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Abstract

We study exact active learning of binary and multiclass classifiers with margin.
Given an n-point set X ⊂ Rm, we want to learn an unknown classifier on X
whose classes have finite strong convex hull margin, a new notion extending the
SVM margin. In the standard active learning setting, where only label queries
are allowed, learning a classifier with strong convex hull margin γ requires in the

worst case Ω
(
1+ 1

γ

)m−1
2 queries. On the other hand, using the more powerful seed

queries (a variant of equivalence queries), the target classifier could be learned
in O(m log n) queries via Littlestone’s Halving algorithm; however, Halving is
computationally inefficient. In this work we show that, by carefully combining the
two types of queries, a binary classifier can be learned in time poly(n+m) using
only O(m2 log n) label queries and O

(
m log m

γ

)
seed queries; the result extends

to k-class classifiers at the price of a k!k2 multiplicative overhead. Similar results
hold when the input points have bounded bit complexity, or when only one class
has strong convex hull margin against the rest. We complement the upper bounds
by showing that in the worst case any algorithm needs Ω

(
km log 1

γ

)
seed and label

queries to learn a k-class classifier with strong convex hull margin γ.

1 Introduction

This work investigates efficient algorithms for exact active learning of binary and multiclass classifiers
in the transductive setting. Given a set X of n points in Rm, our goal is to learn a function h : X → [k]
belonging to some class H. In the classic active learning framework, h identifies a subset of X ,
and the algorithm learns h via queries LABEL(x) that return h(x) for any given x ∈ X . In that
case, it is well-known that h can be learned with O(log n) LABEL queries if the star number ofH is
finite [Hanneke and Yang, 2015]. Unfortunately, even simple families such as linear classifiers have
unbounded star number, in which case Ω(n) LABEL queries are needed in the worst case. To bypass
this lower bound, it has become increasingly common to introduce enriched queries, that reveal
additional information on h and are plausible in practice. One notable example is that of comparison
queries for linear separators in Rm which, given any pair of points x, y ∈ X , reveal which one is

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



closer to the decision boundary. As proven by Kane et al. [2017], under some margin assumptions
the combination of LABEL and comparisons yields exponential savings, allowing one to learn linear
separators with only O(log n) queries.

In this work we combine LABEL queries with seed queries. For any U ⊂ X and any i ∈ [k], a
query SEED(U, i) returns an abitrary point x in U ∩ Ci, where Ci = h−1(i), or NIL if no such x
exists. SEED queries are natural in certain settings like crowdsourcing—e.g., finding the image of
a car, see also Beygelzimer et al. [2016]—and have been used implicitly or explicitly in several
works [Hanneke, 2009, Balcan and Hanneke, 2012, Attenberg and Provost, 2010, Tong and Chang,
2001, Doyle et al., 2011, Bressan et al., 2021b]. It is not hard to see that, using SEED alone, one
can implement Littlestone’s Halving algorithm and learn any h ∈ H with O(log |H|) queries1. For
instance, linear separators in Rm can be learned with O(m log n) SEED queries. The catch is that,
save for special cases, it is not known how to run the Halving algorithm in polynomial time. Therefore,
using SEED to obtain a computationally efficient active learning algorithm is less trivial than it seems
at first glance.

The goal of this work is understanding whether one can actively learn binary and multiclass classifiers
efficiently by using LABEL and SEED queries together. In line with Kane et al. [2017] and other
previous works, we make assumptions onH. Our main assumption is that every class Ci has strong
convex hull margin γ > 0. This means that, for any j ̸= i, Ci and Cj are linearly separable with a
margin that is at least γ

2 times the diameter of Ci. Moreover, it is sufficient that this hold under some
pseudometric di, unknown to the learner, that is homogeneous and invariant under translation (i.e.,
induced by a seminorm). This gives to every class its own personalized notion of distance that can be
sensitive to the “scale” of the class. This assumption strictly generalizes the classical SVM margin;
and, when suitably generalized, it captures stability properties of center-based clusterings Awasthi
et al. [2012], Bilu and Linial [2012].

Using LABEL alone, Bressan et al. [2021a] showed that learning a multiclass classifier with (strong)
convex hull margin γ > 0 requires between Ω

(
1+ 1

γ

)(m−1)/2
and Õ

(
k3m5

(
1+ 1

γ

)m
log n

)
queries.

This exponential dependence on m implies that, unless m≪ log n/ log 1
γ , one needs Θ(n) LABEL

queries in the worst case. On the other hand our margin implies linear separability and thus, as noted
above, a O(m log n) SEED query bound for the binary case, but with a running time that can be
superpolynomial. This leaves open the following problem, which is the subject of this work:

Can one learn a multiclass classifier h with strong convex hull margin γ > 0 on
X⊂Rm in time poly(n+m) using a number of queries that grows polynomially
with m?

