $\operatorname{SEED}\left(X^{\prime} \backslash X_{i}^{\prime},+1\right)$. If both return NIL then clearly $\left(X_{i}, X \backslash X_{i}\right)$, where X_{i} is the projection of X_{i}^{\prime} on \mathbb{R}^{m}, is the partition of X induced by h. If instead either query returns a point u_{i}, then consider the halfspace:

$$
\begin{equation*}
Z_{i}=\left\{x^{\prime} \in \mathbb{R}^{m+1}: h\left(u_{i}\right) \cdot\left\langle u_{i}, x^{\prime}\right\rangle \geq 0\right\} \tag{15}
\end{equation*}
$$

Finally, let $V_{i+1}=V_{i} \cap Z_{i}$ and repeat. By standard arguments, $\operatorname{vol}\left(V_{i+1}\right) \leq(1-1 / e) \operatorname{vol}\left(V_{i}\right)$ but V_{i+1} contains a ball of radius $\Omega(r / R)$, and the process terminates within $\mathcal{O}\left(m \log \frac{R}{r}\right)$ iterations, see for instance [Gilad-Bachrach et al., 2004, Theorem 2].
There are two main obstacles in implementing this process. The first obstacle is computing μ_{i}, which is hard in general [Rademacher, 2007]. Fortunately, we can efficiently compute a point $\hat{\mu}_{i}$ that with good probability yields the same guarantees as μ_{i}, by sampling from a near-uniform distribution over V_{i} via the hit-and-run random walk technique of Lovász and Vempala [2006]. The second obstacle is that, in order for hit-and-run to be efficient, we must have a system of coordinates under which V_{i} is well-rounded, i.e., not "too thin" along any direction. Unfortunately, letting $V_{i+1}=V_{i} \cap Z_{i}$ may make V_{i+1} extremely thin, as we have no control over Z_{i} (it depends on the SEED answers). Therefore, CPLearn carefully rotates Z_{i} into a new halfspace Z_{i}^{*} such that $V_{i+1}=V_{i} \cap Z_{i}^{*}$ contains $V_{i} \cap Z_{i}$, and that $\operatorname{vol}\left(V_{i} \cap Z_{i}^{*}\right)$ is not much smaller than $\operatorname{vol}\left(V_{i}\right)$. This allows CPLearn to sample efficiently from V_{i+1}; using those samples it then computes a coordinate system under which V_{i+1} is again well-rounded.
A complete proof. We say a convex body $K \subset \mathbb{R}^{m+1}$ is t-rounded if $B(0, t) \subseteq K \subseteq B(0,1)$. For every $u \in \mathbb{R}^{m+1}$ let $h_{u}=\left\{x \in X:\left\langle u, x^{\prime}\right\rangle \geq 0\right\}$. Fix $t \in \Omega(1 / m)$ and $c>0$ sufficiently small, and fix $a>0$ arbitrarily large. We show an implementation of CPLearn that satisfies the following invariants:

1. V_{i} contains all vectors $u \in \mathbb{R}^{m+1}$ such that $h_{u}=h$
2. $\operatorname{vol}\left(V_{i+1}\right) \leq(1-c) \operatorname{vol}\left(V_{i}\right)$
3. V_{i} is t-rounded under the coordinate system currently held by CPLearn

We prove that the first invariant holds deterministically for all $i \geq 0$, and that with probability at least $1-n^{1-a}$ the other ones hold for all $i \geq 0$. Together with the argument from Gilad-Bachrach et al. 2004] recalled above, the first two invariants imply that CPLearn returns a separator of X w.r.t. h in $\mathcal{O}\left(m \log \frac{R}{r}\right)$ iterations (and thus SEED queries). The third invariant ensures that CPLearn can sample enough points from the version space V_{i} in time poly $(n+m)$, which in turn ensures the overall running time is in $\operatorname{poly}(n+m)$, where the degree depends on a.
Let us first discuss how at lines 4 and 4 one can sample from V_{i} and V_{i+1} in time $\operatorname{poly}(n+m)$ per sample, assuming both V_{i} and V_{i+1} are t-rounded in the coordinate system held by CPLearn. Let K be a t-rounded convex body in \mathbb{R}^{m+1}. For any given $\epsilon>0$, the hit-and-run algorithm of Lovász and Vempala [2006] returns a point ϵ-uniformly at random from K after $\mathcal{O}\left(m^{3} t^{2} \ln t / \epsilon\right)$ steps; see Corollary 1.2 ot Lovász and Vempala [2006]. Moreover, every step of that algorithm can be implemented in time polynomial in the representation of K, see for instance Bressan et al. [2021a]. By letting $K=V_{i}$, and noting that the representation of V_{i} has size $\mathcal{O}(m+n)$ as $i \leq n$ and every constraining halfspace can be encoded in $\mathcal{O}(m)$ bits, we can sample a point ϵ-uniformly in time $\operatorname{poly}(n, m, \ln t / \epsilon)$ per sample; the same holds for V_{i+1}. Since we set $t=\Omega(1 / m)$ and $\epsilon=\Omega(1 / \operatorname{poly}(n+m))$, we conclude that lines 4 and 4 take poly $(n+m)$ time per sample.

Let us now turn to the invariants. Consider first the case $i=0$. The first and third invariant hold trivially, while the second one holds for any $c \leq 1 / 2$ since V_{1} is the intersection of $V_{0}=B(0,1)$ and a homogeneous halfspace. Let then $i \geq 1$ and suppose all invariants hold for $i-1$. We prove that they hold for $i+1$ as well.
Let $\eta=1 / 2 m^{2}$, let $\epsilon=\frac{\eta}{m}$, and $p=n^{-a} / 2$. Then, line 4 draws $N=\Theta\left(m^{2} / \eta^{2} p^{2}\right)$ independent ϵ-uniform random points z_{1}, \ldots, z_{N} from V_{i}, and line 4 sets $\hat{\mu}_{i}$ as their average. As shown in Bressan et al. [2021a], this implies $\operatorname{Pr}\left(d\left(\hat{\mu}_{i}, \mu_{i}\right) \leq \eta \phi\left(V_{i}\right)\right) \geq 1-p$, where $\phi\left(V_{i}\right)$ is the Euclidean diameter of V_{i}. As V_{i} is t-rounded, $\phi\left(V_{i}\right) \leq 2$, hence $\operatorname{Pr}\left(d\left(\hat{\mu}_{i}, \mu_{i}\right) \leq 1 / m^{2}\right) \geq 1-n^{-a} / 2$. Now suppose indeed $d\left(\hat{\mu}_{i}, \mu_{i}\right) \leq 1 / m^{2}$. It is not hard to see that any halfspace Z containing $\hat{\mu}_{i}$ satisfies $\operatorname{vol}\left(Z \cap V_{i}\right) \geq$ $\frac{1}{e}\left(1-\frac{1}{m}\right)^{\bar{m}+1} \operatorname{vol}\left(V_{i}\right)=\Omega\left(\operatorname{vol}\left(V_{i}\right)\right)$; that is, $\hat{\mu}_{1}$ has Tukey depth at least c (see the second invariant).
Next, consider the set X_{i}^{\prime} computed at line 4 , and observe that $X_{i}^{\prime}=X \cap H_{i}$, where:

$$
\begin{equation*}
H_{i}=\left\{x^{\prime} \in \mathbb{R}^{m+1}:\left\langle\hat{\mu}_{i}, x^{\prime}\right\rangle \geq 0\right\} \tag{16}
\end{equation*}
$$

