
Graph Coloring via Neural Networks for Haplotype
Assembly and Viral Quasispecies Reconstruction

Hansheng Xue,1 Vaibhav Rajan,2 and Yu Lin1∗
1School of Computing, Australian National University, Canberra, Australia

2School of Computing, National University of Singapore, Singapore
{hansheng.xue,yu.lin}@anu.edu.au, vaibhav.rajan@nus.edu.sg

A Appendix

A.1 The pseudocode for NeurHap-refine algorithm

From the previous NeurHap-search step, we obtain an initial coloring assignment for vertices that
satisfy the constraints of the read-overlap graph. However, it may exists multiple coloring assignments
that satisfy all constraints. Therefore, we run an additional local refinement step to further optimise
the MEC score. NeurHap-refine mainly searches for possible color adjustments of individual vertices
given their associated conflicting and consistent constraints. More specifically, if an individual vertex
can be assigned a color different from its current color without violating any of associated conflicting
constraints with the neighboring vertices, the color is changed if a better MEC score is obtained by
the change. The local refinement algorithm, NeurHap-refine, iteratively explores these possible color
adjustments of individual vertices. The pseudocode for the NeurHap-refine is as follows:

Algorithm 1: The Local Refinement Algorithm NeurHap-refine.
Data: Read-overlap graph G; number of polyploids k; initial color assignment Y
Result: final color assignments Y∗.

1 Tag← True // Initialize the iteration tag as True
2 while Tag == True do
3 Tag← False // Set the iteration tag as False
4 for node v ∈ V do
5 CNv ← {c(u)|(v, u) ∈ E̸=} // Compute the set of colors from

conflicting neighbors
6 for c′ /∈ CN(v) and c′ ̸= c(v) do
7 // for every possible alternative color c′ for v
8 Y ′ ← Yc(v)←c′

9 // Y ′ is derived by setting c′ as the color of v in Y
10 if MEC(Y ′) < MEC(Y) then
11 Y ← Y ′ // Move to a better coloring scheme
12 Tag← True // Set the iteration tag to be true
13 end
14 end
15 end
16 end
17 Y∗ ← Y // Output the final coloring scheme

∗Corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



A.2 Implementation Details

Two categories of datasets are used in the paper, Polyploid species and Viral Quasispecies. Polyploid
species contains two datasets, Sim-Potato (k = 4) and Real-Potato (k = 4), which are downloaded
from CAECseq [Ke and Vikalo, 2020a] and GAEseq [Ke and Vikalo, 2020b]. Viral Quasispecies
contains three datasets, 5-strain HIV (k = 5), 10-strain HCV (k = 10), and 15-strain ZIKV (k = 15),
which are downloaded from SAVAGE [Baaijens et al., 2017]. It has two steps to generate the SNP
matrix, i) Align reads to a reference genome and ii) Extract the matrix from the alignment.

i) Align Reads to Reference. BWA-MEM [Li, 2013] is used to align reads to the reference genome.
The detailed command is (take the 15-strain ZIKV as an example):

$ ./bwa index 15-strain-ZIKV.fasta
$ ./bwa mem 15-strain-ZIKV.fasta forward.fastq reverse.fastq >
15-strain-ZIKV.sam

ii) Extract the SNP Matrix. We use the same tool described in CAECseq and GAEseq [Ke and
Vikalo, 2020a,b] to derive the SNP matrix from the above alignment to ensure a fair comparison. The
default parameters are used in the configure file which is same with CAECseq and GAEseq. The
detailed command is:

$ ./ExtractMatrix config

For all five datasts, we randomly generate 10 samples. The detailed number of reads and SNPs for
Real-Potato, 5-strain HIV, 10-strain HCV, and 15-strain ZIKV are listed in the paper. For Semi-Potato,
sequencing coverage is varied from 5X to 30X. We have 40 sub-datasets in Semi-Potato. The read
numbers range from approximately 200 to 1200 and the number of SNPs vary from 200 to 400.