We solve the above question in the affirmative by proving that, with a careful combination of LABEL
and SEED queries, one can do much better than using either query in isolation. For binary classification
(k = 2), we show:
Theorem 1. Any binary classifier h with strong convex hull margin γ > 0 over X ⊂ Rm can be
learned in time poly(n+m) using in expectation O(m2 log n) LABEL queries and O

(
m log m

γ

)
SEED queries.2

Note that, unless γ is exceedingly small, Theorem 1 uses far fewer SEED than LABEL queries, which is
a strength since SEED is arguably more expensive to implement. For instance, if γ = Ω(1/poly(m))
then we useO(m2 log n) LABEL queries but onlyO(m logm) SEED queries. To prove Theorem 1 we
design a novel algorithm that works in two phases. The first phase learns what we call an α-rounding
of X w.r.t. h. Loosely speaking, this is a partition (X1, X2) of X such that each Xi lies inside
α conv(Ci) where conv(Ci) is the convex hull of Ci (see below for the formal definition). We show
that, in polynomial time and using O(m2 log n) LABEL queries, one can compute an α-rounding
of Xi for α = O(m3). This allows us to put Xi in near-isotropic position so that Xi has radius
1 and to separate C1 ∩ Xi from C2 ∩ Xi with margin η = Ω(γ/m3). In the second phase, the
algorithm uses SEED to implement a cutting plane algorithm that learns C1 ∩Xi and C2 ∩Xi using
O
(
m log 1

η

)
= O

(
m log m

γ

)
queries in time poly(n+m).

1Halving uses equivalence queries (testing if a given subset of X coincides with the target concept) each of
which can be simulated using two SEED queries.

2This running time as well as those of Theorem 2 and 3 are actually in high probability as implied by
Theorem 10; we have omitted this fact to keep the statements light.
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Using a recursive approach, Theorem 1 can be extended to k > 2 at the price of a k!k2 multiplicative
overhead:
Theorem 2. Any k-class classifier h with strong convex hull margin γ > 0 over X ⊂ Rm can
be learned in time poly(n + m) using in expectation O(k! k2 m2 log n) LABEL queries and
O
(
k! k2 m log m

γ

)
SEED queries.

We also consider the case where only one class has strong convex hull margin against the rest of the
points w.r.t. a metric d induced by a norm ∥ · ∥d. In this case we obtain a bound parameterized by the
distortion κd of d (see Section 1.1):
Theorem 3. Suppose C ⊂ X has strong convex hull margin γ ∈ (0, 1] w.r.t. a metric d with distortion
κd <∞. Given only X , one can learn C in time poly(n+m) using O(log n) LABEL queries and
O
(
m log κd

γ

)
SEED queries in expectation.

As an application of our cutting-plane algorithm we also show that one can learn a k-class classifier
whose classes are pairwise linearly separable in time poly(n+m) using, in expectation, O(k2m3B)
SEED queries if every x ∈ X has rational coordinates that can be encoded in B bits, andO(k2m(B+
m logm)) SEED queries if every x ∈ X lies on the grid over [−1, 1]m with stepsize 2−B/m. It
should be noted that, unlike most previous algorithms, all our algorithms do not need knowledge of γ.
Moreover, all the bounds above can be turned from expectation to high probability.3

Finally, we show that the algorithms of Theorem 1 and 2 are nearly optimal:

Theorem 4. For all m ≥ 2, all k ≥ 2, and all γ ≤ m−3/2/16 there exists a distribution of instances
with k classes in Rm with strong convex hull margin γ where any randomized algorithm using SEED
and LABEL queries that returns C with probability at least 1

2 makes at least
⌊
k
2

⌋
m
24 log

1
2γ total

queries in expectation.

1.1 Preliminaries and notation

The input to our problem is a pair (X, k), where X ⊂ Rm and k ∈ N with 2 ≤ k ≤ n = |X|.
The algorithm has access to oracles OLABEL and OSEED which provide respectively LABEL and SEED
queries. The oracles OLABEL, OSEED behave consistently with some target classifier h : X → [k]. For
any x ∈ X , LABEL(x) returns h(x). For any U ⊆ X and any i ∈ [k], SEED(U, i) returns an abitrary
element x ∈ U ∩ Ci if U ∩ Ci ̸= ∅, and NIL otherwise, where Ci = h−1(i). We often think of h as
of the partition C = (C1, . . . , Ck) and we call each Ci a class or cluster.

A pseudometric is a symmetric and subadditive function d : Rm ×Rm → R≥0 such that d(x, x) = 0
for all x ∈ Rm; unlike a metric, d(x, y) can be 0 for x ̸= y. In this work d is always induced by a
seminorm and thus homogeneous and invariant under translation: d(u+ ax, u+ ay) = |a| d(x, y)
for all x, y, u ∈ Rm and all a ∈ R. For a pseudometric d and a set A ⊂ Rm, we let ϕd(A) =
sup{d(x, y) : x, y ∈ A} denote the diameter of A under d. For x ∈ Rm and r ≥ 0 we denote
by Bm

d (x, r) and Sm−1
d (x, r) respectively the closed ball and the hypersphere with center x and

radius r in Rm under d. When d is omitted we assume d = deuc where deuc is the Euclidean metric.
We may also omit the superscript if clear from the context. The distortion of a (pseudometric) d is
κd = supu,v∈Sm−1(0,1) ∥u∥d/∥v∥d.