Clearly, if the two queries at line 4 return nil, then CPLearn returns the correct partition of X. Otherwise consider the point u_{i} returned by either query, see line 4 and let Z_{i} as in (15). By standard arguments $\hat{\mu}_{i} \in Z_{i}$, and therefore $\operatorname{vol}\left(V_{i} \cap Z_{i}\right) \leq(1-c) \operatorname{vol}\left(V_{i}\right)$ as said above. Moreover, again by standard arguments, $V_{i} \cap Z_{i}$ contains all vectors $u \in \mathbb{R}^{m+1}$ such that $h_{u}=h$.

Now let us turn to CPLearn. Since $i \geq 1$, CPLearn at line 4 defines:

$$
\begin{equation*}
u_{i}^{*}=u_{i}-z_{0} \cdot \frac{\left\langle u_{i}, \hat{\mu}_{i}\right\rangle}{\left\langle z_{0}, \hat{\mu}_{i}\right\rangle} \tag{17}
\end{equation*}
$$

Before continuing, we check that u_{i}^{*} is well-defined, i.e., that $\left\langle z_{0}, \hat{\mu}_{i}\right\rangle>0$. Indeed, $\hat{\mu}_{i}$ lies in the interior of V_{i} since it has positive Tukey depth (see above), and since by construction $V_{i} \subseteq Z_{0}$ for all $i \geq 1$, then $\hat{\mu}_{i}$ lies in the interior of Z_{0} too. Moreover z_{0} lies in the interior of Z_{0}, too, being the normal vector of Z_{0}. Hence $\left\langle z_{0}, \hat{\mu}_{i}\right\rangle>0$, as claimed. Note also that, for every $x \in \mathbb{R}^{m+1}$, the definition of u_{i}^{*} and the linearity of the inner product yield:

$$
\begin{equation*}
\left\langle u_{i}^{*}, x\right\rangle=\left\langle u_{i}, x\right\rangle-\left\langle z_{0}, x\right\rangle \cdot \frac{\left\langle u_{i}, \hat{\mu}_{i}\right\rangle}{\left\langle z_{0}, \hat{\mu}_{i}\right\rangle} \tag{18}
\end{equation*}
$$

Now, CPLearn at line 4 sets $V_{i+1}=V_{i} \cap Z_{i}^{*}$, where:

$$
\begin{equation*}
Z_{i}^{*}=\left\{x \in \mathbb{R}^{m+1}: h\left(u_{i}\right) \cdot\left\langle u_{i}^{*}, x\right\rangle \geq 0\right\} \tag{19}
\end{equation*}
$$

We are now ready to prove the three invariants above.
The first invariant. We claim that $V_{i} \cap Z_{i} \subseteq V_{i} \cap Z_{i}^{*}$. In fact, we claim $Z_{0} \cap Z_{i} \subseteq Z_{0} \cap Z_{i}^{*}$; this implies $V_{i} \cap Z_{i} \subseteq V_{i} \cap Z_{i}^{*}$, since by construction $V_{i} \subseteq Z_{0}$ as $i \geq 1$. In turn, since $V_{i} \cap Z_{i}$ contains
all vectors $u \in \mathbb{R}^{m+1}$ such that $h_{u}=h$, see above, this implies that V_{i+1} contains all those vectors as well, proving the first invariant. Let $x \in Z_{0} \cap Z_{i}$. Then:

$$
\begin{equation*}
h\left(u_{i}\right) \cdot\left\langle u_{i}^{*}, x\right\rangle=h\left(u_{i}\right) \cdot\left\langle u_{i}, x\right\rangle-h\left(u_{i}\right) \cdot\left\langle z_{0}, x\right\rangle \cdot \frac{\left\langle u_{i}, \hat{\mu}_{i}\right\rangle}{\left\langle z_{0}, \hat{\mu}_{i}\right\rangle} \tag{20}
\end{equation*}
$$

Let us examine the terms of (20). First, $h\left(u_{i}\right) \cdot\left\langle u_{i}, x\right\rangle \geq 0$ since $x \in Z_{i}$. Second, $\left\langle z_{0}, x\right\rangle \geq 0$ since $x \in Z_{0}$. Third, $\left\langle z_{0}, \hat{\mu}_{i}\right\rangle>0$ as noted above. Thus the term $-h\left(u_{i}\right) \cdot\left\langle z_{0}, x\right\rangle \cdot \frac{\left\langle u_{i}, \hat{\mu}_{i}\right\rangle}{\left\langle z_{0}, \hat{\mu}_{i}\right\rangle}$ has the same sign as $-h\left(u_{i}\right) \cdot\left\langle u_{i}, \hat{\mu}_{i}\right\rangle$. However, by definition u_{i} is a counterexample to the labeling given by H_{i}, which means $h\left(u_{i}\right) \cdot\left\langle u_{i}, \hat{\mu}_{i}\right\rangle<0$. Therefore $h\left(u_{i}\right) \cdot\left\langle u_{i}^{*}, x\right\rangle \geq 0$, which implies $x \in Z_{i}^{*}$ as desired.
The second invariant. We claim that $\hat{\mu}_{i} \in Z_{i}^{*}$. To this end just substitute $x=\hat{\mu}_{i}$ in (18) to see that $\left\langle u_{i}^{*}, \hat{\mu}_{i}\right\rangle=0$. since μ_{i} has Tukey depth $c>0$ w.r.t. V_{i}, we deduce that $\operatorname{vol}\left(V_{i+1}\right)=\operatorname{vol}\left(V_{i} \cap Z_{i}^{*}\right) \leq$ $(1-c) \operatorname{vol}\left(V_{i}\right)$. This proves the second invariant.
The third invariant. First of all, we claim that $\operatorname{vol}\left(V_{i+1}\right)=\operatorname{vol}\left(V_{i} \cap Z_{i}^{*}\right) \geq c \operatorname{vol}\left(V_{i}\right)$. To this end just observe that $\hat{\mu}_{i}$ is on the boundary of $\mathbb{R}^{m+1} \backslash Z_{i}^{*}$, too. Consider then line 4 of CPLearn: if the samples are independent ϵ-uniform over V_{i}, then every sample drawn ends in V_{i+1} independently with probability at least $c-\epsilon$. Hence, as long as $\epsilon<c / 2$, a sample of $\Theta(N)$ such points from V_{i} will contain a subsample of N points z_{1}, \ldots, z_{N} in V_{i+1} with probability $1-e^{-\Theta(N)}$. Moreover, those N samples will be $\frac{\epsilon}{c}$-uniform in V_{i+1}. Therefore line 4 takes time poly $(n+m)$ with probability $1-e^{-\operatorname{poly}(n+m)}$. For N large enough, the inverse of the covariance matrix of z_{1}, \ldots, z_{N} CPLearn yields a coordinate system under which V_{i+1} is t-rounded with probability at least $1-n^{-a} / 2$, see for instance Vempala [2010]. This proves the third invariant.