Read-overlap Graph. After obtaining the SNP matrix, we build the consistent and conflicting edges
between pairs of reads (i.e., pairs of rows in the SNP matrix). Two parameters are introduced in this
step to the construct read-overlap graph, p and q. Two overlapping reads Ri and Rj are consistent
if they have the same alleles over all SNP positions meanwhile the length of overlapping is larger
than p (i.e., HD(Ri, Rj) = 0), and are in conflict if they differ on at least q SNP positions (i.e.,
HD(Ri, Rj) ≥ q), where HD(Ri, Rj) represents the Hamming distance between two overlapping
reads in the read-overlap graph. We adjust two thresholds according different datasets from 2 to 6,
and we also evaluate the effect of two parameters for the NeurHap model.

You can simply run the following to reproduce the experimental results (we take the Sim-Potato-Cov5
Sample 1 as an example).

$ python main.py -e 2000 -t 10 -f 32 -k 4 -r 1e-3 -p 6 -q 2 -l 0.01 -d
Semi-Potato -s Sample1

where parameter -e represents the number of epoch, -t is the number of the iteration, -f is the
dimension of the embedding, -k is the number of haplotypes or ploids, -r is the learning rate, -l
denotes the λ. Parameters -d and -s are used to select the corresponding data and sample. The
source code of NeurHap is freely available at https://github.com/xuehansheng/NeurHap.

Running environment. NeurHap is implemented in Python 3.6 and Pytorch 1.8 using the Linux
server with 6 Intel(R) Core(TM) i7-7800X CPU @ 3.50 GHz, 96GB RAM and 2 NVIDIA RTX
A6000 with 48GB memory.

A.3 Experimental Analysis

Parameters Analysis. In this section, we investigate the importance of core parameters in model,
including p and q for read-overlap graph, λ for consistent constraints, t for iterations, and d for
feature dimension. Figure 1 b) shows that our proposed NeurHap is robust to the dimension of latent
embedding d. In Figure 1 a), the MEC scores for NeurHap with λ varying from 0.0 to 0.1 do not
change too much and relatively stable. However, if we choose λ as 0.5, the performance of NeurHap
being worse. We vary λ from 0.0 to 0.1 for NeurHap.

Next, we investigate the effects of parameters t, p, and q (take the Sim-Potato-Cov30X Sample 1
as an example). We vary iteration t from 5 to 25 and the results are shown in Figure 2 a). When
the iteration t = 10, NeurHap achieves the best performance on the Sim-Potato-Cov30X Sample 1
dataset. When the iteration t ≥ 10, the MEC score of the NeurHap is relatively stable. In Figure 2 b),

2

https://github.com/xuehansheng/NeurHap


Figure 1: Parameters analysis of the NeurHap model (λ and d).

When parameters q = 4 and p = 5, the NeurHap achieves the best performance. If the parameter
p < 5 (q is fixed to 4), the MEC score of the NeurHap is high because the constructed consistent
edges are not confident and they contain several mistaken consistent edges. When the parameter
q > 4 (the p is fixed to 5), the number of extracted conflicting edges is few (the read-overlap graph is
sparse) which is not good to optimise the MEC score.

Figure 2: Parameters analysis of the NeurHap model (t, p, and q).

Running Time. We benchmark the running time of NeurHap against two deep learning baselines
CAECseq and GAEseq on the Sim-Potato-Cov30 Sample 1 data. NeurHap achieves the lowest MEC
score (142.0) compared with CAECseq (372.9) and GAEseq (496.9). The running time of NeurHap
is 258 seconds which is faster than CAECseq (341 seconds). GAEseq is the slowest among the three
and takes 492 seconds.

Figure 3: The running time of NeurHap, CAECseq and GAEseq.