For any set A ⊂ Rm, any µ ∈ Rm, and any λ > 0, let σ(A,µ, λ) = µ + λ(A − µ) be the scaling
of A about µ by a factor of λ. For two sets A,B ⊂ Rm, we write A ≤ λB if A ⊆ σ(B, z, λ) for
some z ∈ Rm. We may use x in place of A if A = {x}. If A is bounded, then MVE(A) denotes the
minimum-volume enclosing ellipsoid (MVEE, or Löwner-John ellipsoid) of A. Our proofs repeatedly
use John’s theorem; that is, σ(E,µ, 1/m) ⊆ conv(A) where µ is the center of E = MVE(A) and
conv(A) is the convex hull of A. Given A,B ⊆ Rm, we say that A and B are linearly separable
with margin r if there exist u ∈ Sm−1(0, 1) and b ∈ R such that ⟨u, x⟩+ b ≤ −r for all x ∈ A and
⟨u, x⟩+ b ≥ r for all x ∈ B.

We consider classifiers satisfying the following property:4

3Formally, for some universal constant a > 0, each one of our bounds in the form E[Q] ≤ q, where Q is the
number of queries, implies Pr(Q ≥ q + ϵq) ≤ exp(−aϵq) for all ϵ ≥ 0.

4Actually, all our upper bounds hold under a weaker condition: that for every i and every j ∈ [k] \ {i} there
is a dij giving the margin.
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Definition 5. A class Ci has strong convex hull margin γ > 0 if there exists a pseudometric di
induced by a seminorm over Rm such that di(conv(Cj), conv(Ci)) > γ ϕdi(Ci) for all j ∈ [k]\{i}.
If this holds for all i ∈ [k] then we say C has strong convex hull margin γ.

Remarks. The margin of Definition 5 captures natural scenarios that SVM margin does not. For
instance, suppose we are clustering fruits on the basis of weight and colour. First, a fruit weighting
more than, say, 1.5 times the typical weight of a species probably does not belong to it; but the typical
weight varies greatly across species. Our margin captures this scenario, as it is expressed as a fraction
of the class’ diameter. Second, different fruit species have different separating features; for instance,
weight does not separate well oranges from bananas, but colour does. Our margin captures this aspect,
too, by allowing the metric that determines the margin to be a function the class. It is also known
that the SVM margin γSVM can be arbitrarily smaller than γ; for instance there are simple cases with
γ > 1 but γSVM < e−n (see Bressan et al. [2021a]). Hence a large γ does not imply good bounds for
standard algorithms based on SVM margin (e.g., the Perceptron).

2 Related work

It is well known that active learning may achieve exponential savings in label complexity. That is,
there are natural concept classes that can be learned with a number of LABEL queries exponentially
smaller than that of passive learning. Hanneke and Yang [2015] characterize the label complexity of
concept classes in terms of their star number. However, the star number of many natural classes such
as linear classifiers is unbounded, implying a strong lower bound of Ω(n) LABEL queries.

This and other negative results motivated research on enriched queries. Kane et al. [2017] prove
that active learnability is characterized by the inference dimension of the concept class H under
the set of allowed queries Q, as long as those queries are local (i.e., are a function of a constant
number of instances). This yields exponential savings whenH is the class of linear separators and
Q contains label queries and comparison queries (which, given two points, reveal which one is
closer to the decision boundary), provided the classes have SVM margin or bounded bit complexity.
Hopkins et al. [2020] give similar results under distributional assumptions. Unfortunately, bounded
inference dimension does not automatically yield efficient algorithms, although it implies active
learning algorithms with bounded memory [Hopkins et al., 2021].

SEED and their variants are motivated and used by Hanneke [2009] as positive example queries,
by Balcan and Hanneke [2012] as conditional class queries, and by Beygelzimer et al. [2016],
Attenberg and Provost [2010] as search queries. They are also used implicitly by Tong and Chang
[2001], Doyle et al. [2011], and Vikram and Dasgupta [2016]. SEED queries have been used in
cluster recovery [Bressan et al., 2021b] and yield exponential savings in non-realizable learning
settings [Balcan and Hanneke, 2012]. It also easy to see that SEED queries are equivalent to partial
equivalence queries of Maass and Turán [1992] and to subset plus superset queries of Angluin [1988].
To the best of our knowledge, no work combines LABEL and SEED as we do here.