Wrap-up. Note that CPLearn makes at most n iterations, as every iteration either returns (if the SEED queries return NIL) or decreases the number of points of X for which the label is not known (see line(4). Hence, with probability at least $1-n^{1-a}$, all the invariants above hold for all $i=0, \ldots, n-1$. The query bounds and the running time bounds follow as explained above.

A. 4 One-sided margin

We sketch the proof of Theorem 3 Let d be a metric over \mathbb{R}^{m} induced by some norm $\|\cdot\|_{d}$. We say $C \subseteq X$ has one-sided strong convex hull margin γ with respect to d if $d(\operatorname{conv}(X \backslash C), \operatorname{conv}(C)) \geq$ $\gamma \phi_{d}(C)$.
The idea behind Theorem 3 is to compute a Euclidean one-sided α-rounding of X w.r.t. h, that is, a set $\widehat{X} \subseteq X$ such that $C \subseteq \widehat{X}$ and $\widehat{X} \leq \alpha \operatorname{conv}(C)$, where $C=h^{-1}(+1)$. We will compute \widehat{X} for $\alpha=$ poly $\left(\frac{\kappa_{d}}{\gamma}\right)$, and then use the cutting-planes algorithm of Section 3.2 . As the margin is invariant under scaling, assume without loss of generality $\inf _{u \in S^{m-1}}\|u\|_{d}=1$ and $\sup _{v \in S^{m-1}}\|v\|_{d}=\kappa_{d}$. Let $x=\operatorname{SEED}(X,+1)$. If $x=$ NIL then clearly $h=-1$. Otherwise we run $\operatorname{BallSearch}(X, x)$, listed below. BallSearch sorts X by distance from x, and then uses Label queries to perform a binary search and find a pair of points $x_{\mathrm{lo}} \in C$ and $x_{\mathrm{hi}} \in X \backslash C$ adjacent in the ordering. (This works even if the order is not monotone w.r.t. the labels). At this point BallSearch guesses a value t for $\frac{\gamma}{k_{d}}$, starting with $t=1$. Given t, with a SEED query BallSearch checks if there are points of C among the points at distance between $d_{\mathrm{euc}}\left(x, x_{\mathrm{hi}}\right)$ and $\frac{1}{t} d_{\mathrm{euc}}\left(x, x_{\mathrm{hi}}\right)$ from x_{hi}. If not, then it lets $\widehat{X}=X \cap B\left(x, d_{\text {euc }}\left(x, x_{\text {lo }}\right)\right)$, else it lets $\widehat{X}=X \cap B\left(x, \frac{1}{t} d_{\text {euc }}\left(x, x_{\text {hi }}\right)\right)$. Finally, it checks whether $C \subseteq \widehat{X}$; if yes then it returns \widehat{X}, else it halves t and repeat. One can show that this procedure stops with $t \geq \frac{\gamma}{2 \kappa_{d}}$, yielding a \widehat{X} such that $\phi(\widehat{X})=\mathcal{O}(\phi(C) / t)$ and that C and $\widehat{X} \backslash C$ are linearly separated with margin $\Omega\left(t \frac{\gamma}{\kappa_{d}} \phi(\widehat{X})\right)$. Setting $R=\phi(\widehat{X})$ and $r=d_{\text {euc }}(C, \widehat{X} \backslash C)$, we conclude that $\frac{R}{r}=$ poly $\left(\frac{\kappa_{d}}{\gamma}\right)$. At this point by Theorem 10 we can compute C by running CPLearn (\widehat{X}), which takes time poly $(n+m)$ and uses $\mathcal{O}\left(m \log \frac{\kappa_{d}}{\gamma}\right)$ SEED queries in expectation.
A remark on Theorem 3. Given two pseudometrics d and q induced by seminorms $\|\cdot\|_{d}$ and $\|\cdot\|_{q}$, let $\kappa_{d}(q)=\sup _{u \in S_{q}^{m-1}}\|u\|_{d} / \inf _{v \in S_{q}^{m-1}}\|v\|_{d}$. If one can compute $\|\cdot\|_{q}$ efficiently, then Theorem 3 holds with $\kappa_{d}(q)$ in place of κ_{d}. In fact, Theorem 3 is just the special case where $q=d_{\text {euc }}$. Therefore one can restate Theorem 3 so that d is an arbitrary pseudometric (thus including the case $\kappa_{d}=\infty$), provided one has access to an approximation q of d with finite distortion.

```
Algorithm 5: BallSearch \(\left(X, x_{1}\right)\)
let \(x_{1}, \ldots, x_{n}\) be the points of \(X\) in order of Euclidean distance from \(x_{1}\) (break ties arbitrarily)
if \(\operatorname{LABEL}\left(x_{n}\right)=+1\) then return \(X\)
lo \(\leftarrow 1\), hi \(\leftarrow n\)
while hi \(-\mathrm{lo} \geq 2\) do
        \(i \leftarrow\left\lceil\frac{\mathrm{hi}+\overline{\mathrm{l}}}{2}\right\rceil\)
    if \(\operatorname{LABEL}\left(x_{i}\right)=1\) then lo \(\leftarrow i\) else hi \(\leftarrow i\)
\(t \leftarrow 1, r \leftarrow d_{\text {euc }}\left(x_{1}, x_{\text {lo }}\right), R \leftarrow d_{\text {euc }}\left(x_{1}, x_{\text {hi }}\right)\)
repeat
        \(U_{i} \leftarrow\left\{x \in X: R \leq d_{\text {euc }}\left(x, x_{1}\right) \leq \frac{1}{t} R\right\}\)
        if \(\operatorname{seEd}\left(U_{i},+1\right)=\operatorname{NIL}\) then \(\widehat{X} \leftarrow X \cap B\left(x_{1}, r\right)\) else \(\widehat{X} \leftarrow X \cap B\left(x_{1}, \frac{1}{t} R\right)\)
        \(t \leftarrow t / 2\)
until \(\operatorname{SEED}(X \backslash \widehat{X},+1)=\mathrm{NIL}\)
return \(\widehat{X}\);
```