A.4 Additional Experiment

Average MEC on Semi-Potato. In the experimental part, we select the lowest MEC score as the final
results after running experiment 10 times which is same as previous SOTA baselines Ke and Vikalo
[2020a,b]. Here, we also report the average MEC score after running all algorithms on Semi-Potato
10 times (see Table 1). NeurHap still outperforms other SOTA baselines.

Benchmark against Graph Coloring. We also benchmark NeurHap against two graph coloring
algorithms, including Greedy [Brélaz, 1979] and RUN-CSP [Toenshoff et al., 2019]. We implement
graph coloring algorithms on the read-overlap graphs which only contain conflicting edges because
those methods cannot address the consistent edges. In Table 2, NeurHap significantly outperforms
graph coloring algorithms.

3



Table 1: Performance comparison on Sim-Potato (Tetraploid, k = 4).

Polyploids Model #Cov 5X #Cov 10X #Cov 20X #Cov 30X

Tetraploid

H-PoP 429.0±64.1 933.9±103.6 1782.2±161.8 2826.9±180.7

(k=4)

AltHap 610.9±259.3 722.3±179.1 649.3±369.4 1148.2±509.9
GAEseq 225.1±17.7 391.2±45.5 610.4±97.3 811.8±131.8

CAECseq 160.5±25.9 266.0±43.3 466.5±89.0 629.5±160.0

NeurHap 37.5±5.5 62.8±7.5 113.2±19.8 166.3±26.7

Table 2: Performance comparison on Real-Potato (k = 4) and 5-strain HIV (k = 5).

Data Model # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 # Avg.

Real-Potato
Greedy 296 458 162 3 239 1014 679 602 694 906 505.3±330.3

RUN-CSP 186 358 107 1 185 890 553 492 647 767 418.6±298.7
NeurHap 178 343 93 1 163 857 499 384 561 632 371.6±268.9

5-strain HIV
Greedy 3974 3791 3633 3819 4251 3472 3137 3241 3326 3476 3612.0±349.3

RUN-CSP 2226 2375 2175 2408 2192 2748 2449 2614 2312 2567 2406.6±191.3
NeurHap 1307 1525 1385 1265 1410 1382 1393 1323 1274 1450 1371.4±81.2

MEC score v.s. Violating Constraints. While Eqn. 2 aims to minimize the sum of hamming
distances between each read Rj and the haplotype Hi that is drawn from Rj , Eqn. 3 aims to
minimize the divergence between pairs of reads (as P (vi) and P (vj)) that are drawn from the same
haplotype and maximize the divergence between pairs of reads if they are drawn from different
haplotypes. Moreover, the hamming distances in Eqn.2 have been used implicitly to derive in Eqn.3.
In an ideal case, if all pairs of conflicting reads are assigned into different haplotypes (i.e., different
colors) and all pairs of consistent reads are assigned into the same haplotypes (i.e., the same color),
each cluster will only contain consistent reads and thus the MEC score in Eqn.2 will be minimized to
be 0. In non-ideal cases such as Sim-Potato Cov-5X Sample 1 datasets, the following Figure 4 shows
that the objective function to be minimized in Eqn.2 (i.e., MEC) correlates well with the objective
function to be minimized in Eqn.3, which demonstrates the effectiveness of NeurHap for minimizing
the MEC through optimizing Eqn.3.

Figure 4: The MEC score v.s. Violating Constraints in the training process of NeurHap.

Scalability. To evaluate the scalability of the NeurHap, we incrementally combine the samples in
Real-Potato dataset and summarise the results in Table 3. It is observed that the running time of
NeurHap is roughly linearly correlated with the number of total edges (conflict edges + consistent
edges). On the other hand, diploid haplotype assembly remains challenging for reconstructing
chromosome-level haplotypes, especially for large eukaryotic genomes with complex repeats. Similar
to CAECseq and GAEseq, NeurHap has also focused on short-read datasets on gene regions because
complex repeats in the intergenic regions along the chromosome make it impossible to reconstruct
continuous haplotypes reliably.