Little is known about the SEED complexity of learning a concept classH actively in polynomial time.
On the one hand, the inference dimension lower bounds of Kane et al. [2017] are inapplicable, as
SEED queries are not local. On the other hand the Littlestone dimension ofH yields an upper bound,
but not necessarily an efficient algorithm; in fact, it is well known that (some sub-problem solved
by) Halving is hard in general, see Gonen et al. [2013]. For k = 2, we can use SEED to emulate
equivalence queries, for which polynomial-time algorithms are known in some special cases. In
particular, the algorithm of Maass and Turán [1994] could replace our cutting-planes subroutine
under an implicit discretization of the space through a grid with step-size O(γ/m4). However, this
gives a polynomial-time algorithm that uses O(m2 logm/γ) SEED queries, which is O(m) times our
bound. Moreover, Maass and Turán [1994] use proper equivalence queries (i.e., the queried concept
must be in the class), for which they show a lower bound of Ω(m2 logm/γ). Finally, these techniques
do not seem to extend to the case k > 2.

Our notion of margin strengthens the convex hull margin of Bressan et al. [2021a] by requiring
d(conv(Cj), conv(Ci)) > γϕ(Ci) rather than d(Cj , Ci) > γϕ(Ci). It is not hard to see that the
convex hull margin can be arbitrarily smaller than our strong convex hull margin. Finally, the polytope
margin of Gottlieb et al. [2018] assumes that each class is in the intersection of a finite number of
halfspaces with margin. It is easy to see that this condition is strictly stronger than ours.
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3 Upper Bounds

This section gives the proofs of Theorem 1 and Theorem 2. The algorithm behind both theorems has
two phases which are described in the next subsections. The case k > 2 is essentially the same as for
k = 2, except for an adaptation in the second phase.

3.1 The First Phase: Rounding the Classes

The first phase of our algorithms learns what we call an α-rounding of X .
Definition 6. An α-rounding of X (w.r.t. h) is a sequence of pairs ((Xi, Ei))i∈[k] where (Xi)i∈[k] is
a partition of X , and where Ei for i ∈ [k] is an ellipsoid such that Xi ⊆ Ei and Ei ≤ α conv(Ci).

The idea is that, if ((Xi, Ei))i∈[k] is an α-rounding of X , then Ei gives an approximation of the
pseudometric di witnessing the strong convex hull margin of Ci. Indeed, let pi be the pseudometric
induced by Ei, the one such that Ei = Bpi(µi, 1) where µi is the center of Ei; we prove:
Lemma 7. If ((Xi, Ei))i∈[k] is an α-rounding of X then pi(conv(Xi ∩ Ci), conv(Xi ∩ Cj)) ≥ γ

α
for all distinct i, j ∈ [k].

Proof. If µi is the center of Ei, then Ei = Bpi
(µi, 1). Let di be any pseudometric witnessing that

Ci has strong convex hull margin γ > 0. As the margin is invariant under scaling, we can assume
ϕdi

(Ci) = 1 and conv(Ci) ⊆ Bdi
(zi, 1) for some zi ∈ Rm. Therefore:

Bpi(µi, 1) = Ei ≤ α conv(Ci) ⊆ αBdi(zi, 1) (1)

As pi and di are homogeneous and invariant under translation this implies pi ≥ di

α and thus
pi(conv(Xi ∩ Cj), conv(Xi ∩ Ci)) ≥ 1

αdi(conv(Xi ∩ Cj), conv(Xi ∩ Ci)). Moreover, by mono-
tonicity under taking subsets and by the margin assumption di(conv(Xi ∩ Cj), conv(Xi ∩ Ci)) ≥
di(conv(Cj), conv(Ci)) ≥ γϕdi

(Ci) = γ. Combining the two inequalities yields the thesis.

We will use Lemma 7 in the second phase. First, we show how to compute an α-rounding of X
efficiently. We sample points independently and uniformly at random from X until we find Θ(m2)
points Si with the same label i. As the VC dimension of ellipsoids in Rm is O(m2), by standard
generalization error bounds with constant probability the MVE of Si contains at least half of Ci. We
then store that MVE together with the index i, remove Si from X , and repeat until X becomes empty.
At that point for each i ∈ [k] we “merge” together all points in the MVEs that were computed for
class i, and compute the MVE of this merged set. We show that this produces an α-rounding of X
after O(k log n) rounds in expectation.5 The resulting algorithm Round is listed below; Figure 1
depicts its behaviour on a toy example.
Lemma 8. Round(X, k) returns an m2(m + 1)-rounding of X in time poly(n + m) using
O(k2m2 log n) LABEL queries in expectation.