B Supplementary material for Section 4

B. 1 Full proof of Theorem 4

Construction. We first discuss the case $k=2$. Let e_{1}, \ldots, e_{m} be the canonical basis of \mathbb{R}^{m}. To ease the notation define $p=m-1$; the input set will span a p-dimensional subspace. Define:

$$
\begin{equation*}
\ell=\left\lfloor\frac{1}{\sqrt{2 \gamma \sqrt{m}}}\right\rfloor \tag{21}
\end{equation*}
$$

Since $\gamma \leq \frac{m^{-3 / 2}}{16}$ and $m \geq 2$,

$$
\begin{equation*}
\ell \geq \frac{1}{\sqrt{2 \frac{m^{-3 / 2}}{16} \sqrt{m}}}=\sqrt{8 m} \geq 4 \tag{22}
\end{equation*}
$$

For each $i \in[p]$ and $j \in[\ell]$, let $x_{i}^{j}=e_{i}+j \cdot e_{m}$. Finally, let $X=\left\{x_{i}^{j}: i \in[p], j \in[\ell]\right\}$. Define the concept class:

$$
\begin{equation*}
\mathcal{H}=\left\{\bigcup_{i \in[p]}\left\{x_{i}^{1}, \ldots, x_{i}^{\ell_{i}}\right\}:\left(\ell_{1}, \ldots, \ell_{p}\right) \in[\ell]^{p}\right\} \tag{23}
\end{equation*}
$$

Let $\mathcal{C}=\left\{C_{1}, C_{2}\right\}$ be any partition of X with $C_{1} \in \mathcal{H}$ and $C_{2}=X \backslash C_{1}$. First, we observe that C_{1} and C_{2} are separated by a hyperplane. Let $\left(\ell_{1}, \ldots, \ell_{p}\right)$ be the vector defining C_{1}. Then we let:

$$
\begin{equation*}
u=\left(-\ell_{1}, \ldots,-\ell_{p}, 1\right) \tag{24}
\end{equation*}
$$

Then for any $x_{i}^{j} \in X$,

$$
\begin{equation*}
\left\langle u, x_{i}^{j}\right\rangle=-\ell_{i}+j \tag{25}
\end{equation*}
$$

which is bounded from above by zero if and only if $j \leq \ell_{i}$, that is, if and only if $x_{i}^{j} \in C_{1}$. Hence C_{1} and C_{2} admit a linear separator. Next we prove that, under the Euclidean distance, C_{1} and C_{2} have strong convex hull margin γ. Using the vector u defined above, since every $x_{i}^{j} \in C_{2}$ has $j \geq \ell_{i}+1$, then $\left\langle u, x_{i}^{j}\right\rangle \geq 1$. This implies:

$$
\begin{equation*}
d\left(\operatorname{conv}\left(C_{1}\right), \operatorname{conv}\left(C_{2}\right)\right) \geq \frac{1}{\|u\|_{2}} \geq \frac{1}{\sqrt{p \ell^{2}+1}} \geq \frac{1}{\ell \sqrt{m}} \tag{26}
\end{equation*}
$$

The diameter of C_{1} is at most that of X, which equals $d\left(x_{1}^{1}, x_{2}^{\ell}\right) \leq \ell-1+\sqrt{2} \leq 2 \ell$. Together with (26) and the fact that $\ell \leq \frac{1}{\sqrt{2 \gamma \sqrt{m}}}$, this provides:

$$
\begin{equation*}
d\left(\operatorname{conv}\left(C_{1}\right), \operatorname{conv}\left(C_{2}\right)\right) \geq \frac{1}{2 \ell^{2} \sqrt{m}} \phi_{d}\left(C_{1}\right) \geq \frac{2 \gamma \sqrt{m}}{2 \sqrt{m}} \phi_{d}\left(C_{1}\right)=\gamma \phi_{d}\left(C_{1}\right) \tag{27}
\end{equation*}
$$

The same holds for C_{2}. Hence \mathcal{C} has strong convex hull margin γ.
Query bound. Let $V_{0}=\left\{\left(C_{1}, C_{2}\right): C_{1} \in \mathcal{H}\right\}$. This is the initial version space. We let the target concept $\mathcal{C}=\left(C_{1}, C_{2}\right)$ be drawn uniformly at random from V_{0}. For all $t=0,1, \ldots$, we denote by V_{t} be the version space after the first t SEED queries made by the algorithm. Now fix any $t \geq 1$ and let $\operatorname{SEED}(U, y)$ be the t-th such query. Without loss of generality we assume $y=1$; a symmetric argument applies to $y=2$. If $U \cap C_{1}$ contains a point x in the agreement region of V_{t-1}, i.e., whose label can be inferred from past queries, then we return x. Therefore we can continue under the assumption that U does not contain any such point (doing otherwise cannot reduce the probability that the algorithm learns nothing). The oracle answers so to maximize $\frac{\left|V_{t}\right|}{\left|V_{t-1}\right|}$, as described below.

For each $i \in[p]$ let $S_{i}=\left\{x_{i}^{j}: j \in[\ell]\right\}$. We consider S_{i} as a sequence of points sorted by the index j. Let Z_{i} be the subset of S_{i} in the disagreement region of V_{t-1} together with the point in S_{i} preceding this region; observe that this point always exists, as $x_{i}^{1} \in C_{1}$ is in the agreement region. Note that Z_{i} is necessarily an interval of S_{i}. We let $U_{i}=Z_{i} \cap U$ for each $i \in[p]$ and $P(U)=\left\{i \in[p]: U_{i} \neq \emptyset\right\}$. For every $i \in P(U)$, we let α_{i} be the fraction of points of Z_{i} that precede the first point in U_{i}. Let $x_{i}^{*}=\arg \max \left\{j: x_{i}^{j} \in S_{i} \cap C_{1}\right\}$. Observe that $\left|V_{t-1}\right|=\prod_{i \in[p]}\left|Z_{i}\right|$, as x_{i}^{*} can be every point of Z_{i}. Indeed, x_{i}^{*} is uniformly distributed over Z_{i}; either x_{i}^{*} is a point in the disagreement region of S_{i}, or the disagreement region of S_{i} is fully contained in C_{2} and x_{i}^{*} is the point preceding the disagreement region of S_{i}.
Now we show that $\mathbb{E}\left[\left|V_{t-1}\right| /\left|V_{t}\right|\right] \leq p+1$. Let \mathcal{E} be the event that $\operatorname{SEED}(U, 1)=$ NIL. Write:

$$
\begin{equation*}
\mathbb{E}\left[\frac{\left|V_{t-1}\right|}{\left|V_{t}\right|}\right]=\operatorname{Pr}(\mathcal{E}) \mathbb{E}\left[\left.\frac{\left|V_{t-1}\right|}{\left|V_{t}\right|} \right\rvert\, \mathcal{E}\right]+\operatorname{Pr}(\overline{\mathcal{E}}) \mathbb{E}\left[\left.\frac{\left|V_{t-1}\right|}{\left|V_{t}\right|} \right\rvert\, \overline{\mathcal{E}}\right] \tag{28}
\end{equation*}
$$