Besides, we applied NeurHap on a chromosome-level dataset for Chromosome 22 of the hu-
man genome to validate the scalability of NeurHap. Specifically, we downloaded publicly

4



Table 3: Performance comparison on cumulative Real-Potato dataset.

Samples # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10

Reads 240 629 903 1018 1159 1557 1852 2136 2625 3074
SNPs 295 533 616 639 815 1013 1469 1893 2129 2539

Conflict 3351 6380 13433 14208 16207 34288 39368 42811 51358 59621
Consistent 966 1514 3323 3537 3908 5747 6470 6977 7985 9329

CAECseq MEC 229 786 910 985 1282 1997 2584 3018 3914 4524
time 243s 283s 302s 310s 414s 586s 798s 1188s 1991s 2774s

NeurHap MEC 183 559 671 692 888 1802 2305 2667 3316 3992
-search time 28s 38s 52s 53s 63s 99s 128s 157s 200s 253s

available alignment files for the Human Genome NA12878 (from http://s3.amazonaws.com/
nanopore-human-wgs/NA12878-Albacore2.1.sorted.bam) and combined them with the set
of heterozygous SNPs on Chromosome 22 of the human genome (derived from [Duitama et al., 2012])
to build the input alignment matrix (following the same procedure introduced in HapCUT2 [Edge
et al., 2017]). This constructed matrix contains 129,338 long reads and 22,792 SNPs. NeurHap
took 734 seconds and around 13G memory to reconstruct two chromosome-level haplotypes with a
MEC score of 23,114. As Chromosome 22 is about 1.6% of the whole human genome and 20% of
the largest chromosome (Chromosome 1) in the human genome, we estimate (optimistically) that
phasing all the chromosomes in the human genome will take about 12 hours with a peak memory of
65G. Note that CAECseq and GAEseq are both out of the memory when they were applied to this
chromosome-level dataset on the NVIDIA RTX A6000 with 48GB memory.

References
Jasmijn A. Baaijens, Amal Zine El Aabidine, Eric Rivals, and Alexander Schönhuth. De novo

assembly of viral quasispecies using overlap graphs. Genome research, 27 5:835–848, 2017.

Daniel Brélaz. New methods to color the vertices of a graph. Commun. ACM, 22(4):251–256, 1979.

Jorge Duitama, Gayle K McEwen, Thomas Huebsch, Stefanie Palczewski, Sabrina Schulz, Kevin J.
Verstrepen, Eun-Kyung Suk, and Margret R. Hoehe. Fosmid-based whole genome haplotyping of a
hapmap trio child: evaluation of single individual haplotyping techniques. Nucleic Acids Research,
40:2041 – 2053, 2012.

Peter Edge, Vineet Bafna, and Vikas Kumar Bansal. Hapcut2: robust and accurate haplotype assembly
for diverse sequencing technologies. Genome research, 27 5:801–812, 2017.

Ziqi Ke and Haris Vikalo. A convolutional auto-encoder for haplotype assembly and viral quasispecies
reconstruction. In NeurIPS, 2020a.

Ziqi Ke and Haris Vikalo. A graph auto-encoder for haplotype assembly and viral quasispecies
reconstruction. In AAAI, 2020b.

Heng Li. Aligning sequence reads, clone sequences and assembly contigs with bwa-mem. arXiv:
Genomics, 2013.

Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Run-csp: Unsupervised learning
of message passing networks for binary constraint satisfaction problems. ArXiv, abs/1909.08387,
2019.

5

http://s3.amazonaws.com/nanopore-human-wgs/NA12878-Albacore2.1.sorted.bam
http://s3.amazonaws.com/nanopore-human-wgs/NA12878-Albacore2.1.sorted.bam

	Appendix
	The pseudocode for NeurHap-refine algorithm
	Implementation Details
	Experimental Analysis
	Additional Experiment