Proof sketch. First we show that Ei ≤ m2(m+ 1) conv(Ci) for all i ∈ [k]. This is trivial if Ei = ∅,
so let Ei ̸= ∅ and let ℓi ≥ 1 be the value of hi at return time. For every h = 1, . . . , ℓi let Eh

i =
MVE(Sh

i ) and let µh
i be the center of Eh

i . Using John’s theorem one can show that σ
(
Ei, µi,

1
m

)
⊆

conv
⋃ℓi

h=1 σ
(
conv(Sh

i ), µ
h
i ,m

)
and σ

(
conv(Sh

i ), µ
h
i ,m

)
⊆ σ(conv(Ci), µ,m(m + 1)). By tak-

ing the union over all h ∈ [ℓi] we conclude that σ
(
Ei, µi,

1
m

)
⊆ σ(conv(Ci), µ,m(m + 1)), that

is, Ei ≤ m2(m+1) conv(Ci). It is also easy so see that (Xi)i∈[k] is a partition of X , hence
((Xi, Ei))i∈[k] is an m2(m+1)-rounding of X .

For the running time, the for loops perform k ≤ n iterations, and the while loop performs at most
n iterations as each iteration strictly decreases the size of X . The running time of any iteration
is dominated by the computation of MVE(Si) or MVE(Xi), which takes time poly(n +m), see
above. Hence Round(X, k) runs in time poly(n+m). For the query bounds, the while loop makes
O(m2k) LABEL queries per iteration. By standard generalization bounds, since the VC dimension of

5What we actually want is, given a finite set S ⊂ Rm, an ellipsoid E such that 1
(1+ϵ)d

E ⊂ conv(S) ⊂ E .
This can be computed in O(|S|3.5 ln(|S|/ϵ)) operations in the real number model of computation, see Khachiyan
[1996]. For simplicity however we just assume that we can compute E = MVE(S) in polytime.
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Algorithm 1: Round(X, k)

for i ∈ [k] do hi ← 0
while X ̸= ∅ do

draw points independently u.a.r. from X and LABEL them until for some i ∈ [k] we draw a
(multi)set of cm2 points from Ci

hi ← hi + 1

Shi
i ← the sample of cm2 points from Ci

Xhi
i ← X ∩MVE(Shi

i )

X ← X \Xhi
i

for i ∈ [k] do
Xi ← X1

i ∪ . . . ∪Xhi
i (set to ∅ if hi = 0)

Ei ← MVE(Xi) (set to ∅ if Xi = ∅)
return ((Xi, Ei))i∈[k]

E1 E2

Figure 1: A toy example in R2 with k = 2; black points are in C1, blue points in C2. Round(X, 2)
computes first the ellipsoids E1

2 , E
2
2 (dotted black, from left to right), and then the ellipsoids

E1
1 , E

2
1 , E

3
1 (dotted blue, from left to right). Finally it computes E1 (solid blue) and E2 (solid

black). X1 and X2 consist of the points in the blue and white areas respectively. Note that X2

contains a point of C1.

ellipsoids in Rm is O(m2), Eh
i contains at least half of X ∩ Ci with probability at least 1

2 , and thus
the expected number of rounds before X becomes empty is in O(k lg n), see Bressan et al. [2021a].
We conclude that Round(X, k) uses O(m2k2 lg n) LABEL queries in expectation.

3.2 The Second Phase: Finding a Separator via Cutting Planes

Let ((Xi, Ei))i∈[k] be the output of Round(X, k), and fix i ∈ [k]. For each j ∈ [k] \ {i}, we want
to separate Xi ∩ Ci from Xi ∩ Cj . To this end, first we use Ei to perform a change of coordinates;
this puts Xi inside the unit ball and ensures that Xi ∩ Ci and Xi ∩ Cj are linearly separated with
margin γSVM = Ω(γm−3). Next, by calling Ci the positive class (+1) and Cj the negative class
(−1), and letting X = Xi for simplicity, one can reduce the task to the following problem. Consider
a partial classifier h : X → {+1,−1, ∗}. The algorithm has access to an oracle answering queries
SEED(U, y) where U ⊆ X and y ∈ {+1,−1}, and its goal is to compute a separator of X:

Definition 9. Let X ⊂ Rm and h : X → {+1,−1, ∗}. A separator of X (w.r.t. h) is a partition
(X+, X−) of X such that, for every x ∈ X , if h(x) = +1 then x ∈ X+ and if h(x) = −1 then
x ∈ X−.

A separator of X can be learned, for instance, by the Perceptron (using SEED to find counterexamples).
However, this would yield a query and running time bound ofO(1/γ2

SVM) = O(m6/γ2). We provide
CPLearn, a cutting-plane algorithm based on SEED that is much more query-efficient (in fact,
near-optimal):

Theorem 10. Let X ⊂ Rm and h : X → {+1,−1, ∗}, and suppose h−1(+1) and h−1(−1) are
linearly separable with margin r. Given X and access to SEED for labels {+1,−1}, CPLearn(X)

6



computes a separator of X w.r.t. h using O(m log R
r ) SEED queries in expectation, where R =

maxx∈X ∥x∥2, and running with high probability6 in time poly(m+ |X|).