We bound the two terms of (28) starting with the first one. Note that \mathcal{E} holds if and only if $U_{i} \cap C_{1}=\emptyset$ for all $i \in P(U)$. Since x_{i}^{*} is uniformly distributed over Z_{i}, for all $i \in P(U)$ we have:

$$
\begin{equation*}
\operatorname{Pr}\left(C_{1} \cap U_{i}=\emptyset\right)=\alpha_{i} \tag{29}
\end{equation*}
$$

And since the distributions of those points are independent:

$$
\begin{equation*}
\operatorname{Pr}(\mathcal{E})=\prod_{i \in P(U)} \operatorname{Pr}\left(C_{1} \cap U_{i}=\emptyset\right)=\prod_{i \in P(U)} \alpha_{i} \tag{30}
\end{equation*}
$$

If $\operatorname{Pr}(\mathcal{E})>0$ and \mathcal{E} holds, then x_{i}^{*} is uniformly distributed over the first $\alpha_{i}\left|Z_{i}\right|$ points of Z_{i}, as the rest of Z_{i} belongs to C_{2}. This holds independently for all i, thus:

$$
\begin{equation*}
\left|V_{t}\right|=\left(\prod_{i \in P(U)} \alpha_{i}\left|Z_{i}\right|\right)\left(\prod_{i \in[p] \backslash P(U)}\left|Z_{i}\right|\right)=\left(\prod_{i \in P(U)} \alpha_{i}\right)\left(\prod_{i \in[p]}\left|Z_{i}\right|\right)=\left|V_{t-1}\right| \prod_{i \in P(U)} \alpha_{i} \tag{31}
\end{equation*}
$$

It follows that $\operatorname{Pr}(\mathcal{E}) \mathbb{E}\left[\left.\frac{\left|V_{t-1}\right|}{\left|V_{t}\right|} \right\rvert\, \mathcal{E}\right] \leq 1$.
Let us now bound the second term of 28 . If \mathcal{E} does not hold, then $\operatorname{SEED}(U, 1)$ returns the smallest point $x \in U_{i}$ for any $i \in P(U)$ such that $C_{1} \cap U_{i} \neq \emptyset$ (note that necessarily $x \in C_{1}$). For any fixed $i \in P(U)$, the probability of returning the smallest point of U_{i} is bounded by $\operatorname{Pr}\left(C_{1} \cap U_{i} \neq \emptyset\right)$, which is $1-\alpha_{i}$; and if this is the case, then we have $\left|V_{t}\right|=\left(1-\alpha_{i}\right)\left|V_{t-1}\right|$. Thus:

$$
\begin{equation*}
\operatorname{Pr}(\overline{\mathcal{E}}) \mathbb{E}\left[\left.\frac{\left|V_{t-1}\right|}{\left|V_{t}\right|} \right\rvert\, \overline{\mathcal{E}}\right] \leq \operatorname{Pr}(\overline{\mathcal{E}}) \max _{i \in P(U)}\left(1-\alpha_{i}\right) \frac{1}{\left(1-\alpha_{i}\right)}=\operatorname{Pr}(\overline{\mathcal{E}}) \leq 1 \tag{32}
\end{equation*}
$$

So the two terms of (2) are both bounded by 1 ; we conclude that $\mathbb{E}\left[\frac{\left|V_{t-1}\right|}{\left|V_{t}\right|}\right] \leq 2$.

We can conclude the query bound. For any $\bar{t} \geq 1$,

$$
\begin{array}{rlr}
\mathbb{E}\left[\log \frac{\left|V_{0}\right|}{\left|V_{\bar{t}}\right|}\right] & =\mathbb{E}\left[\sum_{t=1}^{\bar{t}} \log \frac{\left|V_{t-1}\right|}{\left|V_{t}\right|}\right] & \\
& =\sum_{t=1}^{\bar{t}} \mathbb{E}\left[\log \frac{\left|V_{t-1}\right|}{\left|V_{t}\right|}\right] & \\
& \leq \sum_{t=1}^{\bar{t}} \log \mathbb{E}\left[\frac{\left|V_{t-1}\right|}{\left|V_{t}\right|}\right] &
\end{array}
$$

Since $\left|V_{0}\right|=\ell^{m-1}$, by Markov's inequality, and since $(m-1) \log \ell-\log 2 \geq \frac{(m-1) \log \ell}{2} \geq \frac{m \log \ell}{4}$:

$$
\begin{equation*}
\operatorname{Pr}\left(\left|V_{\bar{t}}\right| \leq 2\right)=\operatorname{Pr}\left(\log \frac{\left|V_{0}\right|}{\left|V_{\bar{t}}\right|} \geq(m-1) \log \ell-\log 2\right) \leq \frac{4 \mathbb{E}\left[\log \frac{\left|V_{0}\right|}{\left|V_{\bar{t}}\right|}\right]}{m \log \ell} \leq \frac{4 \bar{t}}{m \log \ell} \tag{38}
\end{equation*}
$$

Now let T be the random variable counting the number of queries spent by the algorithm, and let V_{T} be the version space at return time. Since \mathcal{C} is uniform over V_{T} and \mathcal{C} is returned with probability at least $\frac{1}{2}$, then $\operatorname{Pr}\left(\left|V_{T}\right| \leq 2\right) \geq \frac{1}{2}$. By (38) and linearity of expectation,

$$
\begin{equation*}
\frac{1}{2} \leq \operatorname{Pr}\left(\left|V_{T}\right| \leq 2\right)=\sum_{\bar{t} \geq 0} \operatorname{Pr}(T=\bar{t}) \operatorname{Pr}\left(\left|V_{\bar{t}}\right| \leq 2\right) \leq \sum_{\bar{t} \geq 0} \operatorname{Pr}(T=\bar{t}) \cdot \frac{4 \bar{t}}{m \log \ell}=\mathbb{E}[T] \frac{4}{m \log \ell} \tag{39}
\end{equation*}
$$

Therefore $\mathbb{E}[T] \geq \frac{m \log \ell}{8}$. Now, since $\ell \geq 4$ then $\ell \geq \frac{4}{5 \sqrt{2 \gamma \sqrt{m}}}$, which since $m \leq(16 \gamma)^{-2 / 3}$ yields

$$
\begin{equation*}
\ell \geq \frac{4}{5 \sqrt{2 \gamma(16 \gamma)^{-1 / 3}}}=\sqrt[3]{\frac{1}{\gamma}} \frac{4}{5 \sqrt{2(16)^{-1 / 3}}}=\sqrt[3]{\frac{1}{\gamma}} \frac{4 \cdot 4^{1 / 3}}{5 \sqrt{2}} \tag{40}
\end{equation*}
$$