Proof. (Sketch) First, we lift X to Rm+1. This reduces the problem to finding a homogeneous
linear separator. To this end we let X ′ = {x′ : x ∈ X} where x′ is obtained by appending to x an
(m+1)-th coordinate that is equal to R, and we extend h to X ′ in the obvious way. It is easy to prove
that X ′ has radius at most 2R and that in X ′ the two classes are linearly separable with margin r

2 .

Next, we learn a separator of X ′ w.r.t. h via cutting planes—see, e.g., Mitchell [2003]. Let V0 =
Bm+1(0, 1). Every point u ∈ V0 identifies the halfspace H(u) = {z ∈ Rm+1 : ⟨u, z⟩ ≥ 0}. For
i = 1, 2, . . ., Vi will be our version space, and we compute Vi+1 from Vi as follows. Let µi be the
center of mass of Vi, and let X ′

i = X ′∩H(µi). By issuing SEED(X ′
i,−1) and SEED(X ′\X ′

i,+1) we
learn whether (X ′

i, X
′ \X ′

i) is a separator of X ′ w.r.t. h, in which case we return the corresponding
partition of X , or we obtain a point ui. In the second case, we let Vi+1 = Vi ∩ Ui where Ui = {x ∈
Rm+1 : h(ui) · ⟨ui, x⟩ ≥ 0}. By [Gilad-Bachrach et al., 2004, Theorem 2] this procedure returns a
separator of X ′ w.r.t. h using at most 2m

log e
e−1

log 4R
r/2 = O

(
m log R

r

)
queries.

Unfortunately, computing µi is hard in general [Rademacher, 2007]. We instead compute an estimate
µ̂i that, used in place of µi, ensures vol(Vi+1)

vol(Vi)
is bounded away from 1 with high probability; the

expected query bound follows by adapting the proof of [Gilad-Bachrach et al., 2004]. Assume for the
moment that Vi is well-rounded—that is, it contains a ball of radius r = poly(m) and is contained in
a ball of radius 1. To compute µ̂i we average over poly(n+m) independent uniform points from
Vi, which can be draw efficiently thanks to the rounding condition. At this point we use µ̂i in place
of µi to invoke SEED and obtain a violated constraint Ui. Howewer, setting Vi+1 = Vi ∩ Ui could
make Vi+1 far from rounded (too “thin”), making sampling inefficient at the next round. Therefore
we rotate Ui so to obtain a weaker constraint U∗

i , one that still contains Vi ∩ Ui but that has µ̂i on its
boundary, and let Vi+1 = Vi ∩U∗

i . By the assumption on µ̂i this implies that vol(Vi+1) ≥ 1
3 vol(Vi);

therefore by sampling uniform points from Vi we can obtain a large sample in Vi+1, from which we
can put Vi+1 in a rounding position. See the full proof for all the details.

To the best of our knowledge, CPLearn is the first efficient algorithm that achieves the query upper
bound of Theorem 10, even for the special case of SVM margin.

3.3 Wrap-Up

We wrap up our algorithms, starting with the case k = 2; the case k ≥ 2 is slightly more involved.

Algorithm 2: BinLearn(X)

((X1, E1), (X2, E2))← Round(X)
for i← 1, 2 do

change system of coordinates so that Ei becomes the unit ball
(Xi+, Xi−)← CPLearn(Xi) with h : Xi → {1, 2}

return (X1+ ∪X2−, X2+ ∪X1−)

Theorem 11. Suppose k = 2. Then BinLearn(X) returns C = (C1, C2) in time poly(n+m) using
in expectation O(m2 log n) LABEL queries and O(m log m

γ ) SEED queries.

Proof. By Lemma 8, Round(X) runs in time poly(n+m), makes O(m2 log n) LABEL queries in
expectation, and returns an O(m3)-rounding of X . It is immediate to see that, after the change of
coordinates, Xi has radius R ≤ 1, while C1 ∩X1 and C2 ∩X1 are separated linearly with margin
r = Ω(γm−3). By Theorem 10 then, CPLearn(Xi) returns the partition of Xi induced by h in time
poly(|Xi|+m) = poly(n+m) using O

(
m log R

r

)
= O

(
m log m

γ

)
expected SEED queries.

6This means that the running time can be brought in poly(m+ |X|) with probability 1− exp(−(m+ |X|)).
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For k ≥ 2 we proceed as follows. Let k = [k]. We take Xi for each i ∈ k in turn, and for each
j ∈ k \ i, we use CPLearn to compute a separator for i, j in Xi. By intersecting the left side of all
those separators we obtain Xi ∩ Ci. Then we recurse on Xi \ Ci, updating k to k \ i. The resulting
algorithm KClassLearn is listed below and yields:

Theorem 12. KClassLearn(X, [k]) returns C in time poly(n + m) using in expectation
O(k!k2 m2 log n) LABEL queries and O

(
k!k2 m log m

γ

)
SEED queries.

Proof. We adapt the proof of Theorem 11. Observe that KClassLearn(X, [k]) makes at most
min(k!, n) recursive calls; the n in the min comes from the fact that any given (recursive) call
learns the label of at least one unlabeled point. Now, every (recursive) call makes one invocation
to Round(X), which by Lemma 8 uses time poly(n+m) and O(k2m2 log n) LABEL queries, and
O(k2) invocations to CPLearn(Xi), each of which by Theorem 10 uses poly(n + m) time and
O
(
m log m

γ

)
SEED queries.

Algorithm 3: KClassLearn(X,k)

k ← |k|
if k = 1 then query any point of X and label all of X accordingly
else

((Xi, Ei))i∈[k] ← Round(X)
for i ∈ k do

change system of coordinates so that Ei becomes the unit ball
for j ∈ k \ i do

(Cij , Cij)← CPLearn(Xi) with h : Xi → {i, j}
Ĉi ←

⋂
j∈k\i Cij

mark all of Ĉi with label i
if Xi \ Ĉi ̸= ∅ then KClassLearn(Xi \ Ĉi,k \ i)

4 Lower Bounds

This section gives a detailed sketch of the proof of Theorem 4, recalled here for convenience:

Theorem 4. For all m ≥ 2, all k ≥ 2, and all γ ≤ m−3/2/16 there exists a distribution of instances
with k classes in Rm with strong convex hull margin γ where any randomized algorithm using SEED
and LABEL queries that returns C with probability at least 1

2 makes at least
⌊
k
2

⌋
m
24 log

1
2γ total

queries in expectation.

We first give the sketch for k = 2, and then extend it to k ≥ 2. For a full proof see Appendix B. Set-
up. The construction is adapted from Proposition 2 of Thiessen and Gärtner [2021]. Let e1, . . . , em
be the canonical basis of Rm and let ℓ = ⌊1/

√
2γ

√
m⌋; note that γ ≤ m−3/2

16 and m ≥ 2 ensure ℓ ≥ 4.
Let p = m − 1, and for each i ∈ [p] and j ∈ [ℓ] define xj

i = ei + j · em. Finally, let X = {xj
i :

i ∈ [p], j ∈ [ℓ]} and define the concept classH =
{⋃

i∈[p]{x1
i , . . . , x

ℓi
i } : (ℓ1, . . . , ℓp) ∈ [ℓ]p

}
. Let

C = (C1, C2) be any partition of X such that C1 ∈ H. One can easily verify that C has strong convex
hull margin 1

2ℓ2
√
m
≥ γ. See Figure 2 for reference.

Query bound. Let V0 = {(C1, C2) : C1 ∈ H}. This is the initial version space. We let the target
concept C = (C1, C2) be drawn uniformly at random from V0. Note that for k = 2, any lower bound
on the number of SEED queries alone, also holds for any combination of SEED and LABEL queries, as
LABEL(x) can be simulated by SEED(x, 1). Thus, without loss of generality, we can assume that the
algorithm is only using SEED queries. For all t = 0, 1, . . ., we denote by Vt the version space after
the first t SEED queries made by the algorithm. Now fix any t ≥ 1 and let SEED(U, y) be the t-th
such query. Without loss of generality we assume y = 1; a symmetric argument applies to y = 2. If
U ∩ C1 contains a point x whose label can be inferred from the first t− 1 queries, then we return
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S1

+ + + + + − − − − −

S2

+ + − − − − − − − −

Z1

Z2 U

Figure 2: X for p = 2 and ℓ = 10. Filled points represent the agreement region. The maximum point
of S1 ∩ C1 (resp. S2 ∩ C1) can be any point in Z1 (resp. Z2). U is a possible query.

x. Therefore we can continue under the assumption that U does not contain any such point (doing
otherwise cannot reduce the probability that the algorithm learns nothing). The oracle answers so to
maximize |Vt|

|Vt−1| , as described below.

For each i ∈ [p] let Si = {xj
i : j ∈ [ℓ]}. We consider Si as sorted by the index j. Let Zi be

the subset of Si in the disagreement region of Vt−1 together with the point in Si preceding this
region; observe that this point always exists, as x1

i ∈ C1 is in the agreement region. Note that Zi is
necessarily an interval of Si. We let Ui = Zi ∩ U for each i ∈ [p] and P (U) = {i ∈ [p] : Ui ̸= ∅}.
For every i ∈ P (U), we let αi be the fraction of points of Zi that precede the first point in Ui.
Let x∗

i = argmax{j : xj
i ∈ Si ∩ C1}. Observe that |Vt−1| =

∏
i∈[p] |Zi|.Indeed, x∗

i is uniformly
distributed over Zi; either x∗

i is a point in the disagreement region of Si, or the disagreement region
of Si is fully contained in C2 and x∗

i is the point preceding the disagreement region of Si.