Since $\frac{4^{4 / 3}}{5 \sqrt{2}}>0.89$, we conclude that:

$$
\begin{equation*}
\mathbb{E}[T]>\frac{m \log \frac{0.89}{\sqrt[3]{\gamma}}}{8 \log m}>\frac{m \frac{1}{3} \log \frac{1}{2 \gamma}}{8 \log m}=\frac{m \log \frac{1}{2 \gamma}}{24 \log m} \tag{41}
\end{equation*}
$$

which concludes the proof for $k=2$.
Multiclass. For any $k \geq 2$ let $k^{\prime}=\left\lfloor\frac{k}{2}\right\rfloor$. For each $s \in\left[k^{\prime}\right]$ consider the construction for the case $k=2$ shifted along the m-th dimension by $(s-1) \ell \cdot e_{m}$:

$$
\begin{equation*}
X_{s}=\left\{x_{i}^{j}+(s-1) \ell \cdot e_{m}: i \in[p], j \in[\ell]\right\} \tag{42}
\end{equation*}
$$

We let $X^{*}=\bigcup_{s \in\left[k^{\prime}\right]} X_{s}$, and we define the possible subsets of X^{*} corresponding to class $C_{2 s-1}$ as:

$$
\begin{equation*}
\mathcal{H}_{s}=\left\{\bigcup_{i \in[p]}\left\{x_{i}^{1}+(s-1) \ell \cdot e_{m}, \ldots, x_{i}^{\ell_{i}}+(s-1) \ell \cdot e_{m}\right\}:\left(\ell_{1}, \ldots, \ell_{p}\right) \in[\ell]^{p}\right\} \tag{43}
\end{equation*}
$$

Finally, let \mathcal{H} be the set of all partitions $\mathcal{C}=\left(C_{1}, \ldots, C_{k}\right)$ of X^{*} such that $C_{2 s-1} \in \mathcal{H}_{s}$ and $C_{2 s}=X_{s} \backslash C_{2 s-1}$ for all $s \in\left[k^{\prime}\right]$, and let $C_{k}=\emptyset$ in case k is odd. The same arguments of the case $k=2$ prove that any such \mathcal{C} has convex hull margin γ. Indeed, for adjacent classes C_{i}, C_{i+1} those arguments prove that the strong convex hull margin is at least γ; for non-adjacent classes, the margin can only be larger. The random target concept $\mathcal{C}=\left(C_{1}, \ldots, C_{k}\right)$ is obtained by drawing each $C_{2 s-1}$ for $s \in\left[k^{\prime}\right]$ uniformly at random from \mathcal{H}_{s}, and letting $C_{2 s}=X_{s} \backslash C_{2 s-1}$.

We turn to the bound. Consider a generic query $\operatorname{seED}(U, i)$ issued by the algorithm. Without loss of generality we can assume $U \subseteq C_{2 s-1} \cup C_{2 s}=X_{s}$ where $s=\left\lfloor\frac{i}{2}\right\rfloor$; indeed, by construction of \mathcal{H}, that query can never return a point in $U \backslash X_{s}$. This shows that learning \mathcal{C} requires solving the k^{\prime} independent binary instances X_{s}, returning $\mathcal{C}_{s}=\left(C_{2 s-1}, C_{2 s}\right)$, for $s \in\left[k^{\prime}\right]$. As the probability of returning \mathcal{C} is bounded from above by the minimum over $s \in[k]$ of the probability of returning \mathcal{C}_{s}, the algorithm must make at least $\frac{m}{24} \log \frac{1}{2 \gamma}$ queries for each $s \in\left[k^{\prime}\right]$, concluding the proof.

C Supplementary material for Section A. 4

Lemma 13. Let $C \subseteq X$ have strong convex hull margin $\gamma \in(0,1]$ w.r.t. d. For any $x_{1} \in C$ BallSearch $\left(X, x_{1}\right)$ takes time poly $(n+m)$, uses $\mathcal{O}(\log n)$ LABEL queries and $\mathcal{O}\left(\log \frac{\kappa_{d}}{\gamma}\right)$ SEED queries, and outputs $\widehat{X} \subseteq X$ such that

1. $C \subseteq \widehat{X}$
2. $d_{\mathrm{euc}}(\operatorname{conv}(C), \operatorname{conv}(\widehat{X} \backslash C)) \geq \frac{\gamma^{2}}{4 \kappa_{d}^{2}} \phi(\widehat{X})$

Proof. To begin, observe that $d_{\text {euc }} \leq d \leq \kappa_{d} d_{\text {euc }}$ implies that the ratio between distances changes by a factor at most κ_{d} between $d_{\text {euc }}$ and d. In particular this implies that for any set $\widehat{X} \subseteq X$:

$$
\begin{equation*}
\frac{d_{\mathrm{euc}}(\operatorname{conv}(C), \operatorname{conv}(\widehat{X} \backslash C))}{\phi(C)} \geq \frac{d(\operatorname{conv}(C), \operatorname{conv}(\widehat{X} \backslash C))}{\kappa_{d} \phi_{d}(C)} \tag{44}
\end{equation*}
$$

We will use this inequality below.
Now, suppose line 5 of BallSearch returns, so $\widehat{X}=X$. The running time, the query bounds, and point (1) are straightforward. To prove (2), since $x_{1}, x_{n} \in C$ we have:

$$
\begin{equation*}
\phi(C) \geq d_{\mathrm{euc}}\left(x_{1}, x_{n}\right) \geq \frac{1}{2} \phi(X)=\frac{1}{2} \phi(\widehat{X}) \geq \frac{\gamma}{2 \kappa_{d}} \phi(\widehat{X}) \tag{45}
\end{equation*}
$$

where we used $\phi(X)=\max _{a, b \in X} d_{\text {euc }}(a, b) \leq \max _{a, b \in X}\left(d_{\text {euc }}\left(a, x_{1}\right)+d_{\text {euc }}\left(x_{1}, b\right)\right) \leq$ $2 d_{\text {euc }}\left(x_{1}, x_{n}\right)$. Therefore $\phi(\widehat{X}) \leq \frac{2 \kappa_{d}}{\gamma} \phi(C)$, which together with 44) and the margin condition gives:
$\frac{d(\operatorname{conv}(C), \operatorname{conv}(\widehat{X} \backslash C))}{\phi(\widehat{X})} \geq \frac{d_{\text {euc }}(\operatorname{conv}(C), \operatorname{conv}(\widehat{X} \backslash C))}{\frac{2 \kappa_{d}}{\gamma} \phi(C)} \geq \frac{d(\operatorname{conv}(C), \operatorname{conv}(\widehat{X} \backslash C))}{\frac{2 \kappa_{d}}{\gamma} \kappa_{d} \phi_{d}(C)} \geq \frac{\gamma^{2}}{2 \kappa_{d}^{2}}$