Now we show that E[|Vt−1|/|Vt|] ≤ m. Let E be the event that SEED(U, 1) = NIL. Write:

E
[
|Vt−1|
|Vt|

]
= Pr(E)E

[
|Vt−1|
|Vt|

∣∣∣ E]+ Pr(E)E
[
|Vt−1|
|Vt|

∣∣∣ E] (2)

We bound each one of the two terms in the right-hand side.

For the first term, note that E holds if and only if Ui∩C1 = ∅ for all i ∈ P (U). Since x∗
i is uniformly

distributed over Zi, for all i ∈ P (U) we have Pr(C1 ∩ Ui = ∅) = αi, and since the distributions
of those points are independent, then Pr(E) =

∏
i∈P (U) αi. If Pr(E) > 0 and E holds, then x∗

i is
uniformly distributed over the first αi|Zi| points of Zi, as the rest of Zi belongs to C2. This holds
independently for all i, thus:

|Vt| =

( ∏
i∈P (U)

αi|Zi|

)( ∏
i∈[p]\P (U)

|Zi|

)
=

( ∏
i∈P (U)

αi

)( ∏
i∈[p]

|Zi|

)
= |Vt−1|

∏
i∈P (U)

αi (3)

It follows that Pr(E)E
[
|Vt−1|
|Vt|

∣∣∣ E] ≤ 1.

Let us turn to the second term. If E does not hold, then SEED(U, 1) returns the smallest point x ∈ Ui

for any i ∈ P (U) such that C1 ∩ Ui ̸= ∅ (note that necessarily x ∈ C1). For any fixed i ∈ P (U), the
probability of returning the smallest point of Ui is bounded by Pr(C1 ∩ Ui ̸= ∅), which is 1− αi;
and if this is the case, then we have |Vt| = (1− αi)|Vt−1|. Thus:

Pr(E)E
[
|Vt−1|
|Vt|

∣∣∣ E] ≤ Pr(E) max
i∈P (U)

(1− αi)
1

(1− αi)
= Pr(E) ≤ 1 (4)

So the two terms of (2) are both bounded by 1; we conclude that E
[
|Vt−1|
|Vt|

]
≤ 2.

Next, fix any t̄ ≥ 1 and let log = log2. By the concavity of log and by Jensen’s inequality:

E
[
log
|V0|
|Vt̄|

]
= E

[
t̄∑

t=1

log
|Vt−1|
|Vt|

]
=

t̄∑
t=1

E
[
log
|Vt−1|
|Vt|

]
≤

t̄∑
t=1

logE
[
|Vt−1|
|Vt|

]
(5)
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Since E
[
|Vt−1|
|Vt|

]
≤ 2, the right-hand side is at most t̄. Now, since |V0| = ℓp = ℓm−1, by Markov’s

inequality, and since (m− 1) log ℓ− log 2 ≥ (m−1) log ℓ
2 ≥ m log ℓ

4 :

Pr(|Vt̄| ≤ 2) = Pr

(
log
|V0|
|Vt̄|
≥ (m− 1) log ℓ− log 2

)
≤

4E
[
log |V0|

|Vt̄|

]
m log ℓ

≤ 4 t̄

m log ℓ
(6)

Now let T be the random variable counting the number of queries spent by the algorithm, and let VT

be the version space at return time. Since C is uniform over VT and C is returned with probability at
least 1

2 , then Pr(|VT | ≤ 2) ≥ 1
2 . By (6) and linearity of expectation,

1

2
≤ Pr(|VT | ≤ 2) ≤

∑
t̄≥0

Pr(T = t̄) · 4t̄

m log ℓ
= E[T ]

4

m log ℓ
(7)

Therefore E[T ] ≥ m log ℓ
4 . Now, since ℓ ≥ 4 then ℓ ≥ 4

5
√

2γ
√
m

, which since m ≤ (16γ)−2/3 yields,

after calculations, ℓ ≥ 3
√

1/γ · 4
4/3

5
√
2
> 0.89 3

√
1/γ. This shows that E[T ] > m

24 log
1
2γ , concluding the

proof for k = 2.

Extension to k ≥ 2. For each s ∈
⌊
k
2

⌋
and each pair of classes C2s−1, C2s, use the construction

above shifted along the m-th dimension by (s− 1)ℓ. One can easily verify that learning C is as hard
as learning

⌊
k
2

⌋
independent binary classifiers, for each of which the bound above holds.

5 Conclusions and Future Work

We have shown that, with a careful combination of LABEL and SEED queries, one can overcome
the limitations of each query alone and get the “best of both worlds”: an algorithm that achieves
exponential savings and, simultaneously, has running time polynomial in the dimension of the space.
Our work leaves open a few problems. The first problem is to understand the tradeoff between the two
query types: how many LABEL does one need if one is allowed only Q SEED? The second problem is
whether, for the one-sided case, one can achieve a query rate that is independent of the distortion κd,
as we did for the multiclass case. The third problem is whether one can improve the dependence of
our bounds on the number k of classes, ideally bounding it by a polynomial.
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