We turn to the repeat loop. Consider a generic iteration just before the update of t. We prove:
(a) $d(C, \widehat{X} \backslash C) \geq \min \left(t, \frac{\gamma}{\kappa_{d}}\right) \frac{\gamma}{2 \kappa_{d}} \phi(\widehat{X})$
(b) if $t \leq \frac{\gamma}{\kappa_{d}}$ then $C \subseteq \widehat{X}$

First, suppose $\operatorname{seED}\left(U_{i},+1\right)=$ NIL, in which case $\widehat{X}=X \cap B\left(x_{1}, r\right)$. To prove (a), observe that $x_{1}, x_{\text {lo }} \in C$ implies:

$$
\begin{equation*}
\phi(C) \geq d_{\mathrm{euc}}\left(x_{1}, x_{\mathrm{lo}}\right)=r \geq \frac{1}{2} \phi(\widehat{X}) \geq \min \left(\frac{t}{2}, \frac{\gamma}{2 \kappa_{d}}\right) \phi(\widehat{X}) \tag{47}
\end{equation*}
$$

Now use the argument above, but with $1 / \min \left(\frac{t}{2}, \frac{\gamma}{2 \kappa_{d}}\right)$ in place of $\frac{2 \kappa_{d}}{\gamma}$ in 46 . To prove (b), note that $x_{1} \in C$ and $x_{\text {hi }} \in X \backslash C$ implies $R=d_{\text {euc }}\left(x_{1}, x_{\mathrm{hi}}\right) \geq d_{\text {euc }}(C, X \backslash C)$. Since $d_{\text {euc }} \leq d \leq \kappa_{d} d_{\text {euc }}$, and by the margin assumptions,

$$
\begin{equation*}
\frac{R}{\phi(C)} \geq \frac{d_{\mathrm{euc}}(C, X \backslash C)}{\phi(C)} \geq \frac{d(C, X \backslash C)}{\kappa_{d} \phi_{d}(C)} \geq \frac{\gamma}{\kappa_{d}} \geq \min \left(t, \frac{\gamma}{\kappa_{d}}\right) \tag{48}
\end{equation*}
$$

Therefore $\phi(C) \leq \max \left(\frac{1}{t}, \frac{\kappa_{d}}{\gamma}\right) R$, which implies $C \subseteq X \cap B\left(x_{1}, \max \left(\frac{1}{t}, \frac{\kappa_{d}}{\gamma}\right) R\right)$. For $t \leq \frac{\kappa_{d}}{\gamma}$ the right-hand side is $X \cap B\left(x_{1}, \frac{1}{t} R\right)$. Note however that $X \cap B\left(x_{1}, \frac{1}{t} R\right)=\left(X \cap B\left(x_{1}, r\right)\right) \cup U_{i}$ since $x_{\mathrm{lo}}, x_{\mathrm{hi}}$ are adjacent in the sorted list. $\operatorname{But} \operatorname{SEED}\left(U_{i},+1\right)=$ NIL, hence $C \subseteq X \cap B\left(x_{1}, r\right)=\widehat{X}$.

Next, suppose $\operatorname{SEED}\left(U_{i},+1\right)=y \neq$ NIL, in which case $\widehat{X}=X \cap B\left(x_{1}, \frac{1}{t} R\right)$. To prove (a), note that $\phi(C) \geq d\left(x_{1}, y\right) \geq R$, and that $\phi(\widehat{X}) \leq 2 \frac{1}{t} R$. Hence $\phi(C) \geq \frac{t}{2} \phi(\widehat{X}) \geq \min \left(\frac{t}{2}, \frac{\gamma}{2 \kappa_{d}}\right) \phi(\widehat{X})$. Now use again the argument above, but with $1 / \min \left(\frac{t}{2}, \frac{\gamma}{2 \kappa_{d}}\right)$ in place of $\frac{2 \kappa_{d}}{\gamma}$ in 46. To prove (b), the argument for the case above implies $C \subseteq X \cap B\left(x_{1}, \max \left(\frac{1}{t}, \frac{\kappa_{d}}{\gamma}\right) R\right)$. If $t \leq \frac{\gamma}{\kappa_{d}}$ then the right-hand side is just \widehat{X}.
To conclude the proof, note that by point (b) above the repeat loop returns in $\mathcal{O}\left(\log \frac{\kappa_{d}}{\gamma}\right)$ iterations. Therefore BallSearch $\left(X, x_{1}\right)$ uses $\mathcal{O}(\log n)$ LABEL queries and $\mathcal{O}\left(\log \frac{\kappa_{d}}{\gamma}\right)$ SEED queries. Finally, note that the running time can be brought to poly $(n+m)$ by storing the output of all SEED queries, and replacing U_{i} with $U_{i} \backslash U_{i} \cap \hat{C}$ where $\hat{C} \subset C$ is the subset of points of C known so far. In this way, at each repeat iteration either $\widehat{X}_{i} \subseteq C$ or we learn the label of some point of C previously unknown. Therefore repeat makes at most n iterations; it is immediate to see that each iteration takes time poly $(n+m)$ and thus BallSearch runs in time poly $(n+m)$ as well.

C. 1 Proof of Theorem 3

Let $x=\operatorname{SEED}(X,+1)$. If $x=$ NIL then stop and return \emptyset. Otherwise run BallSearch (X, x) to obtain \widehat{X}. By Lemma 13 this takes poly $(n+m)$ time, $\mathcal{O}(\log n)$ LABEL queries, and $\mathcal{O}\left(\log \frac{\kappa_{d}}{\gamma}\right)$ SEED queries. By Lemma $13 C \subseteq \widehat{X}$, and C and $\widehat{X} \backslash C$ are linearly separated with margin $\frac{\gamma^{2}}{4 \kappa_{d}^{2}} \phi(\widehat{X})$. Thus \widehat{X} satisfies the assumptions of Theorem 10 with $R / r=\frac{4 \kappa_{d}^{2}}{\gamma^{2}}$, and by running CPLearn (\widehat{X}) we obtain C in time poly $(n+m)$ using $\mathcal{O}\left(m \log \frac{\kappa_{d}}{\gamma}\right)$ SEED queries in expectation.

D Bounds for inputs with bounded bit complexity

We consider the case where X has bounded bit complexity, distinguishing two widely used cases.

D. 1 Rational coordinates

Supose $X \subset \mathbb{Q}^{m}$ and every $x \in X$ can be encoded in $b(x) \leq B$ bits as follows [Korte and Vygen, 2018]. If $x \in \mathbb{Z}$, then $b(x)=1+\lceil\log (|x|+1)\rceil$. If $x=p / q \in \mathbb{Q}$ with $p, q \in \mathbb{Z}$ coprime, then $b(x)=b(p)+b(q)$. If $x \in \mathbb{Q}^{m}$, then $b(x)=m+\sum_{i \in[m]} b\left(x_{i}\right)$. We show that B gives a lower bound on the margin. The argument is related to Kwek and Pitt [1998].
Lemma 14. Suppose $X \subset \mathbb{Q}^{m}$ has bit complexity bounded by B, and suppose $C \subseteq X$ and $X \backslash C$ are linearly separable. Then $d(\operatorname{conv}(C), \operatorname{conv}(X \backslash C)) \geq 2^{-\mathcal{O}\left(m^{2} B\right)}$.

Proof. Let $P=\operatorname{conv}(C)$ and let H be a hyperplane containing a face of P. By Lemma 4.5 of Korte and Vygen [2018], $H=\left\{x \in \mathbb{R}^{m}:\langle w, x\rangle=t\right\}$ for some $w \in \mathbb{Q}^{m}$ and $t \in \mathbb{Q}$ such that $b(w)+b(t) \leq 75 m^{2} B$. The distance between H and any $x \in X \backslash C$ is:

$$
\begin{equation*}
d(x, H)=\frac{|\langle w, x\rangle-t|}{\|w\|_{2}} \tag{49}
\end{equation*}
$$

To bound $|\langle w, x\rangle-t|$ suppose w, x, t are encoded by:

$$
\begin{equation*}
w_{i}=\frac{p_{w}^{i}}{q_{w}^{i}} \quad i \in[m], \quad x_{i}=\frac{p_{x}^{i}}{q_{x}^{i}} \quad i \in[m], \quad t=\frac{p_{t}}{q_{t}} \tag{50}
\end{equation*}
$$

Replacing those quantities in the expression of $|\langle w, x\rangle-t|$, taking the common denominator, observing that the numerator of the resulting expression is an integer, and recalling that $|\langle w, x\rangle-t|>0$, we deduce:

$$
\begin{equation*}
|\langle w, x\rangle-t| \geq \frac{1}{q_{t} \prod_{i \in[m]} q_{w}^{i} q_{x}^{i}} \tag{51}
\end{equation*}
$$

However, since $b(x)=\mathcal{O}(\log (1+|x|))$ for any $x \in \mathbb{Z}$,

$$
\begin{equation*}
b\left(q_{t} \prod_{i \in[m]} q_{w}^{i} q_{x}^{i}\right)=\mathcal{O}\left(b\left(q_{t}\right)+\sum_{i \in[m]}\left(b\left(w_{i}\right)+b\left(x_{i}\right)\right)\right)=\mathcal{O}(b(t)+b(w)+b(x)) \tag{52}
\end{equation*}
$$

which therefore is in $\mathcal{O}\left(m^{2} B\right)$. Therefore $|\langle w, x\rangle-t| \geq 2^{-\mathcal{O}\left(m^{2} B\right)}$. To bound $\|w\|_{2}$ we just note that $\|w\|_{2} \leq\|w\|_{1} \leq 2^{b(w)} \leq 2^{75 m^{2} B}$. We conclude that:

$$
\begin{equation*}
d(x, H)=\frac{|\langle w, x\rangle-t|}{\|w\|_{2}} \geq 2^{-\mathcal{O}\left(m^{2} B\right)} \tag{53}
\end{equation*}
$$

The proof is complete.
Corollary 15. Suppose $X \subset \mathbb{N}^{m}$ has bit complexity bounded by $B \in \mathbb{N}$ in the rational coordinates model, and let $\mathcal{C}=\left(C_{1}, \ldots, C_{k}\right)$ be a partition of X such that C_{i}, C_{j} are linearly separable for every distinct $i, j \in[k]$. Then \mathcal{C} can be learned in time poly $(n+m)$ using $\mathcal{O}\left(k^{2} m^{3} B\right)$ SEED queries in expectation.

Proof. Any $x \in X$ satisfies $\|x\|_{2} \leq\|x\|_{1} \leq 2^{B}$, and by Lemma 14 any two distinct classes $C_{i}, C_{j} \in \mathcal{C}$ are linearly separable with margin $r=2^{-\mathcal{O}\left(m^{2} B\right)}$. By Theorem 10 . CPLearn (X) with SEED restricted to classes i, j returns a separator for C_{i} and C_{j} in time poly $(m+n)$ using $\mathcal{O}\left(m \log \frac{R}{r}\right)=\mathcal{O}\left(m^{3} B\right)$ SEED queries in expectation. By intersecting the separators for all $j \in[k] \backslash i$ we obtain C_{i}. Repeating this process for all $i \in[k]$ yields the claim.

D. 2 Grid

Let $c>0$ be such that $1 / c$ is an integer and suppose that $X \subseteq Q=\{-1,-1+c, \ldots, 1-c, 1\}^{m}$. We call this the grid model. If $1 / c \leq 2^{B / m}-1$ then we say that the bit complexity of X is bounded by B.
Corollary 16. Suppose $X \subset \mathbb{N}^{m}$ has bit complexity bounded by $B \in \mathbb{N}$ in the grid model, and let $\mathcal{C}=\left(C_{1}, \ldots, C_{k}\right)$ be a partition of X such that C_{i}, C_{j} are linearly separable for every distinct $i, j \in[k]$. Then \mathcal{C} can be learned in time poly $(n+m)$ using $\mathcal{O}\left(k^{2} m(B+\log m)\right)$. SEED queries in expectation.

Proof. We use the approach of Gonen et al. [2013]. Let $c>0$ be such that $1 / c$ is an integer and suppose that $X \subseteq Q=\{-1,-1+c, \ldots, 1-c, 1\}^{m}$. By Lemma 10 of Gonen et al. [2013], any two sets in Q that are linearly separable are also linearly separable with margin $r=(c / \sqrt{m})^{m+2}$. We can thus apply CPLearn as in the proof of Corollary 15, obtaining for separating every C_{i}, C_{j} a running time of $\operatorname{poly}(m+n)$ and an expected query bound of $\mathcal{O}\left(m \log \frac{R}{r}\right)=\mathcal{O}\left(m^{2} \log (m / c)\right)$. Since $c \geq 2^{-B / m}-1$, then the bound becomes $\mathcal{O}\left(m^{2} \log \left(m 2^{B / m}\right)\right)=\mathcal{O}\left(m^{2}(B / m+\log m)\right)=$ $\mathcal{O}(m(B+\log m))$. This proves the total expected query bound of $\mathcal{O}\left(k^{2} m(B+\log m)\right)$.